二次函数y=ax2的图象与性质(王莉丹)
- 格式:ppt
- 大小:3.66 MB
- 文档页数:9
二次函数y=ax2的图象与性质--教学设计(王莉丹)广西桂林市宝贤中学王莉丹内容和内容解析1.内容湘教版义务教育课程标准实验教科书九年级下册第1章1.2节二次函数的图象与性质第一课时——二次函数y=ax2的图象与性质。
2.内容解析本章是继一次函数和反比例函数之后学习的一类新的函数模型——二次函数。
二次函数在研究内容和研究方法上与前两类函数类似,都是先从实际问题中抽象出函数模型,得出函数定义,然后借助图象研究函数的性质,再应用函数性质解决实际问题。
由于二次函数与一次函数的表达式都是整式,与一次函数一脉相承,所以二次函数的图象与性质主要类比一次函数来学习,即先从最特殊的一类二次函数y=ax2开始,遵循从特殊到一般的研究方法,运用数形结合、分类讨论等数学思想,着重研究a>0的图象和性质,再类比探究a<0的图象和性质,体会a的作用。
与一次函数相比,二次函数图象出现了新的特征和性质:如形状、开口方向和大小、对称性、分段讨论函数增减性等,在教学中可让学生体会一次函数与二次函数的联系与区别。
目标和目标解析目标〔1〕会用描点法画出形如y=ax2 的二次函数图象;〔2〕经历独学、对学、群学等方式,通过实验观察、分类讨论、归纳类比、抽象概括等方法理解二次函数y=ax2的图像特征和性质,体悟探究二次函数的思想与方法;〔3〕体验研究二次函数y=ax2 的规律与魅力,增强学习数学的信心与兴趣。
目标解析达到目标〔1〕的标志是:能合理地选择自变量的值进行描点,知道二次函数的图象是抛物线,能根据图象指出抛物线的对称轴和和顶点坐标;达到目标〔2〕的标志是:通过观察函数图象,能说出二次函数y=ax2的图象特征和性质:形状、位置、对称轴、增减性、最值等,能说出本节课研究二次函数y=ax2的函数图象和性质的基本方法和基本内容;达到目标〔3〕的标志是:学生主动探究,课堂气氛轻松愉快。
教学问题诊断分析学生已经历过一次函数和反比例函数的学习,对函数图象及性质的研究内容和研究方法有了一定的了解,但中间隔了一段时间,可能造成遗忘,需要唤醒他们的记忆。