硝基苯类
- 格式:ppt
- 大小:186.50 KB
- 文档页数:12
方法验证报告项目名称:水质硝基苯类化合物的测定方法名称:HJ716-2014《水质硝基苯类化合物的测定气相色谱-质谱法》报告编写人:参加人员:审核人员:报告日期:1实验室基本情况1.1人员情况实验室检测人员已通过标准《水质硝基苯类化合物的测定气相色谱-质谱法》HJ716-2014的培训,熟知标准内容、检测方法及样品数据采集和处理等,考核合格,得到公司技术负责人授权上岗。
1.2检测仪器/设备情况设备编号设备名称规格型号计量/检定状态不确定度气质联用仪/1.3检测用试剂情况试剂名称生产厂家、级别、规格备注15种硝基苯类化合物混标二氯甲烷正己烷1.4环境设施和条件情况实验室具有检定合格的温湿度计,环境可以控制在标准要求范围内,满足检测环境条件。
另外实验室配备了洗眼器、喷淋设施、护目镜、灭火器等的安全防护措施,符合实验室安全内务的要求。
2实验室检测技术能力2.1方法原理采用液液萃取,萃取样品中硝基苯类化合物,萃取液经脱水、浓缩、净化、定容后经气相色谱质谱仪分离、检测。
根据保留时间、碎片离子质荷比以及不同离子丰度比定性,内标法定量。
2.2标准曲线的绘制配制有硝基苯类化合物和替代物的标准溶液系列,标准系列浓度分别为:0.1ug/ml,0.5ug/ml,1.0ug/ml,2.0ug/ml,5.0ug/ml,10.0ug/ml加入内标使用液,内标浓度为2.0ug/ml。
标准曲线线性试验结果见表2.1,RSD均小于等于20%,相关系数均大于等于0.990。
2.1各目标化合物曲线线性表序号名称RSD值相对标准偏差(%)相关线性系数曲线方程1硝基苯 2.50.9996y=0.1021x+14.2102邻-硝基甲苯 4.00.9990y=0.0474x+10.20863间-硝基甲苯 3.90.9991y=0.0908x+12.20384对-硝基甲苯 3.50.9993y=000667x+4.5646 5间-硝基氯苯 4.40.9989y=0.0540x+9.2740 6对-硝基氯苯 3.70.9992y=0.1042x+9.8541 7邻-硝基氯苯 3.60.9993y=0.1048x+9.1449 8对-二硝基苯 3.30.9994y=0.0259x-0.7195 9间-二硝基苯 3.10.9995y=0.0277x-0.3639102,6-二硝基甲苯 3.40.9993y=0.0251x+2.211911邻-二硝基苯 3.30.9994y=0.0240x+3.2108122,4-二硝基甲苯 3.40.9994y=0.0294x-0.9083132,4-二硝基氯苯 3.80.9993y=0.0226x-0.3600143,4-二硝基甲苯 3.10.9995y=0.0133x-0.0975152,4,6-三硝基甲苯 3.20.9995y=0.0118x-1.05362.3检出限、测定下限确认方法检出限参考HJ168-2010附录A.1确定,方法的测定下限以4倍检出限作为测定下限,按照样品分析的全部步骤,重复n(n≥7)次试验,将各测定结果换算为样品中的浓度或含量,计算n次平行测定的标准偏差,按以下公式计算方法检出限MDL=t(n-1,0.99)×S式中:MDL--------方法检出限;n----------样品的平行测定次数;S----------n次测定的标准偏差。
水质 硝基苯类化合物的测定 气相色谱法 1适用范围本标准规定了水中硝基苯类化合物的气相色谱法。
本标准适用于工业和生活污水中硝基苯类化合物的测定。
当样品体积为500ml 时,本方法的检出限、测定下限和测定上限,见表1。
表1 方法检出限及测定上限、下限2方法原理用二氯甲烷萃取水中的硝基苯类化合物,萃取液经脱水和浓缩后,用气象色谱氢火焰离子化检测器进行测定。
2,4,6-三硝基苯甲酸水溶性强,在加热时脱羟基转化为1,3,5-三硝基苯。
因此,将二氯甲烷萃取后的水进行加热,再用二氯甲烷萃取单独测定2,4,6-三硝基苯甲酸。
3 试剂和材料除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,实验用水为新制备的蒸馏水。
3.1 浓硫酸(H 2SO 4):P=1.84g/ml 3.2 二氯甲烷(CH 2CI 2):液相色谱纯。
3.3 乙酸乙酯(C 4H 8O 2):液相色谱纯。
3.4 无水硫酸钠(Na 2SO 4):使用前在350℃马弗炉中灼烧4h ,冷却至室温,装入玻璃瓶中备用。
3.5 硝基苯类化合物标准溶液: P=1.00mg/ml 。
于4℃密闭避光保存。
可以使用市售有证标准物质。
3.6 2,4,6-三硝基苯甲酸:粉末状固体颗粒,纯度>98.5%。
3.7 2,4,6-三硝基苯甲酸标准溶液:P=1.00mg/ml 。
避光保存,一周内有效。
3.8载气:氮气,纯度≥99.99%(体积分数)。
法 作业指导书项目 硝基苯类(硝基苯、邻硝基甲苯、间硝基甲苯、对硝基甲苯)适用范围 工业、生活污水编制人 批准人 朱小平 共 5 页第 1 页批准日期2014年3月10日3.9 燃烧气:氢气,纯度≥99.99%(体积分数)。
3.10 助燃气:空气。
4 仪器和设备4.1 气象色谱仪:聚氢火焰离子化检测器。
4.2 色谱柱:石英毛细管色谱柱,30m ×0.32mm (内径)×0.25um (膜厚),固定相为5%苯基-95%甲基聚硅氧烷。
水质硝基苯类化合物分析方法确认报告水质是指水的物理性质、化学性质和生物学性质等方面的特征及其变化情况。
水质的好坏直接关系到人体健康和环境的可持续发展。
其中,硝基苯类化合物是指苯环上有一个或多个硝基基团的化合物,常见的有硝基苯、邻硝基苯、间硝基苯、对硝基苯等。
硝基苯类化合物的存在对水体具有一定的危害性,主要表现在以下几个方面:1.水体污染:硝基苯类化合物的存在会导致水体的污染,影响水质的稳定性和可持续利用性。
2.对生物的毒性:硝基苯类化合物会对水中的生物产生毒害作用,对水生生物的生存和繁衍能力产生不良影响。
3.人体健康影响:硝基苯类化合物有一定的毒性,长期饮用含有硝基苯类化合物的水会对人体健康产生不良影响,如引起血红蛋白失调等。
针对硝基苯类化合物的分析方法主要有以下几种:1.气相色谱法:该方法主要是采用气相色谱仪对水样进行分析,首先将水样中的硝基苯类化合物萃取出来,然后通过气相色谱仪进行分离和定量分析。
2.液相色谱法:该方法主要是采用液相色谱仪对水样进行分析,首先将水样中的硝基苯类化合物进行萃取,然后通过液相色谱仪进行分离和定量分析。
3.光谱法:该方法主要是利用硝基苯类化合物吸收或发射特定波长的光谱特性,通过测定水样的吸收或发射光谱来确定其中的硝基苯类化合物含量。
4.其他方法:还有很多其他的分析方法如高效液相色谱法、亲核取代反应法等,这些方法也可以用来对硝基苯类化合物进行分析。
综上所述,针对硝基苯类化合物的分析方法有很多种,每种方法都有其独特的优点和适用范围。
在具体的水质分析中,需要根据实际情况选择合适的分析方法,以便更准确和快速地确定水样中硝基苯类化合物的含量,为保障水质安全提供可靠的数据依据。
第二十二章硝基苯类的测定22.1概述硝基苯是一种广泛应用的化工原料,常见的硝基苯类化合物有硝基苯、二硝基苯、二硝基甲苯、三硝基甲苯及二硝基氯苯等。
该类化合物均难溶于水,易溶于乙醇、乙醚及其它有机溶剂。
应用于印染、国防、塑料、医药与农药工业。
由于硝基苯结构稳定,较难降解,特别是进入水体会以黄绿色油状物沉入水底,并随地下水渗入土壤,长时间保持不变,因此,造成的水体和土壤污染会持续相当长的时间,并对水生生态系统和土壤—陆地生态系统产生一系列的生态影响和环境效应。
人体可通过呼吸道吸入或皮肤吸收而产生毒性作用,可引起神经系统症状、贫血,可破坏人体的肝脏和呼吸系统,由于其毒性强、分布广,硝基苯可直接作用于肝细胞导致肝实质病变,引起中毒性肝病。
肝脏脂肪变性,严重者可发生亚急性肝坏死。
急性硝基苯中毒的神经系统症状较明显,严重者可有高热,并有多汗,缓脉,初期血压升高,瞳孔扩大等植可出现贫血、黄疸。
吸物神经系统紊乱症状。
慢性中毒可有神经衰弱综合症,慢性溶血时,人硝基苯后,由于它的氧化作用,使血红蛋白变成氧化血红蛋白(即高铁血红蛋白),大大阻止了血红蛋白的输送氧的作用,因而呈现呼吸急促和皮肤苍白的现象。
症状严重的患者会因呼吸衰竭而死亡。
22.2相关环保标准和工作需要国外学者对硝基苯的环境效应已经有了一定研究。
但过去一段时期,硝基苯污染在我国并没有引起足够重视,有关硝基苯环境行为及产生的环境效应等方面研究基础薄弱,对生物暴露情况、硝基苯的作用效果及作用机制等缺乏数据,限制了风险评价、管理及硝基苯等苯类有机环境污染物控制战略计划的制定。
按照我国国家标准《急性毒性实验》附录D的毒性分级标准,硝基苯(501~5000 mg/kg)属于低毒污染物,但由于硝基苯属于易燃易爆的危险物质,容易产生环境污染事件,因此许多国家和组织都将硝基苯作为优先污染物记录在案,特别是2005年中石油吉林石化公司爆炸引起的硝基苯污染事件为人们再次敲响了警钟,因此,有必要对环境中硝基苯进行监测。
地下水中硝基苯类污染物去除技术分析硝基苯是一种重要的有机化学中间体,被广泛应用于农药、染料、医药及其他化工行业 ,有资料显示,1994 年全国硝基苯的总产量就达到200 多万t,近些年,因硝基苯类污染物造成的地下水污染事件时有发生。
从1983 年,松花江水系不断遭到了有机物的严重污染,其中地下水中硝基苯类污染物占检出率的2. 9% ,检出数目有3 种,2,4-DNT 就是3 种硝基苯类污染物中的一种典型污染物 ,2005 年11 月13号,中石油吉林石化公司双苯厂发生爆炸事故导致了大量的硝基苯类有机物进入松花江,导致地下水中的硝基苯超标10. 7 倍。
在2008 年的“渭河关中段地下水对河流生态基流的保障研究”中,也报道了有关硝基苯污染地下水的突发事件。
由于地下水的隐蔽性、不可逆性和系统的复杂性等特性,造成了被硝基苯类有机物污染的地下水难以被治理,因此,研究地下水中硝基苯类污染物的去除技术与方法成为当前地下水污染治理的研究热点。
铁碳微电解是一种常见的污染物去除方式,具有处理效果好、操作简便低能等特点,成为近些年发展起来的处理有机污染物较好的方法,铁碳微电解的反应过程中发生如式(1) ~ (4)的反应,Fe0 、C 具有不同的电极电位,在溶液中的Fe0 作为阳极,C 作为阴极形成了原电池。
阴极产生大量的[H]和[O],这些活性成分能与水中的有机物发生反应。
铁碳微电解作为一种有效的去除污染物的方式,常被用来去除水中的硝基苯等难降解性有机物。
阳极:阴极:中性或碱性条件下阴极:酸性溶氧条件下:酸性无氧条件下:利用铁碳微电解降解硝基苯的研究很多,但是针对地下水环境中的Fe0 -C 微电解技术去除硝基苯类有机物的效果有待进一步考察,地下水中的环境很复杂,酸碱性、溶解氧等影响因素都会影响到去除效果。
基于此,本实验以地下水中2,4-DNT 为目标污染物,研究了地下水中的pH 值,溶解氧以及常见的阴、阳离子对于Fe0 -C 去除2,4-DNT 过程的影响,并分析了反应产物,以期找到适合在地下水环境中去除2,4-DNT的最佳条件。
第二十二章硝基苯类的测定22.1概述硝基苯是一种广泛应用的化工原料,常见的硝基苯类化合物有硝基苯、二硝基苯、二硝基甲苯、三硝基甲苯及二硝基氯苯等。
该类化合物均难溶于水,易溶于乙醇、乙醚及其它有机溶剂。
应用于印染、国防、塑料、医药与农药工业。
由于硝基苯结构稳定,较难降解,特别是进入水体会以黄绿色油状物沉入水底,并随地下水渗入土壤,长时间保持不变,因此,造成的水体和土壤污染会持续相当长的时间,并对水生生态系统和土壤—陆地生态系统产生一系列的生态影响和环境效应。
人体可通过呼吸道吸入或皮肤吸收而产生毒性作用,可引起神经系统症状、贫血,可破坏人体的肝脏和呼吸系统,由于其毒性强、分布广,硝基苯可直接作用于肝细胞导致肝实质病变,引起中毒性肝病。
肝脏脂肪变性,严重者可发生亚急性肝坏死。
急性硝基苯中毒的神经系统症状较明显,严重者可有高热,并有多汗,缓脉,初期血压升高,瞳孔扩大等植物神经系统紊乱症状。
慢性中毒可有神经衰弱综合症,慢性溶血时,可出现贫血、黄疸。
吸人硝基苯后,由于它的氧化作用,使血红蛋白变成氧化血红蛋白(即高铁血红蛋白),大大阻止了血红蛋白的输送氧的作用,因而呈现呼吸急促和皮肤苍白的现象。
症状严重的患者会因呼吸衰竭而死亡。
22.2相关环保标准和工作需要国外学者对硝基苯的环境效应已经有了一定研究。
但过去一段时期,硝基苯污染在我国并没有引起足够重视,有关硝基苯环境行为及产生的环境效应等方面研究基础薄弱,对生物暴露情况、硝基苯的作用效果及作用机制等缺乏数据,限制了风险评价、管理及硝基苯等苯类有机环境污染物控制战略计划的制定。
按照我国国家标准《急性毒性实验》附录D的毒性分级标准,硝基苯(501~5000 mg/kg)属于低毒污染物,但由于硝基苯属于易燃易爆的危险物质,容易产生环境污染事件,因此许多国家和组织都将硝基苯作为优先污染物记录在案,特别是2005年中石油吉林石化公司爆炸引起的硝基苯污染事件为人们再次敲响了警钟,因此,有必要对环境中硝基苯进行监测。
49硝基苯类方法一、液液萃取/固相萃取-气相色谱法HJ 648-20131适用范围本标准规定了水中 15 种硝基苯类化合物的液液萃取和固相萃取气相色谱测定方法。
15 种硝基苯类化合物包括硝基苯、对-硝基甲苯、间-硝基甲苯、邻-硝基甲苯、对-硝基氯苯、间-硝基氯苯、邻-硝基氯苯、对-二硝基苯、间-二硝基苯、邻-二硝基苯、2,4-二硝基甲苯、2,6-二硝基甲苯、3,4-二硝基甲苯、2,4- 二硝基氯苯、2,4,6-三硝基甲苯。
本标准适用于地表水、地下水、工业废水、生活污水和海水中硝基苯类化合物的测定。
液液萃取法取样量为 200ml,方法检出限为 0.017 g/L~ 0.22 g/L;固相萃取法取样量为 1.0L 时,方法检出限为 0.0032 g/L~0.048 g/L。
详见附录 A。
2相关文件本标准内容引用了下列文件中的条款。
凡是不注日期的引用文件,其有效版本适用于本标准。
GB 17378 HJ/T 164 HJ/T 91 海洋监测规范地下水环境监测技术规范地表水和污水监测技术规范3方法原理液液萃取:用一定量的甲苯萃取水中硝基苯类化合物,萃取液经脱水、净化后进行色谱分析。
固相萃取:使用固相萃取柱或萃取盘吸附富集水中硝基苯类化合物,用正己烷/丙酮洗脱,洗脱液经脱水、定容后进行色谱分析。
萃取液注入气相色谱仪中,用石英毛细管柱将目标化合物分离,用电子捕获检测器测定,保留时间定性,外标法定量。
4仪器设备、实验材料、环境条件实验材料:4.1 正己烷(C6H14):色谱纯。
4.2 丙酮(C3H6O):色谱纯。
4.3 甲醇(CH4O):色谱纯。
4.4 甲苯(C7H8):色谱纯。
4.5 无水硫酸钠(Na2SO4):在450℃的烘箱中烘烤4h,置于干燥器中冷却至室温,装入瓶中,于干燥器中保存。
4.6 盐酸(HCl):(HCl)=1.19g/ml。
4.7 氢氧化钠(NaOH)。
4.8 硝基苯类化合物标准物质:纯度均不小于 98%。
硝基苯类化合物气相色谱质谱法一、介绍硝基苯类化合物是一类含有硝基基团的芳香烃化合物,常见的有硝基苯、硝基甲苯等。
由于硝基苯类化合物在工业生产和生活中广泛存在,因此对其进行准确快速的检测就显得尤为重要。
气相色谱质谱法(GC-MS)因其高分辨率、高灵敏度等优点,成为了检测硝基苯类化合物的重要手段。
二、GC-MS原理气相色谱质谱法是将样品先经气相色谱分离,然后送入质谱仪进行检测分析的一种综合性分析方法。
气相色谱利用不同成分在色谱柱上的分配系数不同而实现了混合物的分离,而质谱则通过对物质的分子结构和质谱图谱的检测,实现了对化合物种类和含量的准确测定。
三、GC-MS在硝基苯类化合物检测中的应用在GC-MS检测中,常用的分离柱是聚二甲基硅氧烷(PDMS)柱,它能有效分离出硝基苯类化合物,并且GC-MS联用仪器在检测硝基苯类化合物时还可以借助其库仑检测器进行灵敏度更高的检测。
在实际检测中,可以通过标准曲线法对硝基苯类化合物进行定量分析,同时结合质谱技术对其分子结构进行鉴定。
四、个人观点和理解GC-MS作为一种常用的化学分析方法,在硝基苯类化合物的检测中具有明显的优势。
通过GC-MS技术的应用,不仅可以对硝基苯类化合物进行快速准确的定性定量分析,还可以对其分子结构进行详细的解析,为相关研究和工作提供了有力的技术支持。
五、总结和回顾硝基苯类化合物气相色谱质谱法作为一种重要的分析手段,在环境监测、食品安全等领域有着广泛的应用前景。
通过GC-MS技术,我们可以更加准确地了解硝基苯类化合物的性质和含量,为相关领域的研究和工作提供了可靠的数据支持。
在整个文章中,我反复强调了硝基苯类化合物气相色谱质谱法的重要性和应用价值,并结合了个人观点和理解进行了讨论。
希望本文可以帮助你更加全面、深入地理解硝基苯类化合物气相色谱质谱法。
硝基苯类化合物是一类具有重要意义的化合物,其广泛存在于工业生产和生活中,例如在炸药、染料、化工原料等领域中有着重要的应用。
CAS硝基苯用氯磺酸磺化得间硝基苯磺酰氯,用作染料、医药等中间体。
硝基苯经氯化得间硝基氯苯,广泛用于染料、农药的生产,经还原后可得间氯苯胺。
用作染料橙色基GC,也是医药、农药、荧光增白剂、有机颜料等的中间体。
硝基苯再硝化可得间二硝基苯,经还原可得间苯二胺,用作染料中间体、环氧树脂固化剂、石油添加剂、水泥促凝剂,间二硝基苯如用硫化钠进行部分还原则得间硝基苯胺。
为染料橙色基R,是偶氮染料和有机颜料等的中间体。
提示:大部分词条有不同角度的多个解释,欲全面了解请查看下面的“更多相关内容”。
国标编号61056CAS号98-95-3分子式C6H5NO2分子量123.11淡黄色透明油状液体,有苦杏仁味;蒸汽压0.13kPa/44.4℃;闪点87.8℃;熔点5.7℃;沸点210.9℃;溶解性:不溶于水,溶于乙醇、乙醚、苯等多数有机溶剂;密度:相对密度(水=1)1.20;相对密度(空气=1)4.25;稳定性:稳定;危险标记14(剧毒品);主要用途:用作溶剂,制造苯胺、染料等2.对环境的影响:一、健康危害侵入途径:吸入、食入、经皮吸收。
健康危害:主要引起高铁血红蛋白血症。
可引起溶血及肝损害。
急性中毒:有头痛、头晕、乏力、皮肤粘膜紫绀、手指麻木等症状;严重时可出现胸闷、呼吸困难、心悸,甚至心律紊乱、昏迷、抽搐、呼吸麻痹。
有时中毒后出现溶血性贫血、黄疸、中毒性肝炎。
慢性中毒:可有神经衰弱综合征;慢性溶血时,可出现贫血、黄疸;还可引起中毒性肝炎。
二、毒理学资料及环境行为急性毒性:LD50489mg/kg(大鼠经口);2100mg/kg(大鼠经皮);狗静脉150mg/kg,最小致死剂量;人(女性)经口200mg/kg,最小中毒剂量(血液毒性);人经口5mg/kg,最小中毒剂量(不悦感)。
致突变性:细胞遗传学分析:啤酒酵母菌10mmol/管。
生殖毒性:大鼠吸入最低中毒浓度(TCL0):5ppm(6小时),(90天,雄性),影响精子生成,影响睾丸、附睾和输精管。