振型向量模态向量的正交性展开定理
- 格式:pptx
- 大小:1.00 MB
- 文档页数:50
第四章结构固有振动特征值问题的数值解§4.1 概述根据结构振动的数学模型,即振动微分方程所形成的矩阵特征值问题,求解结构的固有振动特性——固有频率与固有振型,是结构振动分析的一个主要任务。
结构的固有振动特性是结构振动的内因。
固有振动特性也是进行结构振动响应分析和结构动力学设计的基础。
对于简单的结构,如均匀直梁、均匀直杆等,可以用解析的方法解得其固有振动特性。
对于一般结构,如果只需获得结构有限阶的固有振动特性,也可以采用试验测试(模态识别)的方法来获得。
但是对于大型复杂结构,不可能用解析分析的方法得到其固有振动特性,而采用试验测试的方法不仅花费高,而且周期长,对于处于设计状态的结构,显然也无法进行试验。
所以对复杂的工程结构,常用的方法是建立结构的数学模型,用数值求解的方法获得结构的固有振动特性。
随着计算技术飞速发展和特征值计算方法的研究进展,通过矩阵特征值问题的求解来获得结构固有振动特性,是已经被振动工程界普遍接受的一个有效和可靠的途径。
从数学理论上也可以证明,许多特征值计算方法具有相当好的精度,并且获得了实践和实验的证明。
由于结构固有振动特性求解与矩阵特征值求解问题的密切关系,在结构振动分析中,矩阵特征值问题已经成为结构固有振动特性分析的一个代名词。
所以在本章中,只要不作说明,一般讲的矩阵特征值问题就是指结构的固有振动特性求解问题。
所谓系统的特征值就代指结构的固有频率,特征向量代指结构的固有振型(固有模态)矩阵特征值问题的数值求解方法可以分为三类:矩阵分解法、迭代法和矩阵变换法。
由于矩阵(代数)特征值问题本身就是一个完整的系统,本章只能根据结构固有振动分析问题的需要,介绍一些常用的求解方法。
详尽的矩阵特征值问题的数值求解方法可以参考威尔金森的名著《代数特征值问题》。
本章的论述是建立在已经用有限元素法建立了结构振动运动数学模型的基础上。
§4.2 结构振动特征值问题的性质根据结构振动方程,可以得到结构固有振动的代数特征值问题:}]{[}]{[2x M x K ω=(4-1)或 }]{[}]{[x M x K λ= (2ωλ=) (4-2)振动特征值问题除了第二章所述的性质外,在特征值问题的数值求解中,还要用到如下一些性质: 1. 移轴特性对特征值问题}]{[}]{[x M x K λ= (4-3)若μ为一已知实数,则有:}]{)[(}]){[]([x M x M K μλμ-=- (4-4)新的特征值问题可写为:}]{[}]{ˆ[x M x Kρ= (4-5) ][][]ˆ[M K Kμ-= (μλρ-=) (4-6) 显然,上面两个特征值问题具有相同的特征向量,而特征值间的关系为:μρλ+=i i (4-7)μ称为移轴量。
第六章 结构振动特征值问题的矩阵摄动法§6.1 概述工程振动问题中经常遇到结构有小改动的情形,例如结构的制造误差、结构的小修改设计、对结构参数改变进行灵敏度分析等。
这些情况都有一个共同的特点,就是结构的参数仅发生很小的变化。
结构参数的小变化所引起的结构振动特性变化问题,对工程结构优化设计有重要意义。
经典的方法是每修改一次方案就需要求解一次结构的固有特性,即求解广义特征值问题。
这对于大型结构的振动分析,是非常麻烦的。
我们希望能找到一种能够利用修改前结构的固有特性信息,且计算量小的方法,来解决上述问题。
矩阵摄动法就是这种结构特征值重分析和灵敏度快速分析的计算方法。
§6.2 孤立特征值的摄动法对离散系统特征值问题,假定已经得到了其特征对的解:(6-1)分别为参数未变化的原结构刚度矩阵和质量矩阵,第个特征值,为第阶固有频率,为第阶特征向量(固有模态)。
结构参数的变化或修改设计一般通过刚度矩阵和质量矩阵的改变反映出来。
即(6-2)(6-3)称为小参数。
先看是单根的情形。
上标代表第个根,下标代表参数未变化的原结构。
从物理意义上知道,绝大多数情况下,质量阵和刚度阵只有小变化时,特征值和特征向量也只有小量变化,根据摄动理论,特征值和特征向量按小参数展开为:(6-4)代入方程(6-1),略去以上的项,比较同次幂的系数,得到: }]{[}]{[)(00)(0)(00i i i u M u K λ=][],[00M K i 2)(0)(0)(i i ωλ=)(0i ωi }{)(0i u i ][][][10M M M ε+=][][][10K K K ε+=ε)(i 0λ)(i i 0)(ε+++=+++=)(22)(1)(0)()(22)(1)(0)(}{}{}{}{i i i i i i i i u u u u λεελλλεε)(2εO ε(6-5)(6-6)(6-7)、、、分别是特征值与特征向量的第一阶摄动和第二阶摄动。
工程力学结构动力学复习题一、简答题1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段?2、何谓结构的振动自由度?它与机动分析中的自由度有何异同?3、何谓动力系数?简谐荷载下动力系数与哪些因素有关?4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么?5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们?6、简述振型分解法是如何将耦联的运动方程解耦的.7、时域法求解与频域法求解振动问题各有何特点?8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应之比值。
简谐荷载下的动力放大系数与频率比、阻尼比有关。
当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
9、振型正交性的物理意义是什么?振型正交性有何应用?答:由振型关于质量、刚度正交性公式可知,i振型上的惯性力在,振型上作的虚功为0。
由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。
换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。
这说明各个主振型都能单独出现,彼此线性无关。
这就是振型正交的物理意义。
一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。
而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。
10、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。