蛋白质和氨基酸的测定
- 格式:ppt
- 大小:413.50 KB
- 文档页数:43
第十章 蛋白质和氨基酸的测定第一节 概述蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,是生物体发育及修补组织的原料。
一切有生命的活体都含有不同类型的蛋白质。
人体内的酸、碱及水分平衡,遗传信息的传递,物质代谢及转运都与蛋白质有关。
人及动物只能从食物中得到蛋白质及其分解产物,来构成自身的蛋白质,故蛋白质是人体重要的营养物质,也是食品中重要的营养成分。
蛋白质在食品中含量的变化范围很宽。
动物来源和豆类食品是优良的蛋白质资源。
部分种类食品的蛋白质含量见表10-1表10-1 部分食品的蛋白质含量蛋白质是复杂的含氮有机化合物,摩尔质量大,大部分高达数万~数百万,分子的长轴则长达1nm ~100nm ,它们由20种氨基酸通过酰胺键以一定的方式结合起来,并具有一定的空间结构,所含的主要化学元素为C 、H 、O 、N ,在某些蛋白质中还含有微量的P 、Cu 、Fe 、I 等元素,但含氮则是蛋白质区别于其它有机化合物的主要标志。
不同的蛋白质其氨基酸构成比例及方式不同,故各种不同的蛋白质其含氮量也不同。
一般蛋白质含氮量为16%,即1份氮相当于6.25份蛋白质,此数值(6.25)称为蛋白质系食 品 种 类 蛋白质的质量分数(以湿基计)/% 食 品 种 类 蛋白质的质量分数(以湿基计)/%谷类和面食大米(糙米、长粒、生) 7.9大米(白米、长粒、生、强化) 7.1小麦粉(整粒) 13.7玉米粉(整粒、黄色) 6.9意大利面条(干、强化) 12.8玉米淀粉 0.3乳制品牛乳(全脂、液体) 3.3牛乳(脱脂、干) 36.2切达干酪 24.9酸奶(普通的、低脂) 5.3水果和蔬菜苹果(生、带皮) 0.2芦笋(生) 2.3草莓(生) 0.6莴苣(冰、生) 1.0土豆(整粒、肉和皮) 2.1 豆类 大豆(成熟的种子、生) 36.5 豆(腰子状、所有品种、 23.6 成熟的种子、生) 豆腐(生、坚硬) 15.6 豆腐(生、普通) 8.1 肉、家禽、鱼 牛肉(颈肉、烤前腿) 18.5 牛肉(腌制、干牛肉) 29.1 鸡(可供煎炸的鸡胸肉、 23.1 生) 火腿(切片、普通的) 17.6 鸡蛋(生、全蛋) 12.5 鱼(太平洋鳕鱼、生) 17.9 鱼(金枪鱼、白色、罐 26.5 装、油浸、滴干的固体)数。
食品分析与检验蛋白质与氨基酸的测定蛋白质与氨基酸的测定在食品分析与检验领域中具有重要意义。
蛋白质是食品中重要的营养组分,而氨基酸是构成蛋白质的基本单元,对于评价食品的品质和安全性具有重要意义。
本文将介绍蛋白质与氨基酸的测定方法及其在食品分析与检验中的应用。
蛋白质的测定方法主要有几种:生物测定法、光谱法和色谱法。
其中,生物测定法主要是通过测定食品中的氮元素含量来间接测定蛋白质含量。
常用的方法有凯氏氮法、造浆法和改良Kjeldahl法等。
光谱法主要是通过根据蛋白质的特征光吸收谱测定其含量。
常用的方法有紫外-可见光谱法、荧光光谱法和红外光谱法等。
色谱法是通过分离和检测蛋白质的各种成分来测定其含量。
常用的方法有凝胶过滤层析法、液相色谱法和气相色谱法等。
氨基酸是构成蛋白质的基本单元,对于评价蛋白质的营养价值和品质具有重要作用。
氨基酸的测定方法主要有色谱法和生物传感器方法。
其中,色谱法是目前最主要的氨基酸定量方法,其主要包括高效液相色谱法和气相色谱法。
高效液相色谱法常用于氨基酸的定性和定量分析,具有灵敏度高、选择性好和分析速度快的特点;气相色谱法通常用于氨基酸的定性分析,具有高分离能力和分析速度快的优势。
生物传感器方法是一种新兴的氨基酸测定方法,通过利用生物传感器对氨基酸的选择性响应来测定其含量。
生物传感器方法具有灵敏度高、反应快和操作简便等特点。
在食品分析与检验中,蛋白质与氨基酸的测定具有广泛的应用。
首先,蛋白质含量是评价食品营养价值的重要指标之一、通过测定食品中蛋白质的含量,可以评估其蛋白质营养价值和食品质量。
其次,氨基酸是判定食品蛋白质种类和品质的重要指标。
通过测定食品中各种氨基酸的含量,可以评价蛋白质的品质和营养价值。
此外,蛋白质与氨基酸的测定还可以用于食品的伪标问题的检验,如检验食品中是否含有非法添加的蛋白质或氨基酸衍生物。
综上所述,蛋白质与氨基酸的测定在食品分析与检验中具有重要意义。
通过选择合适的测定方法,可以准确、快速地测定食品中的蛋白质含量和氨基酸组成,从而评价食品的品质、安全性和营养价值。
食品检验与分析第十章蛋白质和氨基酸的测定蛋白质是生命体内非常重要的一类生物大分子,它在细胞结构和机能维持、代谢调控以及免疫防御等方面起着重要作用。
因此,对蛋白质的准确测定和定量分析具有极其重要的意义。
本章主要介绍蛋白质和氨基酸的测定方法。
蛋白质的测定方法主要分为定性测定和定量测定两大类。
定性测定方法包括生物试验法、电泳法、免疫学方法和核磁共振法等。
定量测定方法包括比色法、碱液法、生物试验法、紫外分光光度法和蛋白质序列测定法等。
比色法是常用的蛋白质定量方法之一,它利用蛋白质与试剂形成复合物,复合物在特定波长下具有特异性吸光度。
根据吸光度与蛋白质浓度的线性关系,就可以测定蛋白质的含量。
常用的比色法有布拉德福法、Lowry法和BCA法等。
布拉德福法是最常用的蛋白质定量方法之一、该法利用菜酶素染色反应,使蛋白质呈现紫色,然后通过比色法测定溶液的吸光度,从而测定蛋白质的含量。
布拉德福法的优点是灵敏度高,适用于各种类型的蛋白质测定。
Lowry法是另一种常用的蛋白质定量方法,该法利用碱液将蛋白质氢氧化,生成肽链片段,然后与Folin-Phenol试剂发生酸碱反应,生成蓝色产物,通过比色法测定吸光度,从而得到蛋白质的含量。
BCA法是一种基于比色法的蛋白质定量方法,该法利用铜离子和双酚试剂反应生成复合物,复合物在特定波长下具有最大吸光度,通过测定吸光度可以得到蛋白质的含量。
BCA法的优点是灵敏度高,适用于各种类型的蛋白质测定。
氨基酸是构成蛋白质的基本单位,对氨基酸的快速准确测定具有重要意义。
氨基酸的测定方法主要分为色谱法和比色法两大类。
色谱法是氨基酸测定的常用方法之一,主要包括气相色谱法和高效液相色谱法。
气相色谱法将氨基酸转化为甲醯基衍生物,然后通过气相色谱进行分离和定量。
高效液相色谱法使用分离柱进行分离,可以达到更高的分离效率和灵敏度。
比色法是氨基酸测定的另一种常用方法,主要有二色法和氨基酸定量方法。
二色法利用氨基酸与染料之间的化学反应产生色素,通过比色法测定吸光度,从而确定氨基酸的含量。
蛋白质与氨基酸的测定
蛋白质测定可以采用以下方法:
1. 比色法:常用的比色剂有布鲁姆甘蓝G、伯胺蓝、硫酸铜-法明斯试剂等。
比色法的原理是蛋白质与比色剂形成复合物,复合物的颜色与蛋白质的含量成正比。
2. 生物学方法:通过测定蛋白质在生物体中所起的生物学作用,如酶活性、免疫反应等来定量测定蛋白质的含量。
3. 尿素-二元酸法:通过加入细胞膜清洗液中的尿素和二元酸,并利用这两种化合物对蛋白质的溶解性,然后根据其溶解度定量测定蛋白质的含量。
氨基酸的测定可以采用以下方法:
1. 比色法:在酸性条件下,氨基酸与2,4-二硝基苯肼、2,4-二硝基苯胺等发生磺酰化反应,形成淡棕色的产物,比色法根据产物的吸光度来定量测定氨基酸的含量。
2. 二级结构破坏法:通过加热和高浓度酸的处理,使蛋白质的二级结构破坏,进而测定其中的氨基酸含量。
3. 比重法:在油水分离流程中,用比重法分离出有机相,然后加入酸性溶液,
氨基酸与酸反应,形成有颜色的产物,根据产物的吸光度来定量测定氨基酸的含量。