2-简谐振动和能量法
- 格式:ppt
- 大小:520.50 KB
- 文档页数:21
简谐运动的回复力和能量教学目标(1)会分析弹簧振子的受力情况,理解回复力的概念。
(2)认识位移、速度、回复力和加速度的变化规律及相互联系。
(3)会用能量观点分析水平弹簧振子动能、势能的变化情况,知道简谐运动中机械能守恒。
教学重难点教学重点(1)理解回复力的概念。
(2)位移、速度、回复力和加速度的变化规律。
(3)简谐运动中动能和势能的变化。
教学难点从回复力角度证明物体的运动是简谐运动。
教学准备水平弹簧振子,多媒体课件教学过程新课引入教师设问:当我们把弹簧振子的小球拉离平衡位置释放后,小球就会在平衡位置附近做简谐运动。
小球的受力满足什么特点才会做这种运动呢?根据牛顿运动定律,可以作出以下判断:做简谐运动的物体偏离平衡位置向一侧运动时,一定有一个力迫使物体的运动速度逐渐减小直到减为0,然后物体在这个力的作用下,运动速度又由0逐渐增大并回到平衡位置;物体由于惯性,到达平衡位置后会继续向另一侧运动,这个力迫使它再一次回到平衡位置;正是在这个力的作用下,物体在平衡位置附近做往复运动。
我们把这样的力称为回复力。
讲授新课一、简谐运动的回复力教师活动:做简谐运动的物体受到的回复力有什么特点?下面我们以弹簧振子做简谐运动为例进行分析。
如图1甲,当小球在O 点(平衡位置)时,所受的合力为0;在O 点右侧任意选择一个位置P ,无论小球向右运动还是向左运动,小球在P 点相对平衡位置的位移都为x ,受到的弹簧弹力如图1乙所示。
从图中可以看出,迫使小球回到平衡位置的回复力应该是由弹簧弹力提供的,回复力大小为F =kx (k 为弹簧的劲度系数),方向指向平衡位置。
同样道理,当小球在O 点左侧某一位置Q 时,迫使小球回到平衡位置的回复力还是由弹簧弹力提供,大小仍为F =kx (如图1丙所示),方向指向平衡位置。
从上面的分析可以看出,弹簧对小球的弹力是小球做简谐运动的回复力,(1)回复力的特点:大小与小球相对平衡位置的位移成正比,方向与位移方向相反。
简谐运动振幅和能量的关系简谐运动是物理学中经常出现的一种运动形式。
它是指一个物体围绕某个平衡点做周期性的振动,而且其周期和振幅都是固定的。
振幅和能量分别是简谐运动中的两个重要物理概念。
本文将重点介绍简谐运动的振幅和能量之间的关系。
一、简谐运动的基本特征简谐运动的基本特征是周期性、振幅以及周期时间。
其周期时间可以用公式T=2π/ω来表示,其中T表示周期时间,ω表示角频率。
同时,振幅则是简谐运动中物体最大偏离平衡点位置的位移值,也是简谐运动重要的物理参量之一。
对于简谐运动中的一个物体,它的振幅是固定的,而且在运动过程中不断变化。
物理量中,振幅常常以字母A 来表示。
当物体运动时,它会通过不断改变位移,使得物体在某个时刻的速度和加速度具有最大和最小值。
这是因为简谐运动是一种精确的运动形式,其运动过程中产生的速度和加速度都可以用一个简单的方程来表示。
这个方程就是一个三角函数方程,通常可以称之为简谐方程。
根据简谐方程,我们可以计算出物体在任意一时刻的具体位置和速度,并且可以根据振幅和周期计算出物体在运动过程中的最大速度和最大加速度。
二、简谐运动的振幅与能量在简谐运动中,振动物体始终保持一定的势能和动能。
这两个物理量都可以用它们所对应的能量公式来计算。
动能的计算式为K=1/2*m*v²,而势能的计算公式则可以用U=1/2*kx²表示。
其中,K表示动能,m表示质量,v 表示速度,U表示势能,k表示弹簧常数,x则表示位移。
在简谐运动中,振幅对能量具有明显的影响。
一方面,简谐运动的振幅越大,振动物体所具有的动能就会越大,也就是说,物体运动的速度越快。
另一方面,当振幅增大时,物体所具有的势能也相应变化,达到更高的程度。
例如当弹簧的振幅增加时,其所存储的势能也随之增加,这就意味着简谐运动的能量随着振幅的变化而变化。
此外,简谐运动的振幅和能量之间的关系还可以通过物理学中的共振现象来进一步解释。
共振是指,如果一个物体在一个外力的作用下振动时,其振幅会随着外力的频率而增加。
动contents •简谐振动•阻尼振动与受迫振动•振动的合成与分解•振动在介质中的传播•多自由度系统的振动•非线性振动与混沌目录01简谐振动简谐振动的定义与特点定义简谐振动是最基本、最简单的振动形式,指物体在跟偏离平衡位置的位移成正比,并且总是指向平衡位置的回复力的作用下的振动。
特点简谐振动的物体所受的回复力F与物体偏离平衡位置的位移x成正比,且方向始终指向平衡位置;振动过程中,系统的机械能守恒。
动力学方程根据牛顿第二定律,简谐振动的动力学方程可以表示为F=-kx,其中F为回复力,k为比例系数,x为物体偏离平衡位置的位移。
运动学方程简谐振动的运动学方程可以表示为x=Acos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相。
势能与动能在简谐振动过程中,系统的势能Ep和动能Ek都在不断变化,但它们的总和保持不变,即机械能守恒。
能量转换在振动过程中,势能和动能之间不断相互转换。
当物体向平衡位置运动时,势能减小、动能增加;当物体远离平衡位置时,势能增加、动能减小。
同方向同频率简谐振动的合成当两个同方向、同频率的简谐振动同时作用于同一物体时,它们的合振动仍然是一个简谐振动,其振幅等于两个分振动振幅的矢量和,其初相等于两个分振动初相的差。
同方向不同频率简谐振动的合成当两个同方向、不同频率的简谐振动同时作用于同一物体时,它们的合振动一般不再是简谐振动,而是比较复杂的周期性振动。
在某些特定条件下(如两个分振动的频率成简单整数比),合振动可能会呈现出一定的规律性。
相互垂直的简谐振动的合成当两个相互垂直的简谐振动同时作用于同一物体时,它们的合振动轨迹一般是一条复杂的曲线。
在某些特定条件下(如两个分振动的频率相同、相位差为90度),合振动轨迹可能会呈现出一定的规律性,如圆形、椭圆形等。
02阻尼振动与受迫振动阻尼振动的定义与分类定义阻尼振动是指振动系统在振动过程中,由于系统内部摩擦或外部介质阻力的存在,使振动幅度逐渐减小,能量逐渐耗散的振动。
简谐振动平均动能和平均势能下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!简谐振动是一种在物理学中常见的现象,它具有许多重要的特性和应用。
简谐运动的回复力和能量一、知识点梳理1.简谐运动的回复力(1)回复力①定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力. ②回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力(包括摩擦力),或几个力的合力,或是某个力的分力,物体沿直线振动时回复力就是合外力,沿圆弧振动时回复力是合外力在圆弧切线方向上的分力.③回复力的方向总是指向平衡位置,回复力为零的位置就是平衡位置(沿圆弧振动时,物体经平衡位置时回复力为零,但合外力不为零). (2)简谐运动的动力学特征:回复力kx F -=①回复力kx F -=中的k 是比例系数,并非弹簧的劲度系数,其值由振动系统决定,对水平弹簧振子,回复力仅由弹簧弹力提供,k 即为劲度系数,由弹簧决定,与振幅无关,其单位是N/m .②回复力的大小跟位移大小成正比,“—”号表示回复力与位移的方向相反. ③如果质点所受的回复力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,则质点的运动就是简谐运动.(3)简谐运动的运动学特征:加速度m kx a -=①简谐运动是一种变加速的往复运动,“—”号表示加速度a 方向与位移x 方向相反. ②一个物体是否做简谐运动,就是看它是否满足简谐运动的受力的特点或运动特征,即回复力是否满足kx F -=或加速度是否满足mkx a -=.例1、做简谐振动的物体,当振子的位移为负值时,以下说法中正确的是( ) A .速度一定为正值,加速度一定为负值 B .速度一定为负值,加速度一定为正值 C .速度不一定为正值,但加速度一定为正值 D .速度不一定为负值,但加速度一定为负值例2、(多选)关于回复力,下列说法中正确的是( ) A .回复力就是物体所受各力中指向平衡位置的力 B .回复力一定是物体所受的合力C .回复力是从力的效果来命名的,可以是弹力,也可以是摩擦力,还可以是几个力的合力D .回复力与向心力都是以作用效果命名的2.简谐运动的能量(1)定义做简谐运动的物体在振动中经过某一位置时所具有的势能和动能之和,称为简谐运动的能量.(2)公式 :221kA E =,式中k 为回复力F 与位移的比例常数,A 为振动的振幅. (3)关于简谐运动能量的说明①做简谐运动的物体能量的变化规律:只有动能和势能的相互转化,对弹簧振子而言,机械能守恒. 对简谐运动来说,一旦供给系统一定的能量,使它开始振动,它就以一定的振幅永不停息地持续振动,简谐运动是一种理想化的振动.振动过程是一个动能和势能不断转化的过程.②简谐运动中的能量跟振幅有关,振幅越大,振动的能量越大.在简谐运动中,振动的能量保持不变,所以振幅保持不变,只要没有能量损耗,它将永不停息地振动下去,因此简谐运动又称等幅振动.③在振动的一个周期内,动能和势能完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.例3、(多选)一质点做简谐运动的图象如图所示,则下列结论中,正确的是( ) A .质点速度最大而加速度为零的时刻分别是0.1 s 、0.3 s B .质点速度为零而加速度为负方向最大值的时刻分别是0、0.4 s C .质点所受的回复力方向由正变负的时刻是0.3 sD .振动系统势能最大而加速度为正方向最大值的时刻是0.3 s二、技巧总结1.简谐运动的判定方法(1)简谐运动的位移一时间图象是正弦曲线或余弦曲线.(2)简谐运动物体所受的力满足kx F -=,即回复力F 与位移x 成正比且方向总相反. 用kx F -=判定振动是否是简谐运动的步骤: ①找出振动的平衡位置;②让物体沿振动方向偏离平衡位置的位移为x ; ③对物体进行受力分析;④规定正方向(一般规定位移的方向为正),求出指向平衡位置的合力(回复力),判断是否符合kx F -=.例4、如图所示,劲度系数为k 的弹簧上端固定在天花板上,下端挂一质量为m 的小球,小球静止后,再向下将弹簧拉长x ,然后放手,小球开始振动.(1)请证明小球的振动为简谐运动; (2)求小球振动的振幅;(3)求小球运动到最高点的加速度 .例5、如图所示,在光滑水平面上,用两根劲度系数分别为1k 、2k 的轻质弹簧系住一个质量为m 的小球. 开始时,两弹簧均处于原长,后使小球向左偏离x 后放手,可以看到小球将在水平面上做往复振动,试问小球是否做简谐运动?2.做简谐运动的物体受力情况的分析方法物体做简谐运动时,其运动的加速度时刻在变化.在分析物体的受力情况时,首先要判断出加速度的方向,然后根据牛顿第二定律ma F 分析出所要求的力.对于连接体问题,可以利用整体法求出加速度,然后根据隔离法求相互作用力;也可以先利用相互作用力求出加速度,然后利用整体法求合外力.例6、在光滑水平面上有一弹簧振子,弹簧的劲度系数为k,振子质量为M, 振动的最大速度为v. 如图所示,当振子在最大位移为A 的时刻把质量为m 的物体轻放其上,假定最大静摩擦力等于滑动摩擦力,则:(1)要保持物体和振子一起振动,二者间动摩擦因数至少是多少? (2)物体和振子一起振动时,二者过平衡位置的速度多大?振幅又是多大?3.简谐运动中位移、回复力、加速度、速度、动能、势能的变化规律(1)位移的变化规律振动中的位移x 都是以平衡位置为起点,因此,方向就是从平衡位置指向末位置的方向,大小就是这两位置间的距离,在两个“端点”时位移最大,在平衡位置位移为零. (2)加速度与回复力的变化规律加速度a 的变化与回复力的变化是一致的,在两个“端点”最大,在平衡位置为零,方向总指向平衡位置. (3)速度变化规律速度大小v 与加速度a 的变化恰好相反,在两个“端点”为零,在平衡位置最大,除两个“端点”外任何一个位置的速度方向都有两种可能. (4)动能变化规律动能大小与速度大小对应,在两端点为零,在平衡位置最大. (5)势能变化规律势能大小变化与动能大小变化恰好相反,在两端点最大,在平衡位置为零.4. 简谐运动的能量曲线做简谐运动的物体在运动的过程中,只有回复力做功,存在着振子动能k E 和系统势能p E 之间的相互转化,振动的总能量等于动能k E 和系统势能p E 之和,即p k E E E +=.简谐运动的振动方程为)cos(αω+=t A x .振动的总能量221kAE = ①其中)(cos 2121222αω+==t kA kx E p ② )(sin 2121212222αω+=-=t kA kx kA E k ③右图甲表示简谐运动动能k E 或势能p E 随时间t 的变化曲线,图乙表示简谐运动的动能k E 或势能p E 随位移x 的变化曲线.由②式可知,势能曲线是通过坐标原点O 、且具有横向对称性的抛物线;而①式则表明,总能量曲线是一条平行于x 轴的水平线,它与势能曲线分别交于坐标为A x +=的点和A x -=的点. 由②③式可知,动能、势能随时间变化的周期都是振动周期的一半. 由于简谐运动的机械能与振幅的二次方成正比,所以对于确定的谐振子,振幅越大,振动越强烈,能量也就越大.振幅的二次方可用来表示简谐运动的强度. 这一结论对于其他形式的简谐运动系统同样适用.三、针对练习1.(多选)在下述各力中,属于根据力的性质命名的是( ) A .弹力 B .回复力C .向心力D .摩擦力2.做简谐运动的物体,通过平衡位置时,其( ) A .合外力为零 B .回复力为零C .加速度为零D .速度为零3.(多选)做简谐运动的振子每次通过同一位置时,相同的物理量是( ) A .速度 B .加速度 C .位移 D .动能4.一个做简谐运动的物体,每次有相同的动能时,下列说法正确的是( ) A .一定具有相同的势能 B .一定具有相同的速度 C .一定具有相同的加速度 D .一定具有相同的位移5.在水平方向上做简谐运动的弹簧振子如图所示,O 为平衡位置,振子在A 、B 之间振动,图示时刻振子所受的力有( )A .重力、支持力和弹簧的弹力B .重力、支持力、弹簧弹力和回复力C .重力、支持力和回复力D .重力、支持力、摩擦力和回复力6.(多选)甲、乙两弹簧振子,振动图象如图所示,则可知( ) A .甲速度为零时,乙加速度最大 B .甲加速度为零时,乙速度最小C .1.25s ~1.5 s 时间内,甲的回复力大小增大,乙的回复力 大小减小D .甲、乙的振动频率之比2:1:=乙甲f fE .甲、乙的振幅之比1:2:=乙甲A A7.一平台竖直方向做简谐运动,一物体置于振动平台上随平台一起运动,当振动 平台处于什么位置时,物体对平台的压力最大( )A .当振动平台运动到最高点时B .当振动平台向下运动过振动中心时C .当振动平台运动到最低点时D .当振动平台向上运动过振动中心时8.(多选)做简谐运动的弹簧振子,振子质量为m ,最大速率为v , 则下列说法中正确的是( )A .从某时刻算起,在半个周期的时间内,回复力做的功一定为零B .从某时刻算起,在半个周期的时间内,回复力做的功可能是零到221mv 之间的某一个值 C .从某时刻算起,在半个周期的时间内,速度变化量一定为零D .从某时刻算起,在半个周期的时间内,速度变化量的大小可能是零到v 2之间的某一个值9.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板. 一段时间内货物在竖直方向的振动可视为简谐运动,周期为T . 取竖直向上为正方向,以某时刻作为计时起点,即0=t , 其振动图象如图所示,则( )A .T t 41=时,货物对车厢底板的压力最大 B .T t 21=时,货物对车厢底板的压力最小C .T t 43=时,货物对车用底板的压力最大D .T t 43=时,货物对车用底板的压力最小10.一个质点以O 为中心做简谐运动,位移随时间变化的图像如图所示,a 、b 、c 、d 表示的原点在不同时刻的相应位置下,下列说法正确的( ) A .质点在位置b 比位置d 时相位超前4π B .质点通过位置b 时,相对平衡位置的位移2A C .质点从位置a 到c 和从位置b 到d 所用时间相等 D .质点从位置a 到b 和从b 到c 的平均速度相等11.一质点做简谐运动. 质点的位移随时间变化的规律如图所示,则从图中可以看出( ) A .质点做简谐运动的周期为5s B .质点做简谐运动的振幅为4cm C .t =2s 时,质点的加速度最大 D .t =3s 时,质点沿y 轴负向运动12.如图甲所示为以O 点为平衡位置. 在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在0.2s t =时,弹簧振子一定运动到B 位置B .在0.3s t =与0.7s t =两个时刻,弹簧振子的速度相同C .从0到0.2s t =的时间内,弹簧振子的动能持续地减少D .在0.2s t =与0.6s t =两个时刻,弹簧振子的加速度相同13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O ,在A 、B 间振动,如图所示,下列结论正确的是( ) A .小球在O 位置时,动能最大,加速度最小 B .小球在A 、B 位置时,动能最大,加速度最大 C .小球从A 经O 到B 的过程中,回复力一直做正功 D .小球从A 经O 到B 的过程中,回复力一直做负功14.(多选)某鱼漂的示意图如图所示,O 、M 、N 为鱼漂上的三个点. 当鱼漂静止时,水面恰好过点O . 用手将鱼漂向下压,使点M 到达水面,松手后,鱼漂会上下运动,上升到最高处时,点N 到达水面. 不考虑阻力的影响,下列说法正确的是( ) A .鱼漂的运动是简谐运动B .点O 过水面时,鱼漂的速度最大C .点M 到达水面时,鱼漂具有向下的加速度D .鱼漂由上往下运动时,速度越来越大15.(多选)理论表明:弹簧振子的振动周期2mT kπ=,总机械能与振幅A 的平方成正比,即212E kA =,k 为弹簧的劲度系数,m 为振子的质量. 如图,一劲度系数为k 的轻弹簧一端固定,另一端连接着质量为m 的物块,物块在光滑水平面上往复运动. 当物块运动到最大位移为A 的时刻,把另一质量也为m 的物块轻放在其上,两个物块始终一起振动设最大静摩擦力等于滑动摩擦力,重力加速度为g . 放上质量也为m 的物块后,下列说法正确的是( ) A .物块振动周期变为原来的2倍 B .两物块之间的动摩擦因数至少为2kAmgC .物块经过平衡位置时速度为22kA mD .系统的振幅可能减小16.(多选)如图是一质点做简谐运动的振动图象,关于该质点的运动,下列说法正确的是( )A .0.01s 时质点的运动方向向下B .0.025s 和0.075s 两个时刻的加速度大小和方向都相同C .0.025s 和0.075s 两个时刻的速度大小相等,方向相反D .0.125时刻速度和加速度的方向相同E .0~0.3s 时间内该质点通过的路程为3cm17.(多选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的4倍,弹簧振子做简谐运动的周期T =2πmk ,式中m 为振子的质量,k 为弹簧的劲度系数. 当细线突然断开后,两物块都开始做简谐运动,在运动过程中( ) A .甲的振幅是乙的振幅的4倍 B .甲的振幅等于乙的振幅C .甲的最大速度是乙的最大速度的12 D .甲的振动周期是乙的振动周期的2倍 E .甲的振动频率是乙的振动频率的2倍18.如图所示,质量分别为2kg 和3kg 的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上,今用大小为F=45N 的力把物块A 向下压而使之静止,突然撤去压力,则( ))/10(2s m g A .物块B 有可能离开水平面 B .物块B 不可能离开水平面C .只要k 足够小,物块B 就可能离开水平面D .只要k 足够大,物块B 就可能离开水平面19.如图所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a 、b 两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为0A ,周期为0T . 当物块向右通过平衡位置时,a 、b 之间的粘胶脱开;以后小物块a 振动的振幅和周期分别为A 和T ,则( )A .0A A <;0T T <B .0A A =;0T T =C .0A A >;0T T <D .0A A <;0T T >20.如图所示,A 、B 叠放在光滑水平地面上,B 与自由长度为0L 的轻弹簧相连,当系统振动时,A 、B 始终无相对滑动,已知m m A 3=,m m B =,当振子距平衡位置的位移2L x =时,系统加速度为a ,求A 、B 间摩擦力f F 与位移x 的函数关系.21.如图所示,质量为M 、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k 、自然长度为L 的轻质弹簧相连,弹簧的另一端连接着质量为m 的物块.压缩弹簧使其长度为L 43时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态.重力加速度为g .(1)求物块处于平衡位置时弹簧的长度;(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x 表示物块相对于平衡位置的位移,证明物块做简谐运动; (3)求弹簧的最大伸长量;(4)为使斜面体始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?答案例题例1.C 例2.CD 例3.ABC 例4.(1)略;(2)x ;(3)mkx,方向竖直向下 例5.x k k F )(21+=,令21k k k +=,因为力与位移反向,所以可以写成kx F -=,得证 例6.(1)最大加速度Mm kAa +=,由ma mg ≥μ,得g M m kA g a )(+=≥μ(2)由机械能守恒,2221)(21Mv v M m =+, 0v mM Mv ⋅+=最大弹性势能不变,所以振幅仍为A针对练习1.AD2.B3.BCD4.A5.A6.CDE7.C8.AD9.C 10.C 11.C 12.C 13.A 14.AB 15.BC 16.BCE 17.BCD 18.B 19.A 20.解析:在距离平衡位置的位移20L x =时,a m m Lk B A )(20+=,得08L ma k = ①当系统位移为x 时,对整体')(a m m kx B A +=- ②对A 有'a m F A f = ③ 联立①②③解得x L maF f 06-= 21.(1)设物块在斜面上平衡时,弹簧伸长量为L ∆,有0sin =∆-L k mg α 解得k mg L αsin =∆,此时弹簧长度为kmg L αsin + (2)当位移为x 时,弹簧伸长量为L x ∆+, )(sin L x k mg F ∆+-=α合 联立以上各式可得kx F -=合, 可知物块做简谐运动(3)振幅k mg L A αsin 4+=,由对称性,最大伸长量为kmg L αsin 24+ (4)设物块位移x 为正,则斜面体受力如图,由于斜面体平衡,所以水平方向0cos sin 1=-+ααF F f N 竖直方向0sin cos 12=---ααF F Mg F N N )(L x k F ∆+=, αcos 1mg F N =11 联立可得αcos kx f =, αsin 2kx Mg mg F N ++= 为使斜面体静止,结合牛三,应有2N F f μ≤所以ααμsin cos 2kx Mg mg x k F f N ++=≥,当A x -=时达到最大值 有ααααμsin 4cos 4cos )sin 4(2kL Mg mg mg kL -++≥。