容积和容积单位1
- 格式:ppt
- 大小:1.84 MB
- 文档页数:34
容积和容积单位教学设计容积和容积单位教学设计作为一名辛苦耕耘的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。
那要怎么写好教学设计呢?以下是小编整理的容积和容积单位教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
容积和容积单位教学设计篇1教学内容:义务教育教科书人教版教材五年级下册第三单元第七课时教学目标:1.理解容积的概念,知道常用的容积单位与体积单位间的关系,会计算长方体和正方体容器的容积解决单间的实际问题。
2.经历直观、实验、观察、想象、推理等数学活动过程,充分感知容积单位的实际意义及大小,建立健立1升、1毫升的表象,进一步发展学生的空间观念。
3.体验数学与生活的联系,培养学生的空间想象能力和推理能力。
教学重点:理解容积的概念,知道容积单位与体积单位间的关系,会计算容积解决实际问题。
教学难点:推导容积的进率,建立1升、1毫升的表象,培养学生的空间观念。
教学资源:多媒体课件。
标有1升的量杯,标有1毫升的量杯,1个试管,四个纸杯,1个1立方分米的容器。
教学过程:一、创设情境,导入新课1.课件出示长方体纸盒。
这是一个长方体纸盒,我想知道这个长方体纸盒的体积,怎么办?(量出它的长宽高,算出体积。
)从哪量?课件出示长宽高分别为8分米上、6分米、5分米。
计算出体积。
2.往这个盒子里面装满沙子,猜这个盒子能装多少沙子?为什么装入的沙子的体积比盒子的体积少?(纸盒的体积是从处面量的,有厚度,而沙子在纸盒的里面,要把厚度去掉,从里面量)3.盒子面所能容纳的沙子的体积就是盒子的容积,再比如,这个盆子,盆子里所能容纳的水的体积就是这个分子的体积。
你能用自己的话说一说什么是容积吗?(箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的.容积。
)4.这节课我们就来研究容积的知识,板书课题:容积和容积单位。
二、自主探索,合作交流1.讲述:计量容积,一般就用体积单位,板书:——,计量液体的体积时,常用容积单位升、毫升。
容积和容积单位(1)▷教学内容教科书P38的内容,完成教科书P40~41“练习九”中第1~6题。
▷教学目标1.结合生活实际情况了解容积的意义,感悟容积和体积的关系,知道容积的计算方法。
2.在体验和操作活动中认识容积单位,初步建立1L和1mL的表象,知道1L=1000mL,1L=1dm3,1mL=1cm3。
▷教学重点了解容积所表示的具体含义,认识升和毫升。
▷教学难点标准合理地进行简单的估测。
▷教学准备课件、10mL药水瓶、250mL果汁瓶、1L饮料瓶、量杯、量筒、一瓶矿泉水、水杯几个。
▷教学过程一、联系实际引入新知1.课件出示集装箱、空纸盒、饭盒等物体。
师:你们见过这些物体吗?它们有什么共同点?【学情预设】学生可能会说这些物体都能装东西、里面都是空的。
师:对!这些物体都能容纳其他物体。
(课件出示)2.初步感知盒子容积的含义,引出课题。
课件出示箱子、油壶、仓库。
师揭示:箱子、油壶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(板◎教学笔记【教学提示】学生容易将物体本身的体积与装的东西的体积混淆,教学时,要借助实物加以区分,帮助学生建立正确的概念。
书)◎教学笔记师:本节课我们就一起来学习容积与容积单位。
[板书课题:容积和容积单位(1)]【设计意图】通过学生交流讨论,加强容积与生活的联系,勾起学生对生活中同类现象的回忆,直接揭示本节课的学习内容。
二、自主探究,建构容积概念1.丰富表象,认识容积概念。
(1)说一说。
师:生活中哪些物品可以装东西?请你说一说,什么是它们的容积?课件出示图片:水杯、箱子、饮料瓶……。
【学情预设】学生对水杯、箱子、油壶等相对较小的物体能容纳的物体体积比较容易理解,但对仓库这么大的物体的容积有一定的理解难度。
教师可以结合住房来解释容积。
【设计意图】通过几个具体的实例,让学生进一步认识到:当物体刚好把容器内部的空间占满,这时物体的体积就是容器的容积,由此概括容积的概念。
(2)课件出示判断题,深化概念。
容积和容积单位教学设计容积和容积单位教学设计容积和容积单位教学设计1 教学目的1、使学生知道容积的含义。
2、认识常用的容积单位,理解容积单位和体积单位的关系。
教学重点建立容积和容积单位观念,知道容积单位和体积单位的关系。
教学难点理解容积的含义和升、毫升的实际大小。
教学步骤一、铺垫孕伏。
1、什么是体积?2、常用的体积单位有哪些?它们之间的进率是多少?3、这个长方体的体积是多少?是怎样计算的?二、探究新知。
我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:容积和容积单位。
〔板书课题〕〔一〕建立容积概念。
1、学生动手实验〔每四人一组,每组一个有厚度的长方体盒,细沙一堆〕实验题目:计算出长方体盒的体积。
把长方体盒装满细沙,计算细沙的体积。
2、学生汇报结果。
长方体盒的体积:先从外面量出长方体盒的长。
宽。
高,再计算其体积。
细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长。
宽。
高,再计算其体积。
老师追问:计算细沙的体积为什么要从长方体里面量长。
宽。
高?3、师生共同小结。
老师指出:这个长方体盒所包容细沙的体积,就是长方体盒的容积。
我们看见过汽车上的油箱,油箱里装满汽油。
这就是油箱的容积。
长方体鱼缸里盛满水,它就是鱼缸的容积。
师生归纳:容器所能包容的物体的体积,就是它们的容积。
〔板书〕4、比拟物体体积和容积的一样和不同。
一样点:体积和容积都是物体的体积,计算方法一样。
不同点:体积要沉着器外量长。
宽。
高;容积要从里面量长。
宽。
高。
所有的物体都有体积;但只有里面是空的可以装东西的物体,才能计量它的容积。
〔出示长方体木块〕〔二〕认识容积单位。
1、老师指出:计量容积,一般就用体积单位。
但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升。
〔板书:升毫升〕2、出示量杯:这就是1升的量杯。
出示量筒:这就是刻有毫升刻度的量筒。
3、老师演示升和毫升之间的关系:①认识量筒上1毫升的刻度,找出100毫升的刻度。
《容积和容积单位》教学设计----西华县第二实验小学石武英一、教学内容:五年级下册教科书第38页。
二、教学目标:1、引导学生理解容积的意义,认识常用的容积单位升和毫升,并掌握容积单位间的进率。
知道它们与体积单位立方分米、立方厘米之间的关系。
2、理解容积和体积概念的联系和区别。
3、会正确计算物体的容积三、教学重点:1.建立容积和容积单位的观念。
2.知道1升=1000毫升、1升=1立方分米、1毫升=1立方厘米。
四、教学难点:1.理解容积的含义以及升与毫升的实际大小。
2. 长方体容积的计算。
五、教学过程:(一)唤起与生成1. 长方体和正方体的体积计算公式是什么?(指名回答)2.填空:(1)6000立方厘米=()立方分米2.4立方米=()立方分米6056立方厘米=()立方分米(2)计量表面积要用()单位,计量长度要用()单位,计量体积要用()单位。
(指名回答)教师:大家前面学过的内容学的很好,我们今天来学习容积和容积单位教师出示课题:容积和容积单位教师:大家看到这个课题有什么问题要提呢?预设问题1:什么是容积?体积和容积是什么关系?预设问题2:计量容积的单位有哪些?容积单位和体积单位有什么关系?预设问题3:怎样求物体的容积?出示学习目标(指明读学习目标)出示自学指导(学生根据自学指导自学课本38页)学生自学后小组内交流自学成果。
(二)探究与解决探究一:什么是容积?容积和体积的概念有什么联系与区别?先指名学生回答预设答案:箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
媒体出示:箱子、油桶、油漆桶等物体理解容器和容积的意义。
媒体出示:魔方和盛米的木盒‘理解容器的意义。
媒体出示:盛米的木盒,理解同一个容器,它的体积一定比容积大,因为它有厚度。
媒体出示:结合木盒和纸盒体积相等的情况下,纸盒的的容积大。
探究二:计量容积的单位有哪些?容积单位和体积单位有什么关系?1、学生展示自学和组内交流的结论:计量液体的体积,如水、油等常用容积单位升和毫升。
容积单位的换算与计算容积是描述物体能够容纳的空间大小的物理量。
在日常生活和科学研究中,我们经常需要进行容积的换算与计算。
本文将介绍容积单位的换算方法以及如何进行容积的计算,以帮助读者更好地理解和应用容积相关概念。
一、容积单位的换算容积单位的换算涉及到不同单位之间的转换。
以下是一些常见的容积单位及其换算关系:1. 毫升(mL)和升(L):1升 = 1000毫升,即1L = 1000mL。
2. 立方厘米(cm³)和立方分米(dm³):1立方分米 = 1000立方厘米,即1dm³ = 1000cm³。
3. 立方米(m³)和立方分米(dm³):1立方米 = 1000立方分米,即1m³ = 1000dm³。
4. 立方米(m³)和升(L):1立方米 = 1000升,即1m³ = 1000L。
根据上述单位之间的换算关系,我们可以进行不同容积单位之间的换算。
例如,如果需要将5升转换为毫升,可以使用1升 = 1000毫升的换算关系,得出5升 = 5000毫升。
二、容积的计算方法容积的计算方法主要取决于物体的形状。
下面将分别介绍常见形状物体的容积计算方法。
1. 立方体的容积计算:立方体是指具有六个相等的面,每个面都是正方形的立体。
其容积计算公式为“边长的立方”,即容积(V)= 边长³。
2. 圆柱体的容积计算:圆柱体是指由两个平行的圆面和一条连接两个圆面的侧面组成的立体。
其容积计算公式为“底面积乘以高”,即容积(V)= 底面积 ×高。
3. 球体的容积计算:球体是指由所有距离球心相等的点所组成的立体。
其容积计算公式为“4/3乘以π乘以半径的立方”,即容积(V)= (4/3)πr³,其中π取3.14或3.14159。
4. 圆锥体的容积计算:圆锥体是指由一个圆锥面和一个封闭的锥顶组成的立体。
其容积计算公式为“底面积乘以高除以3”,即容积(V)= 底面积 ×高/3。
会仪镇中心校新人教版五年级下册导学案第三单元长方体和正方体班级_______姓名_______学习小组____ 小组评价_____教师评价学习内容:容积和容积单位学习目标:1、知道容积的含义,知道容积单位及它们之间的进率,会计算容积。
2、明白容积和体积概念的联系和区别。
学习重点:建立容积和容积单位的观念,知道1升=1000毫升,1毫升=1立方厘米。
学习难点:理解容积和体积的联系和区别。
学习过程:一、复习引领1、口答:(1)什么是体积?(2)常用的体积单位有哪些?它们之间的进率是多少?2、一个长方体的衣柜,长18公分,宽5公分米,高22分米,这个衣柜的体积是多少立方米?二、独学1、探究容积的概念。
(1)提问:大家常见的鱼缸,里面放满水,在这里,水的体积就是鱼缸的( )。
(2)说说自己见过的容积的例子?如:装油的油箱,油箱里装满油,油的体积就是油箱的( )积,长方体鱼缸里盛满水,水的体积就是鱼缸的( )积。
归纳:空器所能容纳的物体的体积,就是它们的( )。
三、对学1、比较物体体积和容积的相异点。
相同点:体积和容积都是物体的体积,计算方法一样。
异点:体积要从容器处理长、宽、高,容积要从里面量长、宽、高。
2、探究容积的单位。
学习P38页内容,出示要求。
(1)计算物体的容积,需要用到( )的单位,常用的容积单位有升和( )也可以写成L和mL,即:1L=( )mL(2).其实1升就是体积单位的1立方分米,1毫升就是1立方厘米,只是两个不同的名字,即:1L=( )d m3 1mL=( )c m3四、群学1、尝试完成例5.一种小汽车上的油箱,里面长5dm,宽40dm,这个油箱可以装汽油多少升?根据:=2、交流完成例6。
五、展学交流汇报群学成果。
六、测学P40练习九。
七、评学1、我学到了什么?2、我的表现怎么样?。
人教版数学五年级下册第16课容积和容积单位说课稿(精推3篇)〖人教版数学五年级下册第16课容积和容积单位说课稿第【1】篇〗教材分析1、通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
2、体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。
这一内容是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。
但体积和容积又是学生比较容易混淆的两个概念。
学情分析数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。
对于概念教学,比较抽象,难于理解。
学生们有着丰富的生活经验,从他们身边的事物出发,把概念变得形象化、具体化,学生会更容易接受。
本课的重点是初步理解体积和容积的概念。
体积的概念是物体所占空间的大小。
说教学目标知识与技能目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
过程与方法目标:在操作、交流中,感受物体体积的大小、发展空间观念。
情感、态度和价值观目标:增强合作精神和喜爱数学的情感。
现代教学手段:使用多媒体课件,使抽象变直观,发挥现代教育手段的优势。
说教学重点和难点说教学重点:通过具体的实验活动,初步理解体积和容积的概念。
说教学难点:理解体积和容积的联系和区别。
说教学过程:(一)情境导入:师:今天老师和同学们一起来探究《体积与容积》这一课。
师:同学们,你们知道乌鸦喝水的故事吗?为什么乌鸦最后能喝到水呢?谁能把这个故事讲给大家听?(生自由发言)(1)认识体积1、初步感受空间。
师:老师往水里放一个苹果,苹果占空间吗?放一枚硬币,硬币占空间吗?橡皮占空间吗?铅笔盒占空间吗?桌子呢?凳子呢?还有什么东西占空间?师:是不是所有的东西都占空间?在水里占空间,拿出来呢?(也占空间)板书:空间。
2、空间也有大小。
师:橡皮与铅笔盒比谁占得空间大,谁占得空间小?桌子与凳子呢?板书:大小4、比较体积大小。
容积和容积单位教学目标:1.理解容积概念,理解容积和体积概念的联系和区别。
2.认识容积单位“升”和“毫升,掌握容积单位间的进率。
3、掌握容积的计算方法,正确地计算容积。
4.学生在合作交流中,体验数学与生活的密切联系,提高学习数学的兴趣。
教学重点:理解容积的意义和容积单位间的进率,正确地计算容积。
教学难点:容积与体积间的联系和区别。
教学准备:1、长方体盒子、沙子、正方体容器、水、注射器、小黑板等。
2、布置预习。
教学过程:一、计算体积,引出容积。
1、老师出示装满沙子的长方体,问:“怎样计算盒子里沙子的体积呢?2、学生分组操作与讨论。
3、小组汇报:生1:把盒子里的沙子倒扣在桌面上,沙子就形成了一个长方体。
然后量出这个长方体的长、宽、高,根据体积计算公式求出沙子的体积。
师:这个小组的同学善于思考和观察,计算方法也很巧妙。
生2:我们想,盒子的体积就是沙子的体积,所以直接量出装沙子的盒子的棱长,求出盒子和沙子的体积。
生3:我觉得他们组的方法不正确,沙子的体积怎么等于盒子的体积呢?因为盒子还有厚度。
师:这位同学说得有道理吗?生4:我也觉得他们的方法不正确。
盒子的壁厚不能算沙子的体积,所以要减去盒子的体积,才是沙子的体积。
生5:我们组的测量方法是把沙子倒出来,直接量出盒子内壁的长、宽、高,然后把量得的长、宽、高相乘,就得到沙子的体积。
师:刚才同学们通过观察、思考和讨论,找到了计算沙子体积的方法。
老师听出了同学们的方法都有一个共同点,都是要量出小盒子里面的长、宽、高,然后根据长方体体积计算公式计算出沙子的体积。
其实,对盒子来说,沙子的体积就是它的容积。
(板书:容积)【评析:教师先组织学生通过观察、思考和讨论,探讨求盒子内沙子体积的方法,然后引导学生在课堂上相互交流,相互辩论,使学生在相互交流与争论的过程中明白“沙子的体积并不等于盒子的体积,它只是盒子的容积”。
从而培养了学生思维的敏捷性与灵活性。
】二、学生自学,理解容积和容积单位。