直线和圆的位置关系
- 格式:ppt
- 大小:2.25 MB
- 文档页数:17
直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
直线与圆位置关系的判定方法直线和圆的位置关系是初中数学中常见的问题,也是高中和大学数学中常见的基础概念,理解好这两者之间的关系对进一步的数学学习和应用都有很大的帮助。
下面将介绍判定直线与圆位置关系的方法。
一、一次函数方程式首先,对于经过圆的直线,可以将其方程式化为一次函数的形式,即:y = kx + b其中,k为斜率,b为截距。
接下来,我们只需要找到该函数与圆的位置关系即可。
1、当k=0时,直线平行于x轴,此时若圆心的y坐标在直线两端点的y坐标之间,则直线与圆有两个交点;若圆心的y坐标小于直线两端点的y坐标,则没有交点;若圆心的y坐标大于直线两端点的y坐标,则有且只有一个交点。
2、当k不为0时,此时直线的斜率存在,这意味着直线与圆的位置关系会发生变化。
如果直线的斜率大于圆与直线的交点处的切线的斜率,则直线与圆没有交点;如果直线的斜率小于切线的斜率,则直线与圆有两个交点;如果直线的斜率等于切线的斜率,则直线与圆有且只有一个交点。
二、圆的一般方程式还有一种情况是,圆的方程不是标准方程,而是一般方程:(x-a)² +(y-b)² = r²,其中(a,b)为圆心坐标,r为圆的半径。
这时我们可以将直线的方程式 y=kx+b 代入圆的一般方程,并进行变形。
变形后的方程为:(k²+1)x² + (2kb-2ak-2b) x+(a²+b²-r²) = 0解此一元二次方程可以得到交点的横坐标,进而求得纵坐标。
当求出的纵坐标与直线对应的纵坐标接近时,则判断直线与圆相切;当求出的纵坐标与直线对应的纵坐标相等时,则判断直线与圆相离;否则,判断直线与圆相交。
相交时,根据解出的横坐标作代入圆的方程,得到两个交点的纵坐标。
总结:在日常生活和工作中,我们经常需要判定直线和圆的位置关系,上述方法简单易行,当我们用好这些方法,可以在很大程度上提高工作有效性。
直线和圆的位置关系
直线和圆的位置关系有三种,具体如下:
1、相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
2、相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
3、相离:直线和圆没有公共点时,叫做直线和圆相离。
直线定义:直线是由无数个点构成,两端都没有端点、可以百向两端无限延伸、不可测量长度的一条线。
圆的定义:在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
判定直线与圆的位置关系常见的方式(1)几何法:利用弦心距d 与半径r 的关系. (2)代数法:联立直线与圆的方程,再利用Δ判定.(3)点与圆的位置关系法:假设直线恒过定点且定点在圆内,可判定直线与圆相交.上述方式中最经常使用的是几何法,点与圆的位置关系法适用于动直线问题.例一、已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.证明:不论k 为何实数,直线l 和圆C 总有两个交点; 方式一:证明:由⎩⎨⎧=++-+=12)1()1(122y x kx y ,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为∆=(2-4k )2+28(k 2+1)>0,因此不论k 为何实数,直线l 和圆C 总有两个交点. 方式二:证明:圆心C (1,-1)到直线l 的距离d =|k +2|1+k 2,圆C 的半径R =23, R 2-d 2=12-k 2+4k +41+k 2=11k 2-4k +81+k2,而在S =11k 2-4k +8中, Δ=(-4)2-4×11×8<0, 故11k 2-4k +8>0对k ∈R 恒成立,因此R 2-d 2>0,即d <R ,因此不论k 为何实数,直线l 和圆C 总有两个交点.方式三:证明:因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=R ,因此点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总通过圆C 内部的定点P .因此不论k 为何实数,直线l 和圆C 总有两个交点.点评:在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一路综合考虑,不要单纯依托代数计算,如此既简单又不容易犯错.针对性练习:1.直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分没必要要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <12.已知点P(a,b)(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax+by=r 2,那么( )(A)m ∥l ,且l 与圆相交 (B)m ⊥l ,且l 与圆相切 (C)m ∥l ,且l 与圆相离 (D)m ⊥l ,且l 与圆相离解析:选C.直线m 的方程为()a y b x a ,b -=-- 即ax+by-a 2-b 2=0,∵P 在圆内,∴a 2+b 2<r 2,∴m ∥l , ∵圆心到直线l 的距离222r d r,a b=>+ ∴直线l 与圆相离. 3.已知点P (x 0,y 0),圆O :x 2+y 2=r 2(r >0),直线l :x 0x +y 0y =r 2,有以下几个结论:①假设点P 在圆O上,那么直线l 与圆O 相切;②假设点P 在圆O 外,那么直线l 与圆O 相离;③假设点P 在圆O 内,那么直线l 与圆O 相交;④不管点P 在何处,直线l 与圆O 恒相切,其中正确的个数是( )A .1B .2C .3D .4解析:依照点到直线的距离公式有d =r 2x 20+y 20,假设点P 在圆O 上,那么x 20+y 20=r 2,d =r ,相切;假设点P 在圆O 外,那么x 20+y 20>r 2,d <r ,相交;假设点P 在圆O 内,那么x 20+y 20<r 2,d >r ,相离,故只有①正确.选A4.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.假设点P 到直线l 的距离为2,那么符合题意的点P 有__________个.解析:由题意知圆的标准方程为(x +2)2+(y -3)2=42,∴圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,那么知足题意的点P 有2个.答案:25.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于_______。
直线与圆的位置关系一、直线与圆的位置关系判定方法:(1)代数法:通过解直线方程与圆的方程所组成的方程组,根据解得个数来判断△>0表示直线和圆有2个交点,则相交△=0表示直线和圆有1个交点或者说2个重合的交点,则相切△<0表示直线和圆没有交点,则相离(2)几何法:由圆心到直线的距离d 与半径r 的大小关系来判断(1) 当d<r 时,直线与圆相交(2)当d=r 时,直线与圆相切(3)当d.>r 时,直线与圆相离倘若直线和圆的方程都告诉你让你判断它们之间的关系的时候,一般要结合图形解答,所以一般采用几何的方法,如果圆的方程告诉你了,但是直线的方程没有告诉你,让你根据一个点判断直线的斜率在什么范围内时用代数法。
例题1:直线0123=-+y x 与圆042422=-+++y x y x 的位置关系是例题2:已知圆822=+y x ,定点)0,4(P ,问P 点的直线的斜率在什么范围内取值时,这条直线与已知圆:(1) 相切 (2)相交 (3)相离?并写出过点P 的切线方程二、求圆的切线问题的方法(1)求过圆上一点),(00y x 的圆的切线方程:先求切点与圆心得连线的斜率k ,油垂直关系,知切线斜率为k 1-,由点斜式方程可求得切线的方程,如果0=k 或斜率不存在,则由图形可直接得切线方程为a x b y ==或。
(2)求过圆外一点),(00y x 的圆的切线方程:(1)几何方法:设切线方程为)(00x x k y y -=-即o y kx y kx =+--00 由圆心到直线的距离等于半径,可求得k ,切线方程即可求出(2)代数方法:设切线方程为)(00x x k y y -=-即00y kx kx y +-=,代入圆的方程,得到一个关于x 的一元二次方程,由0=∆求得k ,切线方程即可求出。
注意若此方程只有一个实根,则还有一条斜率不存在的直线。
例题1:圆的方程是1322=+y x 过其上一点(2,3)的切线方程?例题2:圆的方程是822=+y x ,过圆外一点(4,5)的切线方程?三、弦长问题的处理方法(1)几何法:即利用弦心距、弦长一半以及半径构成的直角三角形求解,即222)2(r d l =+(2)代数法:将直线方程与圆的方程练了,运用根与系数的关系,弦长公式是2121x x k AB -+=例题:求直线063:=-+y x l 被圆042:22=--+y y x C 截得的弦长(两种方法) 四、与圆有关的最值问题(1)运用几何及几何手段先确定达到最值的位置,再进行计算,(2)通过建立目标函数后,转化为函数的最值问题例题1:点P 在直线0102=++y x 上移动,PB PA ,与圆422=+y x 分别相切于B A ,两点,则PAOB 面积的最小值为?例题2:已知实数y x ,满足方程01422=+-+x y x ,求(1)xy 的最大值与最小值(2)x y -的最大值与最小值(3)22y x +的最大值与最小值求解与圆有关的最大(小)值问题,应考虑圆的对称性,常与圆心、半径、切线有关,可借助图形性质,利用数形结合的方法处理(1) 形如ax b y u --=的最值问题,可转化为过定点),(b a 的动直线的斜率的最值问题 (2) 形如by ax t +=的最值问题,可转化为斜率为定值的动直线的截距的最值问题(3) 形如222)()(b y a x d -+-=的最值问题,可转化为定点),(b a 的距离的最值问题圆与圆的位置关系一、圆与圆的位置关系及公切线的条数(1)⇔+>21r r d 外离⇔4条公切线 (2)⇔+=21r r d 外切⇔3条公切线(3)⇔+<<-2121r r d r r 相交⇔2条公切线 (4)d r r =-21⇔内切⇔1条公切线(5)⇔-<<210r r d 内含⇔无公切线例题:已知两圆4)2(22=+-y x 与1)4(22=+-y x ,求两圆的公切线?二、公共弦两圆相交时的公共弦所在的直线方程、两圆外切时的内公切线方程、两圆内切时的外公切线方程均是两圆方程作差, 消去二次项所得的直线方程。