液力变矩器
- 格式:ppt
- 大小:3.55 MB
- 文档页数:26
液力变矩器的名词解释液力变矩器(Fluid Coupling)是一种常见的传动装置,用于传递动力和变换转矩,并在起步、换挡和降低转速时提供顺畅的驱动力。
它由一个外壳、一个泵和一个涡轮组成,通过油液的粘滞性实现动力传递。
液力变矩器的工作原理源自流体力学和运动守恒定律。
液力变矩器的外壳通常由钢铁材质制成,具有高度耐磨和耐腐蚀的特性。
外壳内有涂有摩擦材料的摩擦片,用于提高摩擦系数。
摩擦片上有刻有扇形槽的泵轮,又被称为泵。
泵的作用是将油液加压并产生流动。
液力变矩器内还装有一个涡轮,又被称为扇轮或轮子。
涡轮的作用类似于风扇,将流动的油液转化为动力。
涡轮内有叶片,可以使用液压力量作用于其上,从而生成转动力。
泵和涡轮通过油液流动的力量相连,实现转矩的传递。
在液力变矩器的运行过程中,油液被压入泵轮,产生高速的液体流动。
这种高速流动会将动能转化为液压能,并传递到涡轮上。
涡轮随即开始转动,同时传递动力到传动轴和其他相关部件。
这种方式使得液力变矩器能够在不引起机械磨损的情况下实现转矩的调节和传递。
液力变矩器的一个关键特点是其变矩性能。
通过调整油液的流动,液力变矩器可以提供不同的转矩输出。
在起步时,液力变矩器可以实现较大的转矩输出,而在高速行驶时,转矩输出相对较小,以提供更好的经济性和燃油效率。
这种变矩调节的能力使得液力变矩器在汽车、工程机械和船舶等各种交通和工业领域广泛应用。
尽管液力变矩器具有许多优点,如顺滑的驱动、良好的冷却和减振效果,但也存在一些局限性。
由于液力传递机制的特性,液力变矩器在传递动力时会有一定损耗。
这导致一部分输入功率会被浪费,使得液力变矩器的效率相对较低。
另外,液力变矩器还有一定的体积和质量,这可能对整个传动系统的重量和尺寸产生不利影响。
为了解决这些问题,现代汽车工程领域已经开发出了许多其他的传动装置,如离合器和自动变速器。
这些装置在某些情况下可以替代液力变矩器,并提供更高的效率和性能。
然而,液力变矩器仍然广泛应用于许多领域,特别是在大型车辆和工程机械中,因为它们在起步和低速行驶时提供了极佳的驱动性能和可靠性。
4.1.1液力变矩器构造1、三元一级双相型液力变矩器三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。
一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。
双相是指液力变矩器的工作状态分为变矩区和偶合区。
图4-1为液力变矩器三个主要元件的零件图2、液力变矩器的结构和作用泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。
变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。
发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。
1-变速器壳体 2-泵轮 3-导轮 4-变速器输出轴 5-变矩器壳体6-曲轮 7-驱动端盖 8-单向离合器 9-涡轮涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。
在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。
它是液力变矩器的输出元件。
涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。
它将液体的动能转变为机械能。
导轮的直径大约是泵轮或涡轮直径的一半。
并位于两者之间。
导轮是变矩器中的反作用力元件,用来改变液体流动的方向。
导轮叶片的外缘一般形成三段式油液导流环内缘。
分段导流环可以引导油液平稳的自由流动,避免出现紊流。
导轮支承在与花键和导轮轴连接的单向离合器上。
单向离合器使导轮只能与泵轮同向转动。
涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。
图4-3为液力变矩器油液流动示意图。
图上通过箭头示意液体流动方向。
油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。
3、液力变矩器的锁止和减振液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。
其余的动力都被转化为热量,散发到油液里。
液力变矩器的组成及作用《液力变矩器的奇妙世界》嘿,朋友们!今天咱来聊聊液力变矩器这个神奇的玩意儿。
你看啊,这液力变矩器就像是汽车传动系统里的一位大力士。
它主要是由泵轮、涡轮和导轮这几个部分组成的。
先说这泵轮,那可是劲头十足啊,就像个大力水手,拼命地把液体搅动起来,让能量在里面欢快地流转。
然后是涡轮,它就像是个乖巧的接收者,被泵轮搅动的液体冲击着,然后就跟着转动起来,带着动力往前冲。
还有那导轮,虽然看起来不怎么起眼,可作用也不小呢,它就像个智慧的军师,调节着液体的流向和力量,让整个过程更加顺畅高效。
那液力变矩器有啥用呢?这用处可大啦!它就像是个缓冲垫,让汽车在起步的时候更加平稳柔和,不会猛地一冲一冲的,让咱坐车的人感觉可舒服啦。
而且啊,它还能根据不同的情况自动调整,比如遇到大的阻力时,它能发挥出更大的力量,帮助汽车轻松地克服困难。
我记得有一次,我开着车去一个很陡的坡,刚开始还真有点担心上不去。
但没想到,液力变矩器发挥了大作用,车子稳稳地就上去了,那感觉就像是有一双有力的大手在推着车走。
它还能保护汽车的其他部件呢。
就像一个温柔的守护者,把那些冲击力都给化解掉了,让变速箱啊、发动机啊这些重要的家伙都能安安稳稳地工作。
想象一下,如果没有液力变矩器,汽车开起来会是啥样?起步的时候可能会猛地一抖,坐车的人估计会被吓一跳。
而且遇到难走的路,车子可能就没那么容易过去了,说不定还会对车子造成损害呢。
所以啊,液力变矩器虽然平时不太起眼,但它可是汽车里不可或缺的重要角色呢。
它就像一个默默奉献的幕后英雄,为我们的行车安全和舒适保驾护航。
总之,液力变矩器就是这么厉害,这么重要!咱可得好好感谢它为我们的出行带来的便利呀!。
液力变矩器原理
液力变矩器是一种利用液流的转动动能转换为机械动能的装置。
液力变矩器的主要原理是利用携带动能的工作液体在叶轮和导向叶片之间产生流动,并通过液体的阻力来达到变矩的目的。
液力变矩器主要由泵、液力涡轮和导向叶片组成。
泵是液力变矩器的动力源,它通过转子和叶轮之间的传递力,将动力传输给工作液体。
液力涡轮是液力变矩器的传递装置,将来自泵的动能转化为液体的动能。
液力涡轮旋转起来,推动液体形成旋涡流动,然后经过导向叶片的引导,使液体重新进入泵来实现循环。
当液力变矩器处于空转状态时,工作液体从泵中的转子中吸入,然后经过泵的叶轮的动力传输给液力涡轮,液力涡轮开始旋转。
由于液体的阻力作用,液力涡轮的旋转速度较泵的旋转速度慢,形成了一种转速比。
当液力变矩器连接到负载上时,液力涡轮带动负载一起旋转,使液体在液力涡轮和导向叶片之间产生流动,并通过流动的液体来传递转矩。
转矩的大小取决于液体的流动量和液流的速度。
液力变矩器通过调节工作液体的流量和转速比来实现变矩的效果。
当负载较大时,液力变矩器会自动调整液流量和转速比,进而实现输出更大的转矩。
这使得液力变矩器在汽车、船舶、工程机械等领域中得到广泛应用。
液力变矩器结构与原理液力变矩器(Torque Converter)是一种被广泛应用于汽车、船舶等动力传动系统中的液力传动装置。
它的主要作用是将发动机输出的高速低扭矩转化成低速大扭矩,从而实现汽车启动、加速、变速和传动的功能。
液力变矩器的结构复杂而精密,它包含了泵轮、涡轮、导叶轮等不同的部件,其中每个部件都扮演着特定的角色。
本文将详细介绍液力变矩器的结构与原理。
一、液力变矩器的结构液力变矩器是由泵轮、涡轮、导叶轮和油封等部件组成的。
泵轮和涡轮是液力变矩器的两个主要组成部分,其结构和相互配合决定液力变矩器的工作性能。
1. 泵轮(Pump Impeller)泵轮是液力变矩器的输入元件,它由一定数量的楔形叶片组成,其主要作用是将发动机输出的动力转化成液力。
当发动机运转时,泵轮产生旋转的动力,它通过离心力作用将工作介质(液体)强制送入涡轮。
2. 涡轮(Turbine Runner)涡轮是液力变矩器的输出元件,它与泵轮相对应,也由楔形叶片组成。
当泵轮发送液力流入涡轮时,涡轮受到液压的作用转动,从而输出扭矩。
涡轮的运转速度受到扭矩的大小以及返转器的变矩比的影响。
3. 导叶轮(Stator)导叶轮是液力变矩器的第三个组成部分,它位于泵轮和涡轮之间,主要用于改变流体的流向。
导叶轮的叶片可以自由调节,可以根据工作状态的需求来改变流体的流向,协助转化扭矩和提高效率。
4. 油封(Oil Seal)油封是用于保持液力变矩器内压力稳定的部件,它位于泵轮和涡轮之间,防止液体泄漏。
油封的质量和性能直接影响液力变矩器的工作效果和寿命。
二、液力变矩器的工作原理液力变矩器主要依靠流体的转化和涡旋流的原理来工作,通过泵轮、涡轮和导叶轮之间复杂的相互作用来实现转矩的变化。
液力变矩器的工作原理分为四个工作区域:冲击区、变矩区、松开区和高效率区。
1. 冲击区当发动机启动并带动泵轮开始旋转时,泵轮产生的涡旋流体流向涡轮,但此时导叶轮的叶片处于开启状态。
液力变矩器的结构和工作原理1. 液力变矩器的简介液力变矩器,听起来有点高大上,其实它就像汽车的“肚子”,负责传递动力,控制转速。
我们平时开车,尤其是自动挡的车,几乎每天都在跟这个小家伙打交道。
你知道吗?在你轻轻踩下油门的一瞬间,液力变矩器就开始发挥它的魔法了,让车子如同飞一样顺畅。
就像打了一针兴奋剂,车子在起步时,竟然能比我们想象的更快,真是神奇得让人瞠目结舌。
2. 液力变矩器的结构2.1 主要部件液力变矩器主要有三个关键部分:泵轮、涡轮和定子。
首先,泵轮就像一个健身教练,负责将发动机的动力转换成液体的流动。
它一转,油液就开始欢快地舞动,冲向涡轮。
涡轮呢,就像个追求者,拼命追赶泵轮,把动力接住,然后将其转化为车轮的旋转。
再说说定子,定子就像个调皮的孩子,负责改变液体流动的方向,确保动力的输出更有效。
各个部件就像一场默契的舞蹈,步伐一致,配合得天衣无缝。
2.2 工作过程说到液力变矩器的工作过程,那可真是千姿百态。
简单来说,当你踩下油门,泵轮的转速瞬间飙升,油液被猛地甩出,形成强大的液体动力。
这个时候,涡轮会接收这股力量,开始转动,带动车轮。
而且呀,液力变矩器可以根据车速和负载的变化自动调节动力传递的比例,让你在不同的路况下,都能感觉到如同飞翔的感觉,真是顺风顺水。
3. 液力变矩器的工作原理3.1 动力传递液力变矩器的核心就是利用液体的流动来传递动力。
当泵轮转动时,油液被加速,形成一个强大的液压流。
涡轮接收到这个液流后,开始转动,这时候就好比是一场能量的接力赛。
无论你是从静止到加速,还是在高速公路上风驰电掣,液力变矩器都能灵活应对,让你在各种情况下都能获得最佳的驾驶体验。
更牛的是,它还能在你停车时,自动切断动力传递,这样就不会让你在红灯前“煎熬”了。
3.2 效率与优势说到效率,液力变矩器也有一套自己的诀窍。
它通过调节液体的流动,实现无级变速。
你想想看,这种不依赖于齿轮的设计,减少了机械磨损,延长了使用寿命。
液力变矩器的故障检测与维修液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。
1、油温过高油温过高表现为机器工作时油温表超过120C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。
液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。
若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。
如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。
如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。
若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。
若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。
以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。
将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。
若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。
2、供油压力过低现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。
主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。