【全国市级联考word】河北省石家庄市2017届高三毕业班第二次模拟考试理数试题
- 格式:pdf
- 大小:578.36 KB
- 文档页数:15
2016-2017 学年度石家庄市第二次模 考数学理科答案一、1-5DDACA 6-10 DADBA 11-12AB二、填空13.54014 .22x 2 y 2 1315.52016.5三、解答17. 解: (1)当n1,a 1 2a 2na n ( n 1)2n 1 2 ①a 1 2a 2 (n-1)a n 1 (n 2)2n2②⋯⋯⋯⋯⋯⋯⋯⋯ 2 分① -②得na n (n 1)2 n 1 (n 2)2 n n 2 n所以a n2n ,⋯⋯⋯⋯⋯⋯⋯⋯3 分当n1, a 12 ,所以a n2n , nN * ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 因 a n2n ,b n111 1 1⋯⋯⋯⋯⋯⋯⋯⋯ 6 分log 2 a n log 2 a n 2n( n2)( n n ) .2 2所以T1 1 11 1 11 1 111 1 1 1 1 .n2 3 2 2 42 3 52 n 1 n 12 n n 2⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分1 1 11 1 1 ⋯⋯⋯⋯⋯⋯⋯ 10 分2 2 n n 231 11 3 42 n 1 n 24所以,随意 n N *, T n3.⋯⋯⋯⋯⋯⋯⋯ 12 分418. (1) 明 : 取AD中点M,接EM,AF=EF=DE=2,AD=4,可知EM= 1AD,∴ AE⊥2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分DE又 AE⊥EC,DE EC E ∴AE⊥平面CDE,∴AE⊥CD,又 CD⊥ AD,AD AE A,∴ CD⊥平面 ADEF,CD平面 ABCD,∴平面 ABCD⊥平面 ADEF;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)如,作EO⊥ AD, EO⊥平面 ABCD,故以 O原点,分以OA, DC , OE的方向 x 、 y 、 z 的正方向成立空平面直角坐系,依意可得E(0,0,3) , A(3,0,0) ,C (1,4,0) , F (2,0,3),所以EA(3,0,3), AC( 4,4,0),CF(3, 4,3) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分n( x, y, z)平面 EAC的法向量,n EA03z0不如 x=1,即 3xn AC04x4y0可得 n(1,1,3),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分所以cos CF , n CF n25140 =35 ,| CF | | n |287035⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分直与平面所成角的正弦35⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分CF EAC35419. 解:( 1)四天均不降雨的概率P1381 ,56253216,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯四天中恰有一天降雨的概率P 21 32 2 分C 4 55625所以四天中起码有两天降雨的概率P 1 P 1 P 2181 216 328 625625⋯⋯⋯4分1 2 34 5625( 2)由 意可知 x3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分5y50+85+115+140+160 =110 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分55(x i x)( y iy ) 275 ,bi 1= =27.58 分510 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x i x)2i 1a= y bx =27.5所以, y 对于 x 的回 方程 :? 27.5x 27.5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分y将降雨量 x 6代入回 方程得: y27.5 627.5192.5193 .?所以 当降雨量6 毫米 需要准 的快餐份数 193份. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分20. (Ⅰ)方法一: M (x , y ),由 意可知, A (1-r , 0),因 弦 AM 的中点恰巧落在 y 上,所以 x=r-1>0, 即 r=x+1, ⋯⋯⋯⋯⋯⋯ 2 分所以 ( x1)2 y 2 ( x 1)2 ,化 可得 y2=4x (x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分方法二:M ( x , y ),由 意可知,A ( 1-r , 0), AM 的中点,x>0 ,因 C (1, 0),,.⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分在⊙ C 中,因 CD ⊥ DM ,所以,,所以.所以, y 2=4x ( x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(Ⅱ)直 MN的方程x my 1 ,M ( x1, y1),N (x2, y2),直BN的方程y k (x y22)y24x my1y24my40 ,可得 y1y24m, y1 y2 4 ,⋯⋯⋯⋯⋯⋯⋯ 6 分y24x由( 1)可知,r1x1,点 A(x1 ,0) ,所以直AM的方程y 2 x y 1 ,y12y k( x y22)y2ky2 4 y 4 y2 ky222 40 ,0 ,可得 k,y24x y2直 BN的方程y2x y2,⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分y22y 2 x y1 ,y12立y12可得 x B44my12m,2 x y2,1, y By 2 y1 2 y1 y22所以点 B( -1 , 2m)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分|BC| 44m2,d| 2 2m2 |4m2 4 =2m2 1 ,m21e B 与直MN相切⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21. 【解】( 1)f ()e xa .x若 a ≤ 0 , f( x)0 ,函数 f (x) 是增函数,与矛盾.所以 a0 ,令 f ()x 0,x ln a . .................................................................................2分当 x ln a , f(x)0 , f (x) 是减函数; x ln a , f ( x)0 , f (x) 是增函数;于是当 x ln a , f (x) 获得极小.因 函数 f (x) e x ax a (a R ) 的 象与 x 交于两点 A(x 1 ,0), B( x 2 ,0) ( x 1< x 2) ,所以 f (ln a)a(2ln a) 0 ,即a e 2 . (4)分此 ,存在 1ln a , f (1)e 0 ;(或 找f (0))存在 3ln aln a , f (3ln a)332,a 3a ln a a a 3aa 0又由 f ( x) 在 (,ln a) 及 (ln a ,) 上的 性及曲 在R 上不 断,可知 ae 2 所求取 范. .......................................................................... (5)分(2)因e x 1ax 1a 0 ,x 2x 1. (7)分ex2两式相减得 aeeax 2 a 0 ,x 2 x 1x 2 x 1x 1 x 2x 1 x 2x xx 1x 2e2s( s 0) , fe2e 2 e 1ss,22x 2x 12 s (ee )2s⋯⋯⋯⋯⋯⋯⋯ 9 分g ( ) 2 (e s e s ) ,g (s)2 (ese s) 0 ,所以 g( s) 是 减函数,s sx 1 x 2x 1 x 2有 g( s)g(0)0 ,而e20 ,所以 f0 .22 s又 f ( x) e xa 是 增函数,且x 1 x 2 2 x 1 x 2 ,2 3所以f '(2x13 x2 )0 。
2017-2018学年一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{})24lg(x y x A -==,集合{}x y x B -==3,则=B A ( ) A .{}2≤x x B .{}2<x x C .{}3≤x x D .{}3<x x 【答案】B考点:函数的定义域,集合的运算. 2.设i 是虚数单位,复数iia +-1为纯虚数,则实数a 的值为( ) A .1 B .1- C .21D .2- 【答案】A 【解析】试题分析:根据复数的运算有i a a i i i i a i i a 2121)1)(1()1)((1+--=-+--=+-,i i a +-1为纯虚数,即实部为零,所以有1021=⇒=-a a ,故本题的正确选项为A. 考点:复数的运算3.设函数x x x f -=sin )(,则)(x f ( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是增函数且有零点D .是减函数且没有零点 【答案】B 【解析】试题分析:首先函数的定义域为实数,又)(][sin sin )()sin()(x f x x x x x x x f -=--=+-=---=-,所以函数为奇函数,因为01cos )(≤-='x x f ,由导函数的性质可知函数在定义域上为减函数,存在唯一零点0=x ,所以本题正确选项为B.考点:函数的奇偶性与导函数的运用.4.xy y x p 2:≥+,:q 在ABC ∆中,若B A sin sin >,则B A >.下列为真的 是( )A .pB .q ⌝C .q p ∨D .q p ∧ 【答案】C考点:的真假.5.一个几何体的三视图如图所示,则该几何体的体积为( ) A .41 B .31 C .32D .1【答案】B【解析】试题分析:有三视图可知,该几何体为四面体,其下表面为一等腰直角三角形,直角边为1,底面积为21=S ,其中一条与底面垂直的棱长为2,所以四面体的体积为3131=⨯=Sh V ,故本题的正确选项为B.考点:三视图与几何体的体积.6.已知⎩⎨⎧>+-≤=+,0,1)1(,0,8)(1x x f x x f x 则)34(f 的值为( )A .2B .3C .4D .16 【答案】B 【解析】试题分析:因为034>,所以2)32(1)31()34(+-=+=f f f ,当0≤x 时,x x f πcos 2)(=,所以1)32cos(2)32(-=-=-πf ,所以有12)32()34(=+-=f f ,本题正确选项为B.考点:分段函数求函数的值. 7.若实数y x ,满足149≤+y x ,则y x z -=2的最小值为( )A .18-B .4-C .4D .102- 【答案】A考点:线性约束.【方法点睛】对于线性规划问题,共有两种情况:1,直线过定点时在可行域中旋转时的最大斜率,2,直线斜率一定而在可行域中平移时的截距的最值.可以再直角坐标系中画出可行域,然后在画出直线,通过观察求出待求量的最值;因为直线在可行域中的最值都是在围城可行域的顶点处取得,所以也可以先求得可行域顶点坐标,将这些坐标分别代入待求量的表达式中,从中选择最大值或最小值,本题中需要将含绝对值不等式转化成不等式组,在根据线性约束条件来求目标函数的最值.8.运行下面的程序框图,输出的结果是( )A .7B .6C .5-D .4-【答案】B考点:程序框图.9.若等比数列{}n a 的各项均为正数,且e e a a a a (231291110=+为自然对数的底数),则=+⋅⋅⋅++2021ln ln ln a a a ( )A .20B .30C .40D .50 【答案】B 【解析】试题分析:在等比数列中,若q p n m a a a a q p n m =⇒+=+,所以3111031110129111022e a a e a a a a a a =⇒==+,由对数的运算可知1220ln ln ln a a a ++⋅⋅⋅+12201201921011ln()ln[()()......()]a a a a a a a a a =⋅⋅⋅=1031011ln()10ln 30a a e ===,所以本题的正确选项为B.考点:等比数列的性质,对数的运算.10.已知P 是ABC ∆所在平面内一点,现将一粒豆(大小忽略不计)随机撒在ABC ∆内,则此豆落在PBC ∆内的概率是( ) A.51 B.41 C.31D.21 【答案】A 【解析】试题分析:因为PC PB AP PC PB PA 22022+=⇒=++,所以点P 一定在三角形内部,如图,PH PD C B ,,是中点,则PC PB PF 22+=,又PE PF 4=,所以PE PF PA 4==,所以15:::==∆∆PE AE S S ABC ABC ,所以豆子落在PBC ∆内的概率是51,本题正确选项为A.考点:向量的运算,面积法求概率.11.如图,已知平面l =⊥βαβα ,,B A 、是直线l 上的两点,D C 、是平面β内的两点,且6,6,3,,===⊥⊥CB AB AD l CB l DA .P 是平面α上的一动点,且直线PC PD ,与平面α所成角相等,则二面角D BC P --的余弦值的最小值是( ) A .51 B .21C .23D .1【答案】C 【解析】试题分析:因为βα⊥⊥,AB AD ,所以而建立空间坐标系,以B 为原点,BC 为y 轴正向,BA 为x 轴负方向,过点B 且垂直于l 在平面β内向上的轴为z 轴正方向,则)036()060(),000(),006(,,,,,,,,--D C B A ,设点),0,(z x P ,),6,(),,3,6(z x z x --=---=直线PC PD ,与平面α所成角相等,则16)8(6)(3)6(222222=++⇒+-=+--z x z x z x 即点P 的轨迹为圆。
河北省石家庄二中2017年高考模拟数学试卷(理科)答 案1~5.DBCBC 6~10.ABBAD 11~12.BC 13.240 1415.3,4⎛⎤-∞ ⎥⎝⎦16.217.解:(Ⅰ)当3n ≥时,可得()()1121,424202,4n n n n n n S S S S n n a a ---------=≥∈∴=Z .又因为12a =,代入表达式可得28a =,满足上式.所以数列{}n a 是首项为12a =,公比为4的等比数列,故:121242n n n a --=⨯=.(Ⅱ)证明:2log 21n n b a n ==-. ()21212n n n T n +-==2n ≥时,211111(1)1n T n n n n n=<=---. 111111*********-1ni KT n n n =⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑K . 18.证明:(Ⅰ)因为,A B 是PQ 的三等分点, 所以PA AB BQ CA CB ====, 所以ABC △是等边三角形,又因为M 是AB 的中点,所以CM AB ⊥.因为,,DB AB DB BC AB BC B ⊥⊥=I 所以DB ⊥平面ABC ,又EA DB ∥, 所以EA ⊥平面ABC ,CM ⊂平面ABC ,所以CM EA ⊥.因为AM EA A =I ,所以CM ⊥平面EAM .因为EA ⊂平面EAM ,所以CM EM ⊥.解:(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴, 过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M xyz -. 因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成角. 由题意得tan 2BDDMB MB∠==,即2BD MB =, 从而BD AC =.不防设2AC =,又2AC AE +,则1CM AE ==. 故())()()0,1,0,,0,1,2,0,1,1B CD E -.于是)()()()1,0,0,0,2,,BC BD CE CD =-==-=u u u r u u u r u u u r u u u v1,1设平面BCD 与平面CDE 的法向量分别为()(),,,,,m x y z n a b c ==u r r,由3-020m BC x y m BD z ⎧==⎪⎨==⎪⎩u v u u u vg u v u u u v g ,令1x =,得()m =u v .由-020n CE b c n CD b c ⎧=+=⎪⎨=++=⎪⎩v u u u vgv u u u v g ,令1a =,得1,n ⎛= ⎝⎭v , 所以cos ,0m n <>=u v v所以二面角B CD E --的平面角大小为90︒.19.解:因为选修数学学科人数所占总人数频率为0.6,即1800.6600x+=,可得:180x =,又180********x y ++++=,所以60y =,则根据分层抽样法:抽取的10人中选修线性代数的人数为:180103600⨯=人;选修微积分的人数为:180103600⨯=人;选修大学物理的人数为:120102600⨯=人;选修商务英语的人数为:60101600⨯=人;选修文学写作的人数为:60101600⨯=人; (Ⅰ)现从10人中选3人共有310120C =种选法,且每种选法可能性都相同,令事件A :选中的3人至少两人选修线性代数,事件B :选中的3人有两人选修线性代数,事件C :选中的3人都选修线性代数,且,B C 为互斥事件,()()()P A P B P C =+=2133733310101160C C C C C ⨯+= (Ⅱ)记X 为3人中选修线性代数的代数,X 的可能取值为0,1,2,3,记Y 为3人中选修微积分的人数;Y的可能取值也为0,1,2,3,则随机变量||XY ξ=﹣的可能取值为0,1,2,3; ()()()00,01,1P P X Y P X Y ξ====+===1113334433101013C C C C C C +=; ()()()()()10,11,01,22,12P P X Y P X Y P X Y P X Y ξ====+==+==+===⨯121234333310109220C C C C C C +⨯=, ()()()20,22,02P P X Y P X Y ξ====+===⨯213431015C C C =,()()()33310130,33,0260C P P X Y P X Y C ξ====+===⨯=;所以ξ的分布列为:所以0123=32056010E ξ=⨯+⨯+⨯+⨯ 20.解:(Ⅰ)设椭圆的焦距为2c ,由题意可得:2b b =由题意的离心率3c e a ==解得:26a =,则2224c a b -==,故椭圆方程为:22162x y +=;(Ⅱ)①证明:由题意可知直线l 的斜率存在,设直线l 的方程:y kx m =+, 由点()3,M t 在直线上,则3t k m =+,联立直线与椭圆方程:22360y kx mx y =+⎧⎨+-=⎩,可得:()222136360k x kmx m +-++=,又直线与椭圆只有一个公共点,故0∆=,即2262m k =+;由韦达定理,可得P 点坐标223,1313km m k k ⎛⎫ ⎪++⎝⎭-, 由直线PQ 过椭圆右焦点为()2,0F ,则直线PQ 的斜率2326PQ PF mk k km k==---; 而直线OM 的斜率,则333OM t k m k +==: ()()22222331311••••33263333263OM PQk m m km m km m k k km k km k km m +++====------+-+.②由()1,FM t =u u u u v ,222326,1313km k mFP k k ⎛⎫---=⎪++⎝⎭u u u v ,则22326013mt km k FM FP k ---==+u u u u v u u u v g , 即FM PF ⊥, ∴三角形的面积1||||2PQM S PQ MF =△, MF =丨丨由直线FM 的斜率为t ,可得直线PQ 的方程:()()1122,2,,,,x ty P x y Q x y =-+ 与椭圆方程联立可得:222162x ty x y =-+⎧⎪⎨+=⎪⎩,整理得:()223420t y ty +-=-,则12243t y y t +=+,12223y y t =+﹣,则)2213t PQ t +=+丨丨,则PQM S =△令()23,0t mm +=>,则PQMS =△由函数的单调性可知:y =单调递增, 故PQM S =△,当0t =时,PQM △.∴PQM △. 21.解:(Ⅰ)由题意可得:()()121121f x ax f a x'=-'=-=-,,可得:1a =; 又()()()2216ln 31,,0x y f x xf x x x y x x-=+'=-+'=>所以,当x ⎛∈ ⎝⎭时,0y y '>,单调递增;当x ⎫∈+∞⎪⎪⎝⎭时,0,y y '<单调递减;故函数的单调增区间为⎛ ⎝⎭. (Ⅱ)()()()()22111ln 12x b x g x x x b x g x x-++=++'=-,,因为12,x x 是()g x 的两个极值点,故12,x x 是方程()2110x b x ++=-的两个根,由韦达定理可知:121211x x b x x +=+⎧⎨=⎩;12x x <Q ,可知101x <<,又11111x b e x e +=+≥+,令1t x x =+,可证()t x 在()0,1递减,由()11h x h e ⎛⎫≥ ⎪⎝⎭,从而可证110x e <≤.所以()()()()2211212121112211111lnln 0222x g x g x x x x x x x x x x e ⎛⎫-=--+<≤ ⎪⎝⎭=-+ 令()222111ln ,0,22h x x x x x e ⎛⎤=+∈ ⎥⎝⎦-,()()22310x h x x--'=≤,所以()h x 单调减, 故()22min11222eh x h e e⎛⎫==-- ⎪⎝⎭, 所以2212,22e k e ≤--即221222max e k e=--.22.解:(Ⅰ)1C 的普通方程为24y x =,2C 的普通方程为()2211x y +-=,2C 的极坐标方程为2sin ρθ=.(Ⅱ)由(Ⅰ)可得1C 的极坐标方程为2sin 4cos ρθθ=, 与直线θα=联立可得:24cos =sin αρα,即24cos =sin OP αα, 同理可得2|i |s n OQ α=.所以|||8tan |OP OQ α=g,在π4π,6α⎡∈⎤⎢⎥⎣⎦上单调递减, 所以||||OP OQ g的最大值是23.解:(Ⅰ)当3a =时,不等式()6f x ≤,即||2-336,x +≤故有3233x -≤-≤,求得03x ≤≤,即不等式()6f x ≤的解集为[]0,3.(Ⅱ)()()22-13f x g x a +≥,即222121||||3x a a x a +-≥--+恒成立,()||||||||2212211x a a x x a x a a a -++-≥---+=-+Q ,2121||3a a a ∴-+≥-①.当1a ≤时,①等价于21213a a a --+≥,解得1a ≤≤;当1a >时,①等价于21213a a a --+≥,即260a a --≤,解得13a <≤,所以a 的取值范围是⎡⎤⎣⎦河北省石家庄二中2017年高考模拟数学试卷(理科)解析1.【考点】交集及其运算.【分析】求出集合A,B,根据集合的交集定义进行计算.【解答】解:∵log2x>1=log22,∴x>2,∴B=(2,+∞),∵x2﹣4x+3<0,∴(x﹣3)(x﹣1)<0,解得1<x<3,∴A=(1,3),∴A∩B=(2,3),故选:D2.【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵复数z满足=i,∴z+i=﹣2﹣zi,化为:z===﹣+i.=﹣﹣i.则|+1|===.故选:B3.【考点】任意角的三角函数的定义.【分析】由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即可得出结论.【解答】解:由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即(﹣2cosθ,﹣2sinθ),故选C4.【考点】指数函数的单调性与特殊点.【分析】根据不等式的基本性质和指数函数和对数函数的性质即可判断.【解答】解:∵0<a<b<1,c>1,∴ac<bc,abc>bac,∴logab>logba,logac>logbc,故选:B5.【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,可得答案.【解答】解:当输入的x为2017时,第1次执行循环体后,x=2015,输出y=3﹣2015+1;第2次执行循环体后,x=2013,输出y=3﹣2013+1;第3次执行循环体后,x=2011,输出y=3﹣2011+1;…第1007次执行循环体后,x=3,输出y=3﹣3+1;第1008次执行循环体后,x=1,输出y=3﹣1+1;第1009次执行循环体后,x=﹣1,输出y=31+1=4;第1010次执行循环体后,x=﹣3,输出y=33+1=28;此时不满足x≥﹣1,输出y=28,故选:C6.【考点】等比数列的前n项和.【分析】由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y即可得出.【解答】解:由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y=.相见时大鼠打了1+2+=3尺长的洞,小鼠打了1++=1尺长的洞,x=2+=2天,故选:A7.【考点】几何概型.【分析】本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)>0对应的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.【解答】解:f(1)=﹣1+a﹣b>0,即a﹣b>1,如图,A(1,0),B(4,0),C(4,3),S△ABC=,P==,故选:B8.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求得m=sin(2•)=,故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q (+n,),根据Q在函数y=cos(2x﹣)的图象上,求得n的最小值值,可得mn的最小值.【解答】解:函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,∴m=sin(2•)=.故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,∴m=cos[2(+n)﹣]=cos(2n﹣)=,∴应有2n﹣=,∴n=,则mn的最小值为,故选:B9.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.进而得出.【解答】解:由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.该几何体的表面积S=×2++=2+2+.故选:A10.【考点】进行简单的合情推理.【分析】依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×f(m1,1),将m1=60,m2=50,f(1,1)=2,代入得结论.【解答】解:依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×(m2﹣1),将m1=60,m2=50,f(1,1)=2,代入得483.故选D11.【考点】双曲线的简单性质.【分析】由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即可求出双曲线的离心率.【解答】解:设A(x1,y1),B(x2,y2),M(b,yM),由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即a4=(c2﹣a2)c2,有e4﹣e2﹣1=0,得e=.故选B12.【考点】根的存在性及根的个数判断.【分析】判断f(x)的单调性,求出极值,得出方程f(x)=t的解的情况,得出关于t的方程t2﹣(2m+1)t+m2+m=0的根的分布区间,利用二次函数的性质列不等式解出m的范围.【解答】解:f(x)=,∴f′(x)=.∴当0<x<1或x>e时,f′(x)>0,当1<x<e时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,e)上单调递减,在(e,+∞)上单调递增,作出f(x)的大致函数图象如图所示:令f(x)=t,则当0<t<e时,方程f(x)=t有1解,当t=e时,方程f(x)=t有2解,当t>e时,方程f(x)=t有3解,∵关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,∴关于t的方程t2﹣(2m+1)t+m2+m=0在(0,e)和(e,+∞)上各有一解,∴,解得e﹣1<m<e.故选C.13.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为4,求出r的值,将r的值代入通项求出展开式中含x4项的系数【解答】解:展开式的通项为Tr+1=C6r(﹣2)rx,令得18﹣r=4,解得r=4,∴展开式中含x4项的系数为(﹣2)4C64=240,故答案为:240.14.【考点】向量的模.【分析】求出+2,求出|+2|的解析式,根据三角函数的运算性质计算即可.【解答】解:=(cos5°,sin5°),=(cos65°,sin65°),则+2=(cos5°+2cos65°,sin5°+2sin65°),则|+2|===,故答案为:.15.【考点】利用导数研究函数的极值;分段函数的应用.【分析】由f'(x)=6x2﹣6,x>t,知x>t时,f(x)=2x3﹣6x一定存在单调递增区间,从而要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调,必须有f(x)=(4a﹣3)x+2a﹣4不能为增函数,由此能求出a的取值范围.【解答】解:对于函数f(x)=2x3﹣6x,f'(x)=6x2﹣6,x>t当6x2﹣6>0时,即x>1或x<﹣1,此时f(x)=2x3﹣6x,为增函数当6x2﹣6<0时,﹣1<x<1,∵x>t,∴f(x)=2x3﹣6x一定存在单调递增区间要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调∴f(x)=(4a﹣3)x+2a﹣4不能为增函数∴4a﹣3≤0,∴a≤.故a 的取值范围是(﹣∞,]. 故答案为:(﹣∞,].16.【考点】三角形中的几何计算.【分析】设∠DBM =θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,继而可得=,问题得以解决【解答】解:设∠DBM =θ,则∠ADC =2θ,∠DAC =﹣2θ,∠AMB =﹣2θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,∴===,从而MA =2, 故答案为:2.17.【考点】数列递推式;数列的求和.【分析】(I )利用数列递推关系、等比数列的通项公式即可得出. (II )利用“裂项求和”方法、数列的单调性即可得出.【解答】解:(Ⅰ)当3n ≥时,可得()()11214242024n n n n n n S S S S n n a a ---------=≥∈∴=Z ,.,又因为12a =,代入表达式可得28a =,满足上式.所以数列{}n a 是首项为12a =,公比为4的等比数列,故:121242n n n a --=⨯=.(Ⅱ)证明:2log 21n n b a n ==-. ()21212n n n T n +-==2n ≥时,211111(1)1n T n n n n n=<=-+-. 111111*********-1ni nT n n n =⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑K . 18.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)推导出△ABC 是等边三角形,从而CM ⊥AB ,再由DB ⊥AB ,DB ⊥BC ,知DB ⊥平面ABC ,又EA ∥DB ,从而EA ⊥平面ABC ,进而CM ⊥EA .由此CM ⊥平面EAM .进而能证明CM ⊥EM .(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M ﹣xyz .利用向量法能求出二面角B ﹣CD ﹣E 的平面角. 【解答】证明:(Ⅰ)因为A B ,是PQ 的三等分点, 所以PA AB BQ CA CB ====, 所以ABC △是等边三角形,又因为M 是AB 的中点,所以CM AB ⊥.因为DB AB DB BC AB BC B ⊥⊥=I ,, 所以DB ⊥,平面ABC ,又//EA DB , 所以EA ⊥平面ABC ,CM ⊂平面ABC ,所以CM EA ⊥.因为AM EA A =I ,所以CM ⊥平面EAM . 因为EA ⊂平面EAM ,所以CM EM ⊥.解:(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴, 过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M xyz -. 因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成角. 由题意得tan 2BDDMB MB∠==,即2BD MB =, 从而BD AC =.不防设2AC =,又2AC AE +,则1CM AE ==. 故())()()0,1,00,1,20,1,1B CD E -,,,.于是)()()()100,0,2BC BD CE CD =-==-=u u u r u u u r u u u r u u u v,,,1,1,设平面BCD ,与平面CDE 的法向量分别为()(),,,m x y z n a b c ==u r r,,, 由3-020m BC x y m BD z ⎧==⎪⎨==⎪⎩u v u u u vg u v u u u v g ,令1x =,得()m =u v .由-020n CE b c n CD b c ⎧=+=⎪⎨=++=⎪⎩v u u u v g v u u u v g ,令1a =,得1,33n ⎛= ⎝⎭v , 所以cos 0m n <>=u v v,所以二面角B CD E --的平面角大小为90︒.19.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用分层抽样求出各个选修人数,利用互斥事件的概率求解从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求出ξ的可能值,就是概率,即可得到随机变量ξ的分布列和数学期望. 【解答】解:因为选修数学学科人数所占总人数频率为0.6,即1800.6600x+=,可得:180x =,又180********x y ++++=,所以60y =,则根据分层抽样法:抽取的10人中选修线性代数的人数为:180103600⨯=人;选修微积分的人数为:180103600⨯=人;选修大学物理的人数为:120102600⨯=人;选修商务英语的人数为:60101600⨯=人;选修文学写作的人数为:60101600⨯=人;(Ⅰ)现从10人中选3人共有310120C =种选法,且每种选法可能性都相同,令事件A :选中的3人至少两人选修线性代数,事件B :选中的3人有两人选修线性代数,事件C :选中的3人都选修线性代数,且B C,为互斥事件,()()()P A P B P C =+=2133733310101160C C C C C ⨯+= (Ⅱ)记X 为3人中选修线性代数的代数,X 的可能取值为0,1,2,3,记Y 为3人中选修微积分的人数;Y的可能取值也为0,1,2,3,则随机变量||XY ξ=﹣的可能取值为0,1,2,3; ()()()00,01,1P P X Y P X Y ξ====+===1113334433101013C C C C C C +=;()()()()()10,1101,22,12P P X Y P X Y P X Y P X Y ξ====+==+==+===⨯,121234333310109220C C C C C C +⨯=, ()()()20,22,02P P X Y P X Y ξ====+===⨯213431015C C C =,()()()33310130,33,0260C P P X Y P X Y C ξ====+===⨯=;所以ξ的分布列为:所以0123320560E ξ=⨯+⨯+⨯+⨯ 20.【考点】直线与椭圆的位置关系;椭圆的标准方程. 【分析】(Ⅰ)由b =,椭圆的离心率公式,即可求得a 和c 的值,求得椭圆方程;(Ⅱ)①设直线方程,代入椭圆方程,由△=0,分别求得kOM ,kPQ ,即可求得kOM •为定值; ②设直线方程,代入椭圆方程,由韦达定理,弦长公式,求得S △PQM =•,根据函数的单调性即可求得△PQM 面积的最小值.【解答】解:(Ⅰ)设椭圆的焦距为2c ,由题意可得:2b b ==,由题意的离心率c e a ==解得:26a =,则2224c a b -==,故椭圆方程为:22162x y +=;(Ⅱ)①证明:由题意可知直线l 的斜率存在,设直线l 的方程:y kx m =+, 由点()3,M t 在直线上,则3t k m =+,联立直线与椭圆方程:22360y kx mx y =+⎧⎨+-=⎩,可得:()222136360k x kmx m +-++=,又直线与椭圆只有一个公共点,故0=△,即2262m k =+;由韦达定理,可得P 点坐标223,1313km m k k ⎛⎫ ⎪++⎝⎭-,由直线PQ 过椭圆右焦点为()20F ,,则直线PQ 的斜率2326PQ PF mk k km k ==---;而直线OM 的斜率,则333OM t k m k +==:()()22222331311••••33263333263OM PQk m m km m km m k k km k km k km m +++====------+-+.①由()1FM t =u u u u v ,,222326,1313km k mFP k k ⎛⎫---=⎪++⎝⎭u u u v ,则22326013mt km k FM FP k ---==+u u u u v u u u v g , 即FM PF ⊥, ∴三角形的面积1||||2PQM S PQ MF =△, MF =丨丨由直线FM 的斜率为t ,可得直线PQ 的方程:()()1122,,2x ty P x y Q x y =-+,,, 与椭圆方程联立可得:222162x ty x y =-+⎧⎪⎨+=⎪⎩,整理得:()223420t y ty +-=-,则12243t y y t +=+,12223y y t =+﹣ ,则)2213t PQ t +==+丨丨,则PQM S =△令()23,0t m m+=>,则PQMS =△, 由函数的单调性可知:y =单调递增,故PQMS =△,当0t =时,PQM △.∴PQM △. 21.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可; (Ⅱ)求出g (x )的导数,求出g (x1)﹣g (x2)的解析式,令h (x )=lnx2﹣x2+,x ∈(0,],根据函数的单调性求出k 的最大值即可. 【解答】解:(Ⅰ)由题意可得:()()121121f x ax f a x'=-'=-=-,,可得:1a =;又()()()2216ln 310x y f x xf x x x y x x-=+'=-+'=>,所以,,当x ⎛∈ ⎝⎭时,0y y '>,单调递增;当6x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y y '<,单调递减;故函数的单调增区间为⎛ ⎝⎭. (Ⅱ)()()()()22111ln 12x b x g x x x b x g x x-++=++'=-,,因为12x x ,是()g x 的两个极值点,故12x x ,是方程()2110x b x ++=-的两个根,由韦达定理可知:121211x x b x x +=+⎧⎨=⎩;12x x <Q ,可知101x <<,又11111x b e x e +=+≥+,令1t x x =+,可证()t x 在()0,1递减,由()11h x h e ⎛⎫≥ ⎪⎝⎭,从而可证110x e <≤. 所以()()()()22111ln 12x b x g x x x b x g x x-++=++-'=,令()222111ln 0,22h x x x x x e ⎛⎤=+∈ ⎥⎝-⎦,()()22310x h x x--'=≤,所以()h x 单调减, 故()22min11222eh x h e e⎛⎫==-- ⎪⎝⎭, 所以221222e k e ≤--,即221222max e k e=--.22.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)利用三种方程的转化方法,即可求曲线C1的普通方程和曲线C2的极坐标方程; (Ⅱ)由(Ⅰ)可得C1的极坐标方程为ρsin2θ=4cosθ,与直线θ=α联立可得:ρ=,即|OP |=,同理可得|OQ |=2sinα.求出|OP |•|OQ |=,在α∈[,]上单调递减,即可求|OP |•|OQ |的最大值.【解答】解:(Ⅰ)1C 的普通方程为24y x =,2C 的普通方程为()2211x y +-=,2C 的极坐标方程为2sin ρθ=.(Ⅱ)由(Ⅰ)可得1C 的极坐标方程为2sin 4cos ρθθ=,与直线θα=联立可得:24cos =sin αρα,即24cos =sin OP αα,同理可得2|i |s n OQ α=.所以|||8tan |OP OQ α•=,在π4π6α⎡∈⎤⎢⎥⎣⎦,上单调递减,所以||||OP OQ •的最大值是23.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当a =3时,不等式即|2x ﹣3|+3≤6,可得﹣3≤2x ﹣3≤3,由此求得不等式的解集.(Ⅱ)由题意可得|2x ﹣a |+a +|2x ﹣1|≥2a2﹣13恒成立,利用绝对值三角不等式求得|2x ﹣a |+a +|2x ﹣1|的最小值为|1﹣a |+a ,可得|1﹣a |+a ≥2a2﹣13,分类讨论,去掉绝对值,求得a 的范围. 【解答】解:(Ⅰ)当3a =时,不等式()6f x ≤,即||2-336x +≤,故有3233x -≤-≤,求得03x ≤≤,即不等式()6f x ≤的解集为[]03,. (Ⅱ)()()22-13f x g x a +≥,即222121||||3x a a x a +-≥--+恒成立,()||||||||2212211x a a x x a x a a a -++-≥---+=-+Q2121||3a a a ∴-+≥-①.当1a ≤时,①等价于21213a a a --+≥,解得1a ≤≤;当1a >时,①等价于21213a a a --+≥,即260a a --≤,解得13a <≤,所以a 的取值范围是⎡⎤⎣⎦。
河北省石家庄市2017届高三一模考试理科数学试卷(B 卷)答 案一、选择题1~5.DDCDB 6~10.ADBDB 11~12.AB二、填空题13.0n ∃∈N ,0202n n ≥14.102415.1316.7a ->三、解答题17.解:(Ⅰ)∵sin sin sin C a b A B a c +=--,由正弦定理得c a b a b a c+=--, ∴()()()c a c a b a b -=+-, 即222a c b ac +-=,又∵2222cos a c b ac B +-=, ∴1cos 2B =, ∵(0,π)B ∈, ∴π3B =. (Ⅱ)在ABC △中由余弦定理知:222(2)22cos603c a a c +-︒=,∴2(2)932a c ac +-=, ∵222()2a c ac +≤, ∴223(2)9(2)4a c a c +-+≤,即2(2)36a c +≤,当且仅当2a c =,即32a =,3c =时取等号, 所以2a c +的最大值为6.18.(Ⅰ)证明:在ABD ∆中,sin sin AB AD ADB DBA=∠∠,由已知60DBA ∠=︒,AD =4BA =, 解得sin 1ADB ∠=,所以90ADB ∠=︒,即AD BD ⊥,可求得2BD =. 在SBD ∆中,∵SD =4BS =,2BD =,∴222DB SD BS +=,∴SD BD ⊥,∵BD ⊄平面SAD ,SD AD D =,∴BD ⊥平面SAD .(Ⅱ)过D 作直线l 垂直于AD ,以D 为坐标原点,以DA 为x 轴,以DB 为y 轴,以l 为z 轴,建立空间直角坐标系.∵由(Ⅰ)可知,平面SAD ⊥平面ABCD ,∴S 在平面ABCD 上的投影一定在AD 上,过S 作SE AD ⊥于E,则DE =3SE =,则(S ,易求A ,(0,2,0)B,(C -, 则(3,2,3)SB =-,(33,0,3)SA =-,(3)SC =--,设平面SBC 的法向量1(,,)n x y z=,230,230,y z y z +-=+-=⎪⎩解得1(0,3,2)n =--.同理可求得平面SAB的法向量2(1,n =,∴121253cos ||||137n n n n θ===-.19.解:(Ⅰ)X 的可能取值为:0,1,2,3,4.4641015(0)210C P X C ===,134641080(1)210C C P X C ===,224641090(2)210C C P X C ===,314641024(3)210C C P X C ===, 444101(4)210C P X C ===, X 的分布列为:158090241()01234 1.621021**********E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)序号1a ,2a ,3a ,4a 的排列总数为4424A =种, 当0Y =时,11a =,22a =,33a =,44a =.当1234|1||2||3||4|2Y a a a a =-+-+-+-=时,1a ,2a ,3a ,4a 的取值为11a =,22a =,34a =,43a =;11a =,23a =,32a =,44a =;12a =,21a =,33a =,44a =. 故41(2)246P Y ==≤. 20.解:(Ⅰ)设(0,)M m ,(0,)N n ,∵MF NF ⊥,可得1mn =-, 11||||||22AMFN S AF MN MN ==, ∵222||||||2||||MN MF NF MF NF =+≥,当且仅当||||MF NF =时等号成立. ∴min ||2MN =, ∴min 1()||12MFN S MN ==, ∴四边形AMFN 的面积的最小值为1.(Ⅱ)∵(A ,(0,)M m ,∴直线AM的方程为y m =+,由22,22,y m x y ⎧=+⎪⎨⎪+=⎩得2222(1)2(1)0m x x m +++-=,由222(1)1E m xm -=+,得221)1E m x m-=+,① 同理可得D x ,∵1m n =-,∵221()11()1D m x m⎤-⎥⎣⎦=+=② 故由①②可知:E D x x =-,代入椭圆方程可得22E D y y =∵MF NF ⊥,故M ,N 分别在x 轴两侧,E D y y =-,∴E D E Dy yx x =,∴E ,O ,D 三点共线.21.解:(Ⅰ)函数()f x 的定义域为(,1)-∞, 由题意222'()2,111a x x a f x x x x x-+-=-=--<, 224(2)()48a a ∆=---=-.①若480a ∆=-≤,即12a ≥,则2220x x a -+-≤恒成立,则()f x 在(,1)-∞上为单调减函数; ②若480a ∆=->,即12a <,方程2220x x a -+-=的两根为1x =,2x ,当1(,)x x ∈-∞时,'()0f x <,所以函数()f x 单调递减,当11(,)2x x ∈时,'()0f x >,所以函数()f x 单调递增,不符合题意. 综上,若函数()f x 为定义域上的单调函数,则实数a 的取值范围为1(,)2+∞. (Ⅱ)因为函数()f x 有两个极值点,所以'()0f x =在1x <上有两个不等的实根, 即2220x x a -+-=在1x <有两个不等的实根1x ,2x , 于是102a <<,12121,,2x x a x x +=⎧⎪⎨=⎪⎩且满足11(0,)2x ∈,21(,1)2x ∈, 211111*********()1ln(1)(1)(1)2ln(1)(1)2ln(1)f x x a x x x x x x x x x x x x -+--++-===-++-, 同理可得22221()(1)2ln(1)f x x x x x =-++-. 122111222222221()()2ln(1)2ln(1)212(1)ln 2ln(1)f x f x x x x x x x x x x x x x x -=-+---=-+---, 令()212(1)ln 2ln(1)g x x x x x x =-+---,1(,1)2x ∈. []22'()2ln (1)1x g x x x x x =--++-,1(,1)2x ∈, ∵1(1)4x x -<,∴[]2ln (1)0x x -->, 又1(,1)2x ∈时,201x x x 2+->,∴'()0g x >,则()g x 在1(,1)2x ∈上单调递增, 所以1()()02g x g =>,即1221()()0f x f x x x ->,得证. 22.解:(Ⅰ)2214x y +=,2cos sin x y θθ=⎧⎨=⎩(θ为参数).(Ⅱ)设四边形ABCD 的周长为l ,设点(2cos ,sin )A q q ,8cos 4sin l θθ=+))θθθϕ=+=+,且cos ϕ=sin ϕ=, 所以,当π2π2k θϕ+=+(k ∈Z )时,l 取最大值, 此时π2π2k θϕ=+-,所以,2cos 2sin θϕ==,sin cos θϕ==此时,A ,1l 的普通方程为14y x =. 23.解:(Ⅰ)当2a -<时,函数34,,()|24|||4,2,34, 2.x a x a f x x x a x a a x x a x -+-⎧⎪=++-=----⎨⎪-+-⎩<≤≤> 可知,当2x =-时,()f x 的最小值为(2)21f a -=--=,解得3a =-. (Ⅱ)因为()|24||||(24)()||4|f x x x a x x a x a =++-+--=++≥, 当且仅当(24)()0x x a +-≤时,()|4|f x x a =++成立,所以,当2a -<时,x 的取值范围是{}|2x a x -≤≤;当2a =-时,x 的取值范围是{}2-;当2a ->时,x 的取值范围是{}|2x x a -≤≤.。
2017年石家庄市高中毕业班教学质量检测(二)高三数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡或答题纸上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡或答题纸一并交回.第I 卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =N ,集合P ={1,2,3,4,5},Q ={1,2,3,6,8},则U (C Q)P = A .{1,2,3} B .{4,5} C .{6,8} D .{1,2,3,4,5} 2.复数111i z i i=+-+,则z = A .i B .-i C .1+i D .1-i3.已知中心在原点,焦点在yA .2y x =± B.2y x =±C .12y x =± D.y =4.已知命题1:R p x ∃∈,使得210x x ++<;2:[1,2]p x ∀∈,使得210x -≥.以下命题为真命题的为A .12p p ⌝∧⌝B .12p p ∨⌝C .12p p ⌝∧D .12p p ∧5.已知点Q (5,4),动点P (x ,y )满足⎪⎩⎪⎨⎧≥-≤-+≥+-0102022y y x y x ,则|PQ |的最小值为A .5B .34C .2D .7 6.若棱长均为2的正三棱柱内接于一个球,则该球的半径为A .33 B .332 C .321 D .7 7.图示是计算1+31+51+…+291值的程序框图,则图中(1)、(2)处应填写的语句分别是 A .15,1=+=i n n ? B .15,1〉+=i n n ? C .15,2=+=i n n ? D .15,2〉+=i n n ?8.已知函数()x x x f 2cos 2sin 3+=,下面结论错误..的是 A .函数()x f 的最小正常周期为π B .函数()x f 可由()x x g 2sin 2=向左平移6π个单位得到 C .函数()x f 的图象关于直线6π=x 对称D .函数()x f 在区间[0,6π]上是增函数 9.函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的封闭图形的面积为A .31 B .34 C .2 D .38 10.已知某几何体的三视图如图所示,则该几何体的体积为A .364 B .32 C .380 D .38+28 11.已知定义域为R 的函数()x f 是奇函数,当0≥x 时,()=x f |2a x -|-2a ,且对∈x R ,恒有()()x f x f ≥+1,则实数a 的取值范围为A .[0,2]B .[-21,21] C .[-1,1] D .[-2,0] 12.在A B C ∆中,O A BC AC ,51cos ,7,6===是ABC ∆的内心,若−→−OP =−→−+−→−OBOA y x ,其中10≤≤x ,10≤≤y ,动点P 的轨迹所覆盖的面积为 A .6310 B .635 C .310 D .320第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题至第21题为必考题,每个试题考生都必须作答.第22题至第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.函数()22log x x y -=的定义域为 .14.学校要安排4名学生在周六、周日参加社会实践活动,每天至少1人,则学生甲被安排在周六的不同排法的种数为 (用数学作答).15.已知i 、j 、k 为两两垂直的单位向量,非零向量)R ,,(321321∈++=a a a k a j a i a a ,若向量a 与向量i 、j 、k 的夹角分别为α、β、γ,则=++γβα222cos cos cos .16.过点)2,2(p M -作抛物线)0(22>=p py x 的两条切线,切点分别为A 、B ,若线段AB 中点的纵坐标为6,则抛物线的方程为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }为公差不为零的等差数列,1a =1,各项均为正数的等比数列{n b }的第1 项、第3项、第5项分别是1a 、3a 、21a . (I)求数列{n a }与{n b }的通项公式; (Ⅱ)求数列{n a n b }的前n 项和. 18.(本小题满分l2分)如图,在多面体ABCDEF 中,ABCD 为菱形,∠ABC=60,EC ⊥面ABCD ,FA ⊥面ABCD ,G 为BF 的中点,若EG//面ABCD .(I)求证:EG ⊥面ABF ;(Ⅱ)若AF=AB ,求二面角B —EF —D 的余弦值. 19.(本小题满分12分)某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:(I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低于 12.8秒的概率.(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率. 20.(本小题满分12分)点P 为圆O :222a y x =+ (a >0)上一动点,PD ⊥x 轴于D 点,记线段PD 的中点M 的运动轨迹为曲线C . (I)求曲线C 的方程;(II)若动直线l 与曲线C 交于A 、B 两点,当△OAB(O 是坐标原点)面积取得最大值,且最大值为1时,求a 的值. 21.(本小题满分l2分)已知函数)1(ln )(--=x a x x f ,a ∈R. (I)讨论函数)(x f 的单调性; (Ⅱ)当1≥x 时,)(x f ≤1ln +x x恒成立,求a 的取值范围. 请者生在第22~24三题中任选一题做答。
2017年石家庄市高中毕业班第二次模拟考试高三数学(理科)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 },N={5,7,8 },则 A.B.C.D.2. 若F(5,0)是双曲线(m 是常数)的一个焦点,则m 的值为A. 3B. 5C. 7D. 93. 已知函数f(x),g(x)分别由右表给出,则,的值为A. 1B.2C. 3D. 4 4.的展开式中的常数项为A. -60B. -50C. 50D. 60 5. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. —个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.059. 程序框图如右图,若输出的s值为位,则n的值为A. 3B. 4C. 5D. 610. 已知a是实数,则函数_的图象不可能是11. 已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB 边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是A.不论边长AB,CD如何变化,P为定值;B.若-的值越大,P越大;C.当且仅当AB=CD时,P最大;D.当且仅当AB=CD时,P最小.12. 设不等式组表示的平面区域为D n a n表示区域D n中整点的个数(其中整点是指横、纵坐标都是整数的点),则=A. 1012B. 2012C. 3021D. 4001第II 卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13. 复数(i 为虚数单位)是纯虚数,则实数a 的值为_________.14. 在ΔABC 中,,,则 BC 的长度为________.15. 己知F 1F 2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P 使得,则椭圆的离心率e 的取值范围为________. 16. 在平行四边形ABCD 中有,类比这个性质,在平行六面体中ABCD-A 1B 1C 1D 1 中有=________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知S n 是等比数列{a n }的前n 项和,S 4、S 10、S 7成等差数列.(I )求证而a 3,a 9,a 6成等差数列;(II)若a 1=1,求数列W {a 3n }的前n 项的积 .18. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t ),制作了频率分布直方图,(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.19. (本小题满分12分)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,A B=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.20. (本小题满分12分)在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且•(I )求动点P的轨迹E的方程;(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求ΔPBC面积的最小值.21. (本小题满分12分) 已知函数(A ,B R ,e 为自然对数的底数),.(I )当b=2时,若存在单调递增区间,求a 的取值范围;(II )当a>0 时,设的图象C 1与的图象C 2相交于两个不同的点P 、Q ,过线段PQ 的中点作x 轴的垂线交C 1于点,求证.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1几何证明选讲 已知四边形ACBE,AB 交CE 于D 点,,BE 2=DE-EC. (I )求证:;(I I )求证:A 、E 、B 、C 四点共圆.23. (本小题满分10分)选修4-4坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,X 轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C 1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C 2与曲线C 1的交点的横坐标为(I )求曲线C 1的普通方程;(II )设A 、B 为曲线C 1与y 轴的两个交点,M 为曲线C 1上不同于A 、B 的任意一点,若直线AM 与MB 分别与x 轴交于P ,Q 两点,求证|OP|.|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数(I)画出函数的图象;(II )若不等式,恒成立,求实数a 的取值范围.2017年石家庄市高中毕业班第二次模拟考试高三数学(理科答案)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 CDADB 6-10 ABBCB 11-12 AC二、填空题:本大题共4小题,每小题5分,共20分.13. 1 14. 1或2 15. 1,12⎡⎫⎪⎢⎣⎭16. 22214()AB AD AA ++.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 解:(Ⅰ)当1q =时,10472S S S ≠+所以1q ≠ ………………………………………………..2分10472S S S =+由,得()()1074111211(1)111a q a q a q q q q---=+--- 104710,12a q q q q ≠≠∴=+ , ………………………….4分则8251112a q a q a q =+,9362a a a ∴=+,所以3,9,6a a a 成等差数列. ………………………6分(Ⅱ)依题意设数列{}3n a 的前n 项的积为n T ,n T =3333123n a a a a ⋅⋅3323131()()n q q q -=⋅⋅ =33231()()n q q q -⋅ 3123(1)()n q ++-= =(1)32()n n q -,…………………8分又由(Ⅰ)得10472q q q =+,63210q q ∴--=,解得3311(,2q q ==-舍).…………………10分 所以()1212n n n T -⎛⎫=-⎪⎝⎭. …………………………………………….12分18. 解: (Ⅰ)………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.……………………………………………6分 (Ⅲ)依题意可知,居民月均用水量不超过(Ⅱ)中最低标准的概率是45,则4~(3,)5X B , 311(0)()5125P X === 1234112(1)()55125P X C ===2234148(2)()()55125P X C === 3464(3)()5125P X ===………………8分…………………………………………………………………………………………10分412()355E X =⨯=………………………………………………………………12分19. 解:(Ⅰ)因为11ABB A 是矩形,D 为1AA中点,1AB =,1AA ,2AD =, 所以在直角三角形1ABB 中,11tan 2AB AB B BB ∠==, 在直角三角形ABD中,1tan 2AD ABD AB ∠==,所以1AB B ∠=ABD ∠, 又1190BAB AB B ∠+∠= ,190BAB ABD ∠+∠= ,所以在直角三角形ABO 中,故90BOA ∠=,即1BD AB ⊥, …………………………………………………………………………3分 又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥…………………………5分 (Ⅱ) 解法一:如图,由(Ⅰ)可知,,,OA OB OC 两两垂直,分别以,,OA OB OC 为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -. 在Rt ABD中,可求得OB =,OD =,OC OA ==在1Rt ABB中,可求得1OB = ,故0,6D ⎛⎫ ⎪ ⎪⎝⎭,0,3B ⎛⎫- ⎪ ⎪⎝⎭,0,0,3C ⎛ ⎝⎭,13B ⎛⎫- ⎪ ⎪⎝⎭所以0,2BD ⎛⎫= ⎪ ⎪⎝⎭,0,33BC ⎛= ⎝⎭,1,33BB ⎛⎫=- ⎪ ⎪⎝⎭可得,11333BC BC BB ⎛=+=- ⎝⎭ …………………………………8分 设平面1BDC 的法向量为(),,x y z =m ,则 10,0BD BC ⋅=⋅=m m ,即00x y z y ⎧=⎪⎪=,取1,0,2x y z ===, 则()1,0,2=m , …………………………………10分又BCD 面()1,0,0=n ,故cos ,==m n , 所以,二面角1C BD C --12分解法二:连接1CB 交1C B 于E ,连接OE , 因为11CO ABB A ⊥侧面,所以BD OC ⊥,又1BD AB ⊥,所以1BD COB ⊥面,故BD OE ⊥ 所以E O C ∠为二面角1C BD C --的平面角…………………………………8分BD =,1AB ,1112AD AO BB OB ==,1123OB AB ==,113OC OA AB ===, 在1Rt COB中,13B C ===,……………………10分 又EOC OCE ∠=∠1cos OC EOC CB ∠==, 故二面角1C BD C --的余弦值为…………………………12分 20.解:(Ⅰ)设(),P x y ,则(),1Q x -,∵QP QF FP FQ = ,∴()()()()0,1,2,1,2y x x y x +-=-- . …………………2分 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹E 的方程24x y =. …………………………4分 (Ⅱ)解法一:设00(,),(,0),(,0)P x y B b C c ,不妨设b c >. 直线PB 的方程:00()y y x b x b=--,化简得 000()0y x x b y y b ---=. 又圆心(0,2)到PB 的距离为22= ,故222220000004[()]4()4()y x b x b x b y b y b +-=-+-+,易知04y >,上式化简得2000(4)440y b x b y -+-=, 同理有2000(4)440y c x c y -+-=. …………6分所以0044x b c y -+=-,0044y bc y -=-,…………………8分则2220002016(4)()(4)x y y b c y +--=-. 因00(,)P x y 是抛物线上的点,有2004x y =,则 2202016()(4)y b c y -=-,0044y b c y -=-. ………………10分 所以0000002116()2[(4)8]244PBC y S b c y y y y y ∆=-⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==. 因此PBC S ∆的最小值为32. ……………………12分解法二:设),(00y x P , 则420x y =,PB 、PC 的斜率分别为1k 、2k ,则PB :2010()4x y k x x -=-,令0y =得20014B x x x k =-,同理得20024C x x x k =-; 所以||4|44|||||212120120220k k k k x k x k x x x BC C B -⋅=-=-=,……………6分下面求||2121k k k k -,由(0,2)到PB :2010()4x y k x x -=-的距离为22010|2|2x k x +-=, 因为04y >,所以2016x >,化简得2222220001010(4)(4)()024x x x k x k x -+⋅-+-=,同理得2222220002020(4)(4)()024x x x k x k x -+⋅-+-=…………………8分所以1k 、2k 是22222200000(4)(4)()024x x x k x k x -+⋅-+-=的两个根.所以2001220(4)2,4x x k k x -+=-222220000122200(1)()164,44x x x x k k x x --==--2122||4xk kx-==-,122121||116k kxk k-=-,22000122120411||||44411416B Cx x yk kx x yxk k y--=⋅=⋅=⋅=---,……………10分所以0000002116||2[(4)8]244PBCyS BC y y yy y∆=⋅=⋅=-++--832≥=.当2(4)16y-=时,上式取等号,此时008x y==.因此PBCS∆的最小值为32.……………………12分21.解:(Ⅰ)当2b=时,若2()()()2x xF x f x g x ae e x=-=+-,则2()221x xF x ae e'=+-,原命题等价于2()2210x xF x ae e'=+-…在R上有解.……………2分法一:当0a…时,显然成立;当0a<时,2211()2212()(1)22x x xF x ae e a ea a'=+-=+-+∴1(1)02a-+>,即12a-<<.综合所述12a>-.…………………5分法二:等价于2111()2x xae e>⋅-在R上有解,即∴12a>-.………………5分(Ⅱ)设1122(,),(,)P x y Q x y,不妨设12x x<,则212x xx+=,2222x xae be x+=,1121x xae be x+=,两式相减得:21212221()()x x x xa e eb e e x x-+-=-,……………7分整理得2121212121212 21()()()()2()x xx x x x x x x x x x x x a e e e e b e e a e e e b e e+ -=-++--+-…则21212122x x x x x x ae b e e+-+-…,于是 21212121212202()x x x x x x x x x x e ae be f x e e+++-'⋅+=-…,…………………9分 而212121212121221x x x x x x x x x x x x e e e e e +----⋅=⋅-- 令210t x x =->,则设22()ttG t e e t -=--,则22111()1210222t t G t e e -'=+->⋅=, ∴ ()y G t =在(0,)+∞上单调递增,则22()(0)0t t G t e e t G -=-->=,于是有22t t e et -->, 即21t t e te ->,且10t e ->, ∴ 211t t t e e <-, 即0()1f x '<.…………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分22.选修4-1几何证明选讲证明:(Ⅰ)依题意,DE BE BE EC=,11∠=∠ , 所以DEB BEC ∆∆ ,………………2分得34∠=∠,因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆ .……………………5分(Ⅱ)因为因为EBD ACD ∆∆ , 所以ED BD AD CD =,即ED AD BD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆ , 所以48∠=∠,………………7分 因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠=即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分23.选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=, 射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x ,因为直线MA 与MB 分别与x 轴交于P 、Q 两点,所以AM AP K K =,BM BQ K K =,………………7分由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24.选修4-5:不等式选讲解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分(Ⅱ) 由函数()y f x =与函数y ax =的图象可知, 当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分所以不等式()f x ax ≥恒成立, 则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。
2017年河北省石家庄市高三理科二模数学试卷一、选择题(共12小题;共60分)1. 设,,,则A. B.C. D.2. 在复平面中,复数对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 在中,角,,的对边为别为,,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 若,且,则的值为A. B. C. D.5. 执行如图的程序框图,则输出的值为A. B. C. D.6. 李冶(),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:平方步为亩,圆周率按近似计算)A. 步,步B. 步,步C. 步,步D. 步,步7. 某几何体的三视图如图所示,则该几何体的体积是A. B. C. D.8. 已知函数,是的导函数,则函数的一个单调递减区间是A. B. C. D.9. 若,则在的展开式中,的幂指数不是整数的项共有A. 项B. 项C. 项D. 项10. 在平面直角坐标系中,不等式组(为常数)表示的平面区域的面积为,若,满足上述约束条件,则的最小值为A. B. C. D.11. 已知双曲线的左、右焦点分别为,,过点且垂直于轴的直线与该双曲线的左支交于,两点,,分别交轴于,两点,若的周长为,则取得最大值时该双曲线的离心率为A. B. C. D.12. 已知函数,其中,为自然对数的底数,若,是的导函数,函数在区间内有两个零点,则的取值范围是A. B.C. D.二、填空题(共4小题;共20分)13. 设样本数据,,,的方差是,若,则,,,的方差为______.14. 在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为______.15. 设二面角的大小为,点在平面内,点在上,且,则与平面所成角的大小为 ______.16. 非零向量,的夹角为,且满足,向量组,,由一个和两个排列而成,向量组,,由两个和一个排列而成,若所有可能值中的最小值为,则 ______.三、解答题(共7小题;共91分)17. 已知等差数列的前项和为,若,,(,且).(1)求的值;(2)若数列满足,求数列的前项和.18. 如图,三棱柱中,侧面是边长为的菱形,且,,四棱锥的体积为,点在平面内的正投影为,且在上,点是在线段上,且.(1)证明:直线 平面;(2)求二面角的余弦值.19. 交强险是车主必须为机动车购买的险种.若普通座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型数量以这辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定.记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损元,一辆非事故车盈利元:①若该销售商一次购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购买辆(年龄已满三年)该品牌二手车,求他获得利润的期望值.20. 设,,是椭圆上三个点,,在直线上的射影分别为,.(1)若直线过原点,直线,斜率分别为,,求证为定值;(2)若,不是椭圆长轴的端点,点坐标为,与面积之比为,求中点的轨迹方程.21. 已知函数,.(1)讨论函数在上的单调性;(2)若与的图象有且仅有一条公切线,试求实数的值.22. 在平面直角坐标系中,曲线的参数方程为(,为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程.(1)若曲线与只有一个公共点,求的值;(2),为曲线上的两点,且,求的面积最大值.23. 设函数的最大值为.(1)作出函数的图象;(2)若,求的最大值.答案第一部分1. C2. D3. C4. A5. B6. B7. B8. A9. C 10. D11. D 12. A第二部分13.14.15.16.第三部分17. (1)因为,,,所以,,设数列的公差为,则,所以.因为,所以,所以,解得.(2)由(I)知,所以,即.所以.设数列的前项和为,所以所以,得所以.18. (1)因为四棱锥的体积为,即,所以又,所以,即点是靠近点的四等分点.过点作交于点,如图,,又,所以且.四边形为平行四边形,所以,所以直线 平面.(2)设,的交点为,所在直线为轴,所在直线为轴,过点作平面的垂线为轴,建立空间直角坐标系,如图所示:,,,.,,.设平面,的法向量分别为,.由则取,同理求得.所以,所以二面角的余弦值为.19. (1)由题意可知的可能取值为,,,,,.由统计数据可知:,,,,,.所以的分布列为:所以(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为.②设为该销售商购进并销售一辆二手车的利润,的可能取值为,.所以的分布列为:所以.所以该销售商一次购进辆该品牌车龄已满三年的二手车获得利润的期望值为万元.20. (1)设,,,则,又,两式相减得,即.(2)设直线与轴相交于点,,,由于与面积之比为且,得,(舍去)或.即直线经过点.设,,,①当直线垂直于轴时,弦中点为;②当直线与轴不垂直时,设的方程为,则联立,,,,,,消去,整理得.综上所述,点的轨迹方程为.21. (1),当时,,函数在上单调递减;当时,令,可得,函数在上单调递减;,可得,函数在上单调递增.综上所述,当时,的减区间是;当时,的减区间是,增区间是.(2)函数在点处的切线方程为,即,函数在点处的切线方程为,即.与的图象有且仅有一条公切线,所以有唯一一对满足这个方程组,且,由得:,代入消去,整理得:,关于的方程有唯一解.令,,方程组有解时,,所以在单调递减,在上单调递增.所以.由,;,,只需,令,在为单减函数,且时,,即,所以时,关于的方程有唯一解.此时,公切线方程为.22. (1)曲线是以为圆心,以为半径的圆;直线的直角坐标方程为,由直线与圆只有一个公共点,则可得,解得:(舍)或,所以:.(2)由题意,曲线的极坐标方程为,设的极角为,的极角为,则因为,所以当时,取得最大值,所以的面积最大值为.23. (1)函数,画出图象如图,(2)由()知,当时,函数取得最大值为.因为,所以,当且仅当时,取等号,故的最大值为.。
注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.本试卷满分150分,考试时间为120分钟;考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题(共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.若集合{}2log 12<x x P ≤=,{}3,2,1=Q ,则=Q P ⋂A.{}2,1B.{}1C.{}3,2D.{}3,2,1 【答案】C 【解析】试题分析:{}{}21log 2|24P x x x x =≤=≤<<,所以{}2,3P Q = ,故选C. 考点:1.对数函数的性质;2.集合的运算. 2.复数iiz +-=12在复平面上对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】D考点:1.复数的运算;2.复数相关的概念.3.设R a ∈,则“4=a 是“直线038:1=-+y ax l 与直线02:2=-+a ay x l 平行”的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A考点:1.两条直线的位置关系;2.充分条件与必要条件. 4.下列函数中为偶函数又在),0(+∞上是增函数的是A.xy )21(= B.2y x = C.x y ln = D.x y -=2【答案】B 【解析】试题分析:由函数的奇偶性定义可知,选项C,D 为非奇非偶函数,排除C 、D ,选项A 中,1()2xy =在区间(0,)+∞上是减函数,故选B. 考点:函数的奇偶性与单调性.5.执行右图的程序框图,如果输入3=a ,那么输出的n 的值为A.4B.3C.2D.1 【答案】A 【解析】试题分析:模拟算法:开始:输入3a =,0,1,0p n θ===,p θ≤,是;0031,2113,011p n θ=+==⨯+==+=,p θ≤,是; 1134,2317,112p n θ=+==⨯+==+=,p θ≤,是; 24313,27115,213p n θ=+==⨯+==+=,p θ≤,是; 313340,215131,314p n θ=+==⨯+==+=,p θ≤,否,输出4n =; 故选A.考点:程序框图. 6.将函数)64sin(3π+=x y 的图像上各点的横坐标伸长为原来的2倍,再向右平移6π个单位,所得函数图像的一个对称中心为 A.)0,487(π B.)0,3(π C.)0,85(π D.)0,127(π 【答案】D考点:1.函数的伸缩变换与平移变换;2.三角函数的图象与性质.7.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤-≤+03045y x y x y x ,则下列目标函数中,在点)1,4(处取得最大值的是A.y x z -=51 B.y x z +-=3 C.15z x y =-- D.y x z -=3 【答案】D 【解析】试题分析:在直角坐标系内作出可行域如下图所示,由线性规划知识可知,目标函数15z x y =-与3z x y =-+均是在点(5,1)A --处取得最大值,目标函数15z x y =--在点(1,4)C 处取得最大值,目标函数y x z -=3在点(4,1)B 处取得最大值,故选D.考点:线性规划.8.若函数123)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),310[+∞ D.),2[+∞ 【答案】C考点:导数与函数的单调性.9.某几何体的三视图如右图所示,则该几何体的表面积为A.12)2210(++π B.12)211(++π C.12)2211(++πD.613π 【答案】B考点:1.三视图;2.旋转体的表面积与体积.10.如图所示,在一个边长为1的正方形A0BC 内,曲线)0(3>x x y =和曲线x y =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是A.125 B.61 C.41 D.31【答案】A 【解析】考点:1.积分的运算与几何意义;2.几何概型.【名师点晴】本题主要考查的是积分的运算与几何意义、几何概型,属于中档题.解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.解本题需要掌握的知识点是复数的模和几何概型的概率公式,即若z a bi =+(a 、R b ∈),则z =,几何概型的概率公式()P A =()()A 构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.11. 已知21,F F 分别为双曲线)0,0(1:2222>>b a by a x C =-的左、右焦点,过1F 的直线l 与双曲线C 的左、右两支分别交于B A ,两点,若13:12:5::22=AF BF AB ,则双曲线的离心率为A.13B.41C.15D.3 【答案】B 【解析】试题分析:因为22::5:12:13AB BF AF =,所以可设225,12,13,(0)AB t BF t AF t t ===>,由22222AB BF AF +=可知2AB BF ⊥,由双曲线定义有,122BF BF a -=,212AF AF a -=,两式相加得12214BF BF AF AF a -+-=,即224AB AF BF a +-=.所以46a t =,32a t =,所以12213310AF AF a t t t =-=-=,所以1115BF AB AF t =+=,由勾股定理得22222222124(1215)9(45)941c BF BF t t t t =+=+=⨯+=⨯,所以c =,所以双曲线的离心率22c e a t ===,故选B.考点:1.双曲线的定义、标准方程与几何性质;2.直线与双曲线的位置关系.【名师点睛】本题考查双曲线的定义、标准方程与几何性质、直线与双曲线的位置关系;属中档题;双曲线的定义在解题中有重要的作用,如本题中就利用定义列出两个等式,由这两个等式解方程组得到相应的比例关系,就可求双曲线的离心率.12.已知定义在),0(+∞上的函数)(x f ,满足0)()1(>x f ;)(2)()()2(x f x f x f <<'(其中)(x f '是)(x f 的导函数,e 是自然对数的底数),则)2()1(f f 的范围为 A.)1,21(2e e B.)1,1(2ee C.)2,(e e D.),(3e e 【答案】B考点:1.导数与函数的单调性;2.构造法的应用.【名师点睛】本题考查导数与函数的单调性以及构造法,属难题;联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了.第Ⅱ卷 非选择题(共90分)二、填空题:(本大题共4各小题,每小题5分,共20分) 13.在83)21(xx +的展开式中4x 的系数是_______.【答案】7考点:二项式定理.14.设向量),4(m a =,)2,1(-=b ,且b a ⊥,则=+b a 2________.【答案】 【解析】试题分析:因为a b ⊥ ,所以420a b m ⋅=-= ,即2m =,所以2(6,2)a b +=-,2a b +==.考点:1.向量的数量积与垂直的关系;2.向量的运算.15.正项等比数列{}n a 满足:1232a a a +=,若存在n m a a ,,使得2164·a a a n m =,则nm 91+的最小值为______. 【答案】2 【解析】试题分析:2321111222a a a a q a q a q =+⇔=+⇔=或1q =-,又0n a >,所以2q =,2222111·642648m n m n a a a a a m n +-=⇔⨯=⇔+=,所以1919191(10)(106)2888m n n m m n m n m n +⎛⎫+=+⋅=++≥⨯+= ⎪⎝⎭,当且仅当9n m m n =,即2,6m n ==时等号成立,所以nm 91+的最小值为2. 考点:1.等比数列的定义与性质;2.基本不等式.【名师点睛】本题考查等比数列的定义与性质、基本不等式,属中档题;利用基本不等式求最值时,应明确:1.和为定值,积有最大值,但要注意两数均为正数且能取到等号;2.积为定值和有最小值,直接利用不等式求解,但要注意不等式成立的条件.16.在直三棱柱111C B A ABC -中,BC AB ⊥,5=AC ,则直三棱柱内切球的表面积的最大值为___.【答案】25(3-考点:1.球的切接问题;2.球的表面积与体积;3.基本不等式.【名曰点睛】本题考查球的切接问题、球的表面积与体积公式以及不等式等知识,属中档题;与球有关的组合体通常是作出它的轴截面解题,或者通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题转化为平面问题进行求解.三、解答题(本大题共6小题,满分70分。
2017年河北省石家庄二中高考数学模拟试卷(理科)一、选择题(每小题5分,共60分)1.设集合A={x|x2﹣4x+3<0},B={x|log2x>1},则A∩B=()A.(﹣1,3)B.(﹣1,2)C.(1,3) D.(2,3)2.若复数z满足=i,则|+1|=()A.B.C.D.13.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为()A.(2cosθ,2sinθ) B.(﹣2cosθ,2sinθ)C.(﹣2cosθ,﹣2sinθ)D.(2cosθ,﹣2sinθ)4.若0<a<b<1,c>1,则()A.a c>b c B.ab c>ba c C.log a b<log b a D.log a c<log b c5.根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是()A.x≥0?B.x≥1?C.x≥﹣1?D.x≥﹣3?6.在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?()A.2B.2 C.2 D.2.257.已知函数f(x)=﹣x2+ax﹣b,若a,b都是从[0,4]上任取的一个数,则满足f(1)>0时的概率()A.B.C.D.8.函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,则mn的最小值为()A. B. C.D.9.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为()A.2+2+B.4+2+C.4+4+D.2++10.某计算器有两个数据输入口M1,M2一个数据输出口N,当M1,M2分别输入正整数1时,输出口N输出2,当M1输入正整数m1,M2输入正整数m2时,N的输出是n;当M1输入正整数m1,M2输入正整数m2+1时,N的输出是n+5;当M1输入正整数m1+1,MM2输入正整数m2时,N的输出是n+4.则当M1输入60,M2输入50时,N的输出是()A.494 B.492 C.485 D.48311.已知直线l1与双曲线C:﹣=1(a>0,b>0)交于A,B两点,且AB 中点M的横坐标为b,过M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为()A.B.C.D.12.已知,若关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,则实数m的取值范围为()A.B.C.(e﹣1,e)D.二、填空题(每小题5分,共20分)13.已知二项式展开式中,则x4项的系数为.14.已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|+2|=.15.已知函数f(x)=,无论t取何值,函数f(x)在区间(﹣∞,+∞)上总是不单调,则a的取值范围是.16.已知△ABC中,角C为直角,D是BC边上一点,M是AD上一点,且|CD|=1,∠DBM=∠DMB=∠CAB,则|MA|=.三、解答题17.已知数列{a n}的前n项和为S n,且满足a1=2,S n﹣4S n﹣2=0(n≥2,n∈Z).﹣1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=log2a n,T n为{b n}的前n项和,求证<2.18.已知△PDQ中,A,B分别为边PQ上的两个三等分点,BD为底边PQ上的高,AE∥DB,如图1,将△PDQ分别沿AE,DB折起,使得P,Q重合于点C.AB 中点为M,如图2.(Ⅰ)求证:CM⊥EM;(Ⅱ)若直线DM与平面ABC所成角的正切值为2,求二面角B﹣CD﹣E的大小.19.某中学高二年级开设五门大学选修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理、商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:其中选修数学学科的人数所占频率为0.6.为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.(Ⅰ)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求随机变量ξ的分布列和数学期望.20.已知椭圆C: +=1(a>b>0)的离心率为,短轴长为2,右焦点为F.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l过点M(3,t)且与椭圆C有且仅有一个公共点P,过点P作直线PF交椭圆于另一个点Q.①证明:当直线OM与直线PQ的斜率k OM,k PQ均存在时,k OM k PQ为定值;②求△PQM面积的最小值.21.已知函数f(x)=lnx﹣ax2在x=1处的切线与直线x﹣y+1=0垂直.(Ⅰ)求函数y=f(x)+xf′(x)(f′(x)为f(x)的导函数)的单调递增区间;(Ⅱ)记函数g(x)=f(x)+x2﹣(1+b)x,设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥﹣1,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是(t是参数)和(φ为参数).以原点O为极点,x轴的正半轴为极轴建立坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)射线OM:θ=α(α∈[,])与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|•|OQ|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+a.(Ⅰ)当a=3时,求不等式f(x)≤6的解集;(Ⅱ)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥2a2﹣13,求a的取值范围.2017年河北省石家庄二中高考数学模拟试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.设集合A={x|x2﹣4x+3<0},B={x|log2x>1},则A∩B=()A.(﹣1,3)B.(﹣1,2)C.(1,3) D.(2,3)【考点】交集及其运算.【分析】求出集合A,B,根据集合的交集定义进行计算.【解答】解:∵log2x>1=log22,∴x>2,∴B=(2,+∞),∵x2﹣4x+3<0,∴(x﹣3)(x﹣1)<0,解得1<x<3,∴A=(1,3),∴A∩B=(2,3),故选:D2.若复数z满足=i,则|+1|=()A.B.C.D.1【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵复数z满足=i,∴z+i=﹣2﹣zi,化为:z===﹣+i.=﹣﹣i.则|+1|===.故选:B.3.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为()A.(2cosθ,2sinθ) B.(﹣2cosθ,2sinθ)C.(﹣2cosθ,﹣2sinθ)D.(2cosθ,﹣2sinθ)【考点】任意角的三角函数的定义.【分析】由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即可得出结论.【解答】解:由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即(﹣2cosθ,﹣2sinθ),故选C.4.若0<a<b<1,c>1,则()A.a c>b c B.ab c>ba c C.log a b<log b a D.log a c<log b c【考点】指数函数的单调性与特殊点.【分析】根据不等式的基本性质和指数函数和对数函数的性质即可判断.【解答】解:∵0<a<b<1,c>1,∴a c<b c,ab c>ba c,∴log a b>log b a,log a c>log b c,故选:B5.根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是()A.x≥0?B.x≥1?C.x≥﹣1?D.x≥﹣3?【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,可得答案.【解答】解:当输入的x为2017时,第1次执行循环体后,x=2015,输出y=3﹣2015+1;第2次执行循环体后,x=2013,输出y=3﹣2013+1;第3次执行循环体后,x=2011,输出y=3﹣2011+1;…第1007次执行循环体后,x=3,输出y=3﹣3+1;第1008次执行循环体后,x=1,输出y=3﹣1+1;第1009次执行循环体后,x=﹣1,输出y=31+1=4;第1010次执行循环体后,x=﹣3,输出y=33+1=28;此时不满足x≥﹣1,输出y=28,故选:C.6.在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?()A.2 B.2 C.2 D.2.25【考点】等比数列的前n项和.【分析】由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y即可得出.【解答】解:由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y=.相见时大鼠打了1+2+=3尺长的洞,小鼠打了1++=1尺长的洞,x=2+=2天,故选:A.7.已知函数f(x)=﹣x2+ax﹣b,若a,b都是从[0,4]上任取的一个数,则满足f(1)>0时的概率()A.B.C.D.【考点】几何概型.【分析】本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)>0对应的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.【解答】解:f(1)=﹣1+a﹣b>0,即a﹣b>1,如图,A(1,0),B(4,0),C(4,3),S△ABC=,P==,故选:B.8.函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,则mn的最小值为()A. B. C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求得m=sin(2•)=,故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,求得n的最小值值,可得mn的最小值.【解答】解:函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,∴m=sin(2•)=.故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,∴m=cos[2(+n)﹣]=cos(2n﹣)=,∴应有2n﹣=,∴n=,则mn的最小值为,故选:B.9.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为()A.2+2+B.4+2+C.4+4+D.2++【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.进而得出.【解答】解:由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.该几何体的表面积S=×2++=2+2+.故选:A.10.某计算器有两个数据输入口M1,M2一个数据输出口N,当M1,M2分别输入正整数1时,输出口N输出2,当M1输入正整数m1,M2输入正整数m2时,N的输出是n;当M1输入正整数m1,M2输入正整数m2+1时,N的输出是n+5;当M1输入正整数m1+1,MM2输入正整数m2时,N的输出是n+4.则当M1输入60,M2输入50时,N的输出是()A.494 B.492 C.485 D.483【考点】进行简单的合情推理.【分析】依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×f(m1,1),将m1=60,m2=50,f(1,1)=2,代入得结论.【解答】解:依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×(m2﹣1),将m1=60,m2=50,f(1,1)=2,代入得483.故选D.11.已知直线l1与双曲线C:﹣=1(a>0,b>0)交于A,B两点,且AB 中点M的横坐标为b,过M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即可求出双曲线的离心率.【解答】解:设A(x1,y1),B(x2,y2),M(b,y M),由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即a4=(c2﹣a2)c2,有e4﹣e2﹣1=0,得e=.故选B.12.已知,若关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,则实数m的取值范围为()A.B.C.(e﹣1,e)D.【考点】根的存在性及根的个数判断.【分析】判断f(x)的单调性,求出极值,得出方程f(x)=t的解的情况,得出关于t的方程t2﹣(2m+1)t+m2+m=0的根的分布区间,利用二次函数的性质列不等式解出m的范围.【解答】解:f(x)=,∴f′(x)=.∴当0<x<1或x>e时,f′(x)>0,当1<x<e时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,e)上单调递减,在(e,+∞)上单调递增,作出f(x)的大致函数图象如图所示:令f(x)=t,则当0<t<e时,方程f(x)=t有1解,当t=e时,方程f(x)=t有2解,当t>e时,方程f(x)=t有3解,∵关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,∴关于t的方程t2﹣(2m+1)t+m2+m=0在(0,e)和(e,+∞)上各有一解,∴,解得e﹣1<m<e.故选C.二、填空题(每小题5分,共20分)13.已知二项式展开式中,则x4项的系数为240.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为4,求出r的值,将r的值代入通项求出展开式中含x4项的系数=C6r(﹣2)r x,【解答】解:展开式的通项为T r+1令得18﹣r=4,解得r=4,∴展开式中含x4项的系数为(﹣2)4C64=240,故答案为:240.14.已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|+2|=.【考点】向量的模.【分析】求出+2,求出|+2|的解析式,根据三角函数的运算性质计算即可.【解答】解:=(cos5°,sin5°),=(cos65°,sin65°),则+2=(cos5°+2cos65°,sin5°+2sin65°),则|+2|===,故答案为:.15.已知函数f(x)=,无论t取何值,函数f(x)在区间(﹣∞,+∞)上总是不单调,则a的取值范围是(﹣∞,] .【考点】利用导数研究函数的极值;分段函数的应用.【分析】由f'(x)=6x2﹣6,x>t,知x>t时,f(x)=2x3﹣6x一定存在单调递增区间,从而要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调,必须有f(x)=(4a﹣3)x+2a﹣4不能为增函数,由此能求出a的取值范围.【解答】解:对于函数f(x)=2x3﹣6x,f'(x)=6x2﹣6,x>t当6x2﹣6>0时,即x>1或x<﹣1,此时f(x)=2x3﹣6x,为增函数当6x2﹣6<0时,﹣1<x<1,∵x>t,∴f(x)=2x3﹣6x一定存在单调递增区间要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调∴f(x)=(4a﹣3)x+2a﹣4不能为增函数∴4a﹣3≤0,∴a≤.故a的取值范围是(﹣∞,].故答案为:(﹣∞,].16.已知△ABC中,角C为直角,D是BC边上一点,M是AD上一点,且|CD|=1,∠DBM=∠DMB=∠CAB,则|MA|=2.【考点】三角形中的几何计算.【分析】设∠DBM=θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,继而可得=,问题得以解决【解答】解:设∠DBM=θ,则∠ADC=2θ,∠DAC=﹣2θ,∠AMB=﹣2θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,∴===,从而MA=2,故答案为:2.三、解答题17.已知数列{a n }的前n 项和为S n ,且满足a 1=2,S n ﹣4S n ﹣1﹣2=0(n ≥2,n ∈Z ).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)令b n =log 2a n ,T n 为{b n }的前n 项和,求证<2.【考点】数列递推式;数列的求和.【分析】(I )利用数列递推关系、等比数列的通项公式即可得出. (II )利用“裂项求和”方法、数列的单调性即可得出.【解答】解:(Ⅰ)当n ≥3时,可得S n ﹣4S n ﹣1﹣2﹣(S n ﹣1﹣4S n ﹣2﹣2)=0(n ≥2,n ∈Z ).∴a n =4a n ﹣1,又因为a 1=2,代入表达式可得a 2=8,满足上式.所以数列{a n }是首项为a 1=2,公比为4的等比数列,故:a n =2×4n ﹣1=22n ﹣1. (Ⅱ)证明:b n =log 2a n =2n ﹣1.T n ==n 2.n ≥2时,=<=.≤1++…+=2﹣<2.18.已知△PDQ 中,A ,B 分别为边PQ 上的两个三等分点,BD 为底边PQ 上的高,AE ∥DB ,如图1,将△PDQ 分别沿AE ,DB 折起,使得P ,Q 重合于点C .AB 中点为M ,如图2. (Ⅰ)求证:CM ⊥EM ;(Ⅱ)若直线DM 与平面ABC 所成角的正切值为2,求二面角B ﹣CD ﹣E 的大小.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)推导出△ABC是等边三角形,从而CM⊥AB,再由DB⊥AB,DB⊥BC,知DB⊥平面ABC,又EA∥DB,从而EA⊥平面ABC,进而CM⊥EA.由此CM ⊥平面EAM.进而能证明CM⊥EM.(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M﹣xyz.利用向量法能求出二面角B﹣CD﹣E的平面角.【解答】证明:(Ⅰ)因为A,B是PQ的三等分点,所以PA=AB=BQ=CA=CB,所以△ABC是等边三角形,又因为M是AB的中点,所以CM⊥AB.因为DB⊥AB,DB⊥BC,AB∩BC=B,所以DB⊥平面ABC,又EA∥DB,所以EA⊥平面ABC,CM⊂平面ABC,所以CM⊥EA.因为AM∩EA=A,所以CM⊥平面EAM.因为EA⊂平面EAM,所以CM⊥EM.解:(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M﹣xyz.因为DB⊥平面ABC,所以∠DMB为直线DM与平面ABC所成角.由题意得tan,即BD=2MB,从而BD=AC.不防设AC=2,又AC+2AE,则CM=,AE=1.故B(0,1,0),C(,0,0),D(0,1,2),E(0,﹣1,1).于是=(,﹣1,0),=(0,0,2),=(﹣),=(﹣,1,2),设平面BCD与平面CDE的法向量分别为=(x,y,z),=(a,b,c),由,令x=1,得=(1,,0).由,令a=1,得=(1,﹣,),所以cos<>=0.所以二面角B﹣CD﹣E的平面角大小为90°.19.某中学高二年级开设五门大学选修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理、商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:其中选修数学学科的人数所占频率为0.6.为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.(Ⅰ)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求随机变量ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用分层抽样求出各个选修人数,利用互斥事件的概率求解从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求出ξ的可能值,就是概率,即可得到随机变量ξ的分布列和数学期望.【解答】解:因为选修数学学科人数所占总人数频率为0.6,即,可得:x=180,又x+180+120+60+y=600,所以y=60,则根据分层抽样法:抽取的10人中选修线性代数的人数为:10×=3人;选修微积分的人数为:10×=3人;选修大学物理的人数为:人;选修商务英语的人数为:人;选修文学写作的人数为:人;(Ⅰ)现从10人中选3人共有种选法,且每种选法可能性都相同,令事件A:选中的3人至少两人选修线性代数,事件B:选中的3人有两人选修线性代数,事件C:选中的3人都选修线性代数,且B,C为互斥事件,P(A)=P (B)+P(C)=+=.(Ⅱ)记X为3人中选修线性代数的代数,X的可能取值为0,1,2,3,记Y 为3人中选修微积分的人数;Y的可能取值也为0,1,2,3,则随机变量ξ=|X ﹣Y|的可能取值为0,1,2,3;P(ξ=0)=P(X=0,Y=0)+P(X=1,Y=1)=;P(ξ=1)=P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=2)+P(X=2,Y=1)=2×=,P(ξ=2)=P(X=0,Y=2)+P(X=2,Y=0)=2×=,P(ξ=3)=P(X=0,Y=3)+P(X=3,Y=0)=2×=;所以ξ的分布列为:所以Eξ=.20.已知椭圆C: +=1(a>b>0)的离心率为,短轴长为2,右焦点为F.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l过点M(3,t)且与椭圆C有且仅有一个公共点P,过点P作直线PF交椭圆于另一个点Q.①证明:当直线OM与直线PQ的斜率k OM,k PQ均存在时,k OM k PQ为定值;②求△PQM面积的最小值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由b=,椭圆的离心率公式,即可求得a和c的值,求得椭圆方程;(Ⅱ)①设直线方程,代入椭圆方程,由△=0,分别求得k OM,k PQ,即可求得k OM•为定值;=②设直线方程,代入椭圆方程,由韦达定理,弦长公式,求得S△PQM •,根据函数的单调性即可求得△PQM面积的最小值.【解答】解:(Ⅰ)设椭圆的焦距为2c,由题意可得:2b=2,b=,由题意的离心率e===,解得:a2=6,则c2=a2﹣b2=4,故椭圆方程为:;(Ⅱ)①证明:由题意可知直线l的斜率存在,设直线l的方程:y=kx+m,由点M(3,t)在直线上,则t=3k+m,联立直线与椭圆方程:,可得:(1+3k2)x2+6kmx+3m2﹣6=0,又直线与椭圆只有一个公共点,故△=0,即m2=6k2+2;由韦达定理,可得P点坐标(﹣,),由直线PQ过椭圆右焦点为F(2,0),则直线PQ的斜率k PQ=k PF=;而直线OM的斜率,则k OM==:k OM•k PQ=•=•=•=﹣.②由=(1,t),=(,),则•==0,即FM⊥PF,=丨PQ丨丨MF丨,∴三角形的面积S△PQM丨MF丨=,由直线FM的斜率为t,可得直线PQ的方程:x=﹣ty+2,P(x1,y1),Q(x2,y2),与椭圆方程联立可得:,整理得:(3+t2)y2﹣4ty﹣2=0,则y1+y2=,y1y2=﹣,则丨PQ丨=•=,=•,令t2+3=m,(m>0),则S△PQM=•,则S△PQM由函数的单调性可知:y=,单调递增,=•≥,当t=0时,△PQM面积的最小值.故S△PQM∴△PQM面积的最小值.21.已知函数f(x)=lnx﹣ax2在x=1处的切线与直线x﹣y+1=0垂直.(Ⅰ)求函数y=f(x)+xf′(x)(f′(x)为f(x)的导函数)的单调递增区间;(Ⅱ)记函数g(x)=f(x)+x2﹣(1+b)x,设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥﹣1,且g(x1)﹣g(x2)≥k恒成立,求实数k的最大值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)求出g(x)的导数,求出g(x1)﹣g(x2)的解析式,令h(x)=lnx2﹣x2+,x∈(0,],根据函数的单调性求出k的最大值即可.【解答】解:(Ⅰ)由题意可得:f′(x)=﹣2ax,f′(1)=1﹣2a=﹣1,可得:a=1;又y=f(x)+xf′(x)=lnx﹣3x2+1,所以y′=,(x>0),当x∈(0,)时,y′>0,y单调递增;当x∈(,+∞)时,y′<0,y单调递减;故函数的单调增区间为(0,).(Ⅱ)g(x)=lnx+x2﹣(1+b)x,g′(x)=,因为x1,x2是g(x)的两个极值点,故x1,x2是方程x2﹣(1+b)x+1=0的两个根,由韦达定理可知:;∵x1<x2,可知0<x1<1,又x1+=1+b≥e+,令t=x+,可证t(x)在(0,1)递减,由h(x1)≥h(),从而可证0<x1≤.所以g(x1)﹣g(x2)=ln﹣(x1﹣x2)(x1+x2)=ln﹣+(0<x1≤)令h(x)=lnx2﹣x2+,x∈(0,],h′(x)=≤0,所以h(x)单调减,故h(x)min=h()=﹣﹣2,所以k≤﹣﹣2,即k max=﹣﹣2.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别是(t是参数)和(φ为参数).以原点O为极点,x轴的正半轴为极轴建立坐标系.(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)射线OM:θ=α(α∈[,])与曲线C1的交点为O,P,与曲线C2的交点为O,Q,求|OP|•|OQ|的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)利用三种方程的转化方法,即可求曲线C1的普通方程和曲线C2的极坐标方程;(Ⅱ)由(Ⅰ)可得C1的极坐标方程为ρsin2θ=4cosθ,与直线θ=α联立可得:ρ=,即|OP|=,同理可得|OQ|=2sinα.求出|OP|•|OQ|=,在α∈[,]上单调递减,即可求|OP|•|OQ|的最大值.【解答】解:(Ⅰ)C1的普通方程为y2=4x,C2的普通方程为x2+(y﹣1)2=1,C2的极坐标方程为ρ=2sinθ.(Ⅱ)由(Ⅰ)可得C1的极坐标方程为ρsin2θ=4cosθ,与直线θ=α联立可得:ρ=,即|OP|=,同理可得|OQ|=2sinα.所以|OP|•|OQ|=,在α∈[,]上单调递减,所以|OP|•|OQ|的最大值是8.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+a.(Ⅰ)当a=3时,求不等式f(x)≤6的解集;(Ⅱ)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥2a2﹣13,求a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当a=3时,不等式即|2x﹣3|+3≤6,可得﹣3≤2x﹣3≤3,由此求得不等式的解集.(Ⅱ)由题意可得|2x﹣a|+a+|2x﹣1|≥2a2﹣13恒成立,利用绝对值三角不等式求得|2x﹣a|+a+|2x﹣1|的最小值为|1﹣a|+a,可得|1﹣a|+a≥2a2﹣13,分类讨论,去掉绝对值,求得a的范围.【解答】解:(Ⅰ)当a=3时,不等式f(x)≤6,即|2x﹣3|+3≤6,故有﹣3≤2x﹣3≤3,求得0≤x≤3,即不等式f(x)≤6的解集为[0,3].(Ⅱ)f(x)+g(x)≥2a2﹣13,即|2x﹣a|+a+|2x﹣1|≥2a2﹣13恒成立,∵|2x﹣a|+a+|2x﹣1|≥|2x﹣a﹣(2x﹣1)|+a=|1﹣a|+a,∴|1﹣a|+a≥2a2﹣13①.当a≤1时,①等价于1﹣a+a≥2a2﹣13,解得﹣≤a≤1;当a>1时,①等价于a﹣1+a≥2a2﹣13,即a2﹣a﹣6≤0,解得1<a≤3,所以a的取值范围是[﹣,3].2017年4月11日。
河北省石家庄市第二中学2017届高考高三模拟联考理科数学试卷答 案一、选择题(每小题5分,共60分)1~5.DBCBC 6~10.ABBAD 11~12.BC 二、填空题(每小题5分,共20分)13.240 1415.34a ≤ 16.2 三、解答题17.解:(1)当3n ≥时,可得n n 1n 1n 2n 1(42)(42)04n S S S S a a ---------=⇒= 又因为12a =,代入已知等式,可得28a =,满足上式.所以数列是首项为12a =,公比为4的等比数列,故:121242n n n a --==g . (2)212log 221n n b n -==-,213...(21)n T n n =+++-=.22211111...12nk kTn ==+++∑≤11111+++...+221223(1)n n n=-⨯⨯-⨯<. 18.解:(1)因为A ,B 是PQ 的三等分点,所以PA AB BQ CA CB ====, 所以是等边三角形,又因为M 是AB 的中点, 所以CM AB ⊥.因为,AB BC B =I ,所以平面ABC , 又EA DB ∥,所以EA ⊥平面ABC ;CM ⊂平面ABC ,所以CM EA ⊥.因为AM EA A =I , 所以CM ⊥平面EAM . 因为EM ⊂平面EAM , 所以CM EM ⊥.(2)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M xyz -.因为DB ⊥平面ABC ,所以DBM ∠为直线DM 与平面ABC 所成角. 由题意得tan 2DBDAB MB∠==,即BD =2MB , 从而BD AC =.不妨设2AC =,又2AC CE =,则CM =1AE =. 故(0,1,0)B,(0C ,(0,1,2)D ,(0,1,1)E -.于是1,0)BC =-u u u r ,(0,0,2)BD =u u u r,(1,1)CE =-u u u r,(CD =u u u r, 设平面BCD 与平面CDE 的法向量分别为111(,,)m x y z =u r ,222=(,,)n x y z r, 由=0=0m BC m BD ⎧⎪⎨⎪⎩u r u u u r g u r u u u r g得111020y z -==⎪⎩,令11x =,得1y所以m u r.由=0=0n CE n CD ⎧⎪⎨⎪⎩r u u u r g r u u u r g得222222020y z y z ⎧-+=⎪⎨++=⎪⎩,令21x =得2y =2z =.所以(1,n =r .所以cos ,0||||m nm n m n ==u r u u ru r r g u r r . 所以二面角B CD E --的平面角的大小为90︒.19.解:(1)因为选修数学学科人数占总人数频率为0.6,即1800.6600x+=,可得:180x =, 又180********x y ++++=,所以60y =,则根据分层抽样法:抽取10人中选修线性代数的人数为:18010=3600⨯人;选修微积分的人数为:18010=3600⨯人;选修大学物理的人数为:12010=2600⨯人;选修商务英语的人数为:6010=1600⨯人;选修文学写作的人数为:6010=1600⨯人;(1)现从10人中选3人共有310120C =种选法,且每种选法可能性相同,令事件A 选中的3人至少两人选修线性代数,事件选中的3人有两人选修线性代数,事件选中的3人都选修线性代数,且为互斥事件,()()()P A P B P C =+=2133733310101160C C C C C ⨯+=. (2)记为3人中选修线性代数的人数,的可能取值为0,1,2,3,记为3人中选修微积分的人数;:B :C ,B C X X Y的可能取值也为0,1,2,3,则随机变量||x X Y =-的可能取值为0,1,2,3;111333443310101(0)(0,0)(1,1)3C C C C P P X Y P X Y C C ξ====+===+=g g ; 123233443310109(1)(0,1)(1,0)(1,2)(2,1)2220C C C C P P X Y P X Y P X Y P X Y C C ξ====+==+==+===+=g g g g ; 21343101(2)(0,2)(2,0)25C C P P X Y P X Y C ξ====+====g g ; 333101(3)(3,0)(3,0)260C P P X Y P X Y C ξ====+====g ,所以的分布列为:所以19119(3)012332056010E ξ==⨯⨯⨯+⨯+⨯=.20.解:(1)设椭圆的焦距为,由题意可得:2c a b ⎧=⎪⎨⎪=⎩解得2226,2,4a b c ===,故椭圆方程为:22162x y +=. (2)①由题意可知直线的斜率存在,设直线l 的方程:y kx m =+,因为点(3,t)M 在直线上,所以3t k m =+,联立直线与椭圆方程: 由22360y kx m x y =+⎧⎨+-=⎩可得222(13)6360k x kmx m +++-=,又直线与椭圆有且只有一个公共点,故0D =,即2262m k =+. 由韦达定理,可得P 点坐标223(,)1313km mP k k -++.因为直线PQ 过椭圆右焦点为(2,0)F ,所以直线PQ 的斜率2326PQ PF mk k km k==---; 而直线OM 的斜率333OM t k mk +==,所以: 233263OM PQ m k m k k km k +=---g g 2231=3263km m km k +---g 2311=333km km m =---g . ②因为(1,)FM t =u u u u r ,222326(,)1313km k mFP k k ---=++u u u r ,所以22326=013mt km k FM FP k ---=+u u u u r u u u r g ,即FM PF ⊥; Y x 2c l所以三角形PQM 的面积1||||2PQM S PQ MF =△;||MF ,由直线FM 的斜率为t ,可得直线PQ 的方程:2x ty =-+,与椭圆方程联立可得:|PQ所以PQMS =△23(3)t m m +=g,则PQM S =△故PQMS △当且仅当0t =时成立. 21.解:(1)由题意可得:1()2f x ax x'=-,(1)1f '=-,可得:1a =; 又2()()ln 31y f x xf x x x '=+=-+,所以21166(0)x y x x x x-'=-=>;当6x ∈时,0y '>,y 单调递增;当时)x ∈+∞,0y '<,y单调递减;故函数的单调增区间为x ∈.(2)21()ln (1b)2g x x x x =+-+,21(1)1()(1)x b x g x x b x x -++'=+-+=,因为1x ,2x 是()g x 的两个极值点,故1x ,2x 是方程2(1)10x b x -++=的两个根,由韦达定理可知:121211x x b x x +=+⎧⎨=⎩,12x x Q <,可知101x <<,又1111+=1+e+e x b x ≥, 令1t x x =+,可证t 在(0,1)递减,由11()()e h x h ≥,从而可证110ex <≤. 所以1121212122ln 1()()()()(1)()ln 2x g x g x x x x x b x x x -=+-+-+-1121212122ln 1=()()()()ln 2x x x x x x x x x x +-+-+- 2221121211111=ln +(0)222ex x x x x --<≤.令222111()ln ,(0,22e h x x x x x ⎤=-+∈⎥⎦,321()h x x x x'=--422233-21(1)=0x x x x x +---=≤,所以单调减,故2min21e 1()()2e 22e h x h ==--,所以22e 1222e k --≤,即2max 2e 1222ek =--.22.解:(1)1C 的普通方程为24y x =,2C 的极坐标方程为=2sin ρθ. (2)由(1)可得1C 的极坐标方程为2sin =4cos ρθθ,与直线=a θ联立可得:24cos sin ar a=,即24cos sin a OP a =,()h x同理可得2sin OQ a =.所以8cos 8||||sin tan OP OQ ααα==g ,在ππ64α⎡⎤∈⎢⎥⎣⎦,上单调递减,所以max ||||OP OQ =g 23.(1)解:当3a =,()|23|3f x x =-+.解不等式|23|36x -+≤,得03x ≤≤, 因此,()6f x ≤的解集为{}|03x x ≤≤.(2)当x ∈R 时,()()|2||12||212|f x g x x a a x x a x a +=-++--+-+≥=|1|+a a -, 当12x =时等号成立, 所以当x ∈R 时,2()()213f x g x a +-≥等价于2|1|+213a a a --≥.①当1a ≤时,①等价于21213a a a -+-≥,解得a , 当1a >时,①等价于260a a --≤,解得13a <≤,所以a 的取值范围是⎡⎤⎣⎦.河北省石家庄市第二中学2017届高考高三模拟联考理科数学试卷解析1.略2.略3.略4.略5.略6.略7.略8.略9.略10.11.12.13.略14.略15.16.17.18.19.20.21.22.23.。
2017届石家庄市高中毕业班第二次模拟考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =ln(1)y x =-的定义域分别为M 、N ,则M N = ()A.(1,2]B.[1,2]C.(,1][2,)-∞+∞ D.(,1)[2,)-∞+∞ 2.若2iz i=+,则复数z 对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量(1,)a m = ,(,1)b m = ,则“1m =”是“//a b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为()A.310B.25C.12D.355.已知角α(0360α︒≤<︒)终边上一点的坐标为(sin 235,cos 235)︒︒,则α=()A.215︒B.225︒C.235︒D.245︒6.已知ln ()xf x x=,其中e 为自然对数的底数,则()A.(2)()(3)f f e f >>B.(3)()(2)f f e f >>C.()(2)(3)f e f f >>D.()(3)(2)f e f f >>7.如图是计算11113531++++…的值的程序框图,则图中①②处应填写的语句分别是()A.2n n =+,16?i >B.2n n =+,16?i ≥C.1n n =+,16i >?D.1n n =+,16?i ≥8.某几何体的三视图如图所示,则其体积为()A.34πB.24π+C.12π+D.324π+9.实数x ,y 满足1|1|12x y x +≤≤-+时,目标函数z x my =+的最大值等于5,则实数m 的值为()A.2B.3C.4D.510.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45︒,过圆柱的轴的平面截该几何体所得的四边形''ABB A 为矩形,若沿'AA 将其侧面剪开,其侧面展开图形状大致为()11.如图,两个椭圆的方程分别为22221(0)x y a b a b +=>>和22221()()x y ma mb +=(0a b >>,1m >),从大椭圆两个顶点分别向小椭圆引切线AC 、BD ,若AC 、BD 的斜率之积恒为6251-,则椭圆的离心率为()A.35B.34C.45D.412.若函数32()233f x x ax bx b =+-+在(0,1)上存在极小值点,则实数b 的取值范围是()A.(1,0]-B.(1,)-+∞C.[0,)+∞D.(1,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若1(3)nx x-的展开式中二项式系数和为64,则展开式的常数项为.(用数字作答)14.已知函数()sin()f x x ωϕ=+(0ω>,0ϕπ<<)的图象如图所示,则(0)f 的值为.15.双曲线22221x y a b-=(0a >,0b >)上一点(3,4)M -关于一条渐进线的对称点恰为右焦点2F ,则该双曲线的标准方程为.16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a ,b ,c ,其面积S =,这里1()2p a b c =++.已知在ABC ∆中,6BC =,2AB AC =,其面积取最大值时sin A =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{}n a 满足1122(1)22n n a a na n ++++=-+…,*n N ∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若2211log log n n n b a a +=⋅,12n n T b b b =+++…,求证:对任意的*n N ∈,34n T <.18.在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF ;(Ⅱ)求直线CF 与平面EAC 所成角的正弦值.19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的四天中,每一天降雨的概率均为40%,求四天中至少有两天降雨的概率;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:降雨量(毫米)12345快餐数(份)5085115140160试建立y 关于x 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程 y bxa =+ 中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y bx x ==--=-∑∑ , ay bx =- 20.已知圆C :222(1)x y r -+=(1r >),设A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AM ,并使弦AM 的中点恰好落在y 轴上.(Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)延长MC 交曲线E 于点N ,曲线E 在点N 处的切线与直线AM 交于点B ,试判断以点B 为圆心,线段BC 长为半径的圆与直线MN 的位置关系,并证明你的结论.21.设函数()xf x e ax a =-+,其中e 为自然对数的底数,其图象与x 轴交于A 1(,0)x ,2(,0)B x 两点,且12x x <.(Ⅰ)求实数a 的取值范围;(Ⅱ)证明:122'(03x x f +<('()f x 为函数()f x 的导函数).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos a ρθ=(0a >),Q 为l 上一点,以OQ 为边作等边三角形OPQ ,且O 、P 、Q 三点按逆时针方向排列.(Ⅰ)当点Q 在l 上运动时,求点P 运动轨迹的直角坐标方程;(Ⅱ)若曲线C :222x y a +=,经过伸缩变换'2'x xy y =⎧⎨=⎩得到曲线'C ,试判断点P 的轨迹与曲线'C 是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.23.选修4-5:不等式选讲已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.2017届石家庄市高中毕业班第二次模拟考试试卷数学(理科)答案一、选择题1-5:DDACA6-10:DADBA11、12:AB二、填空题13.540-14.2215.221520x y -=16.35三、解答题17.解:(Ⅰ)当1n >时,1121212(1)222-1)(2)22n n n n a a na n a a n a n +-+++=-++++=-+ ①(②①-②得1(1)2(2)22n n n n na n n n +=---=⋅,所以2n n a =,当1n =时,12a =,所以2nn a =,*n N ∈.(Ⅱ)因为2n n a =,22211111()log log (2)22n n n b a a n n n n +===-⋅++.因此1111111111111112322423521122n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.111112212n n ⎛⎫=+-- ++⎝⎭3111342124n n ⎛⎫=-+< ⎪++⎝⎭所以,对任意*n N ∈,34n T <.18.(Ⅰ)证明:取AD 中点M ,连接EM ,2AF EF DE ===,4AD =,可知12EM AD =,∴AE DE ⊥,又AE EC ⊥,DE EC E = ∴AE ⊥平面CDE ,∴AE CD ⊥,又CD AD ⊥,AD AE A = ,∴CD ⊥平面ADEF ,CD ⊂平面ABCD ,∴平面ABCD ⊥平面ADEF .(Ⅱ)如图,作EO AD ⊥,则EO ⊥平面ABCD ,故以O 为原点,分别以,,OA DC OE的方向为x 轴、y 轴、z轴的正方向建立空间平面直角坐标系,依题意可得E ,(3,0,0)A ,(1,4,0)C -,F,所以(3,0,EA = ,(4,4,0)AC =-,(3,CF =-.设(,,)n x y z =为平面EAC 的法向量,则00n EA n AC ⎧=⎪⎨=⎪⎩即30440x x y ⎧-=⎪⎨-+=⎪⎩不妨设1x =,可得n =,所以cos ,70||||CF nCF n CF n <>===35=,直线CF 与平面EAC 所成角的正弦值为3535.19.解:(Ⅰ)四天均不降雨的概率41381()5625P ==,四天中恰有一天降雨的概率132432216(55625P C =⨯⨯=,所以四天中至少有两天降雨的概率128121632811625625625P P P =--=--=.(Ⅱ)由题意可知1234535x ++++==,50851151401601105y ++++==,51521()275==27.510()i ii ii x x yy bx x ==--=-∑∑ , ==27.5ay bx - 所以,y 关于x 的回归方程为:ˆ27.527.5y x =+.将降雨量6x =代入回归方程得:ˆ27.5627.5192.5193y=⨯+=≈.所以预测当降雨量为6毫米时需要准备的快餐份数为193份.20.解:(Ⅰ)设(,)M x y ,由题意可知,(1,0)A r -,AM 的中点(0,2y D ,0x >,因为(1,0)C ,(1,)2y DC =- ,(,2y DM x = .在⊙C 中,因为CD DM ⊥,∴0DC DM ⋅=,所以204y x -=,即24y x =(0x >),所以点M 的轨迹E 的方程为:24y x =(0x >).(Ⅱ)设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+,2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-,11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+,22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =,直线BN 的方程为2222y y x y =+,联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===,所以点(1,2)B m -,||BC =,2d ==,∴B e 与直线MN 相切.21.解:(Ⅰ)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数;于是当ln x a =时,()f x 取得极小值.因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.此时,存在1ln (1)e 0a f <=>,;(或寻找f (0))存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围.(Ⅱ)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x x f s x x s ++-+-'⎡⎤=-=--⎣⎦-,设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数,则有()(0)0g s g <=,而122e02x x s+>,所以()1202x x f +'<.又()e x f x a '=-是单调增函数,且3222121x x x x +>+,所以032('21<+x x f .22.解:(Ⅰ)设点P 的坐标为(,)ρθ,则由题意可得点Q 的坐标为(,)3πρθ+,再由点Q 的横坐标等于a ,0a >,可得cos()3a πρθ+=,可得1cos sin 22a ρθρθ-=,故当点Q 在l 上运动时点P的直角坐标方程为20x a -=.(Ⅱ)曲线C :222x y a +=,'2'x x y y =⎧⎨=⎩,即'2'x x y y ⎧=⎪⎨⎪=⎩,代入22''4x y a +=,即2224x y a +=,联立点P 的轨迹方程,消去x得270y +=,0,0a >∴∆> 有交点,坐标分别为243(,),(2,0)77a a a -.23.解:(Ⅰ)函数3,1,()21131,11,3, 1.x x f x x x x x x x --≤-⎧⎪=+--=+-<<⎨⎪+≥⎩它的图象如图所示:函数)(x f 的图象与直线1=y 的交点为(4,1)-、(0,1),故函数)(x f 的图象和直线1=y 围成的封闭图形的面积14362m =⨯⨯=.(Ⅱ)ab b a 62=+ ,621=+∴a b 844244)21)(2(=+≥++=++a b b aa b b a ,当且仅当a b b a 4=,可得31,32==b a 时等号成立,b a 2+∴的最小值是34。