三极管基本认识
- 格式:ppt
- 大小:1.14 MB
- 文档页数:14
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
三极管的基本知识讲解三极管的初步认识三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。
三极管有2 种类型,分别是PNP 型和NPN 型。
先来认识一下,如下图所示。
三极管一共有3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极e(emitter),剩下的一个引脚就是集电极c(collector)。
三极管的原理三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。
三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e 级和c 级之间就可以顺利导通。
也就是说,控制端在b 和e 之间,被控制端是e 和c 之间。
同理,NPN 型三极管的导通电压是b 极比e 极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e 极和c 极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
三极管的用法以上图为例介绍一下三极管的用法。
三极管基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。
如果P1.0 由我们的程序给一个高电平1,那么基极b 和发射极e 都是5V,也就是说e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。
什么是三极管三极管,又被称为晶体管,是一种常见的电子元件。
它是一种半导体器件,能够用来放大电流、开关电路或作为电流稳定源。
三极管的结构和工作原理决定了它在电子电路中的重要性和广泛应用。
本文将详细介绍三极管的定义、结构、工作原理以及应用领域。
一、定义三极管是一种包含三个电极的半导体器件,通常由两种不同类型的半导体材料组成。
它的三个电极分别为基极、发射极和集电极。
三极管可用于控制电流流动,并在电子电路中实现信号放大功能。
二、结构三极管的结构由两种类型的半导体材料构成:P型半导体和N型半导体。
这两种材料的结合形成了两个 P-N 结,分别被称为基结和发射结。
其中,发射结夹在基结中间,集电极连接到基结,而发射极连接到发射结。
三、工作原理三极管的工作原理是通过调节基极电流控制集电极电流的大小。
当基极电流很小或者没有流过时,三极管处于截止状态,完全不导电。
当基极电流逐渐增大时,三极管进入放大区。
此时,三极管的集电极电流将正比于基极电流,且比基极电流大很多倍。
当基极电流进一步增大时,三极管会饱和,此时集电极电流不再随基极电流的增大而增大,达到饱和电流后保持不变。
四、应用领域由于三极管具有信号放大和电流控制的特点,因此在电子领域有广泛的应用。
以下是几个常见的三极管应用领域:1. 放大器: 三极管可以作为放大电路的关键元件,用于放大音频、视频等信号。
通过调节输入信号的电流,可以实现不同增益的放大效果。
2. 开关电路: 三极管可以用作开关电路的控制器。
在开关状态下,三极管可以让电流通过或者阻断,从而实现开关的功能。
3. 正反馈电路: 三极管可以用于正反馈电路的构建,从而实现自激振荡。
在振荡器、发射机等电子设备中都有广泛应用。
4. 电流稳定源: 三极管可以作为电流稳定源,提供一个稳定且可控的电流。
这在一些需要精确电流控制的电路中特别有用。
结论通过了解三极管的定义、结构、工作原理和应用领域,我们可以看到三极管在电子电路中的重要性和多功能性。
三极管基本认识(教案)第一篇:三极管基本认识(教案)【教学内容】晶体三极管教案本课学习的是“中等职业教育规划教材”电子工业出版《电子技术基础》的第一章第三节的第一部分内容。
这节课内容包括三极管的结构,三极管的类型符号、三极管的分类方法和三极管的放大作用。
【地位和作用】这节课是在学生学习了半导体、PN结和二极管之后安排的,也是为今后学习三极管工作原理打下理论基础。
三极管是电子电路中最重要的电子元器件。
【教学目标】1.知识目标:①、了解三极管的概念、分类、符号。
②、掌握晶体三极管的结构及类型的判断。
③、了解三极管内部载流子的运动。
④、掌握晶体三极管的电流放大作用。
2.能力目标:①培养学生分析问题及解决问题的能力。
②培养学生的实际动手操作能力。
③激发学生创新精神和创造思维,以达到知识探索、能力培养、素质提高的目的。
3.情感目标:①激发学生学习这门课程的兴趣及热情,学以致用。
②培养学生事实求是的科学态度和一丝不苟的严谨作为和主动探索的精神【课堂类型】精讲型(理论基础课)【教学重/难点】重点:三极管的结构及类型的判断,三极管电流的放大条件。
难点:晶体三极管的电流放大作用及内部载流子的运动。
【学生情况分析】学生基础相对薄弱,初中刚刚毕业,且物理学习成绩很差。
【教学工具】教材电子元器件三极管若干个粉笔【教学方法】引导思考法互动教学法类比推理法【课时安排】二节课【教学过程】一、课前复习1、PN结①提问:什么是PN结?答:把P型半导体和N型半导体制作在同一硅片或锗片上,所形成的交接面。
②提问:PN结具有什么特性?答:单向导电性2、二极管③提问:二极管与PN结有什么联系?答:PN结用外壳材料封装起来,并加上电极引线就形成了二极管。
P区接阳极,N区接阴极。
④提问:二极管的导电性是否与PN结一样了?答:是二、新课导入如图所示是一个扩音器的示意图:声音信号转换为电信号声音放大电路电信号转换为声音信号声音话筒图 1 扩音器示意图扬声器其中如图所示:话筒是将声音信号转换为电信号,经放大电路放大后,变成大功率的电信号,推动扬声器,再将其还原为声音信号。
三極管的基礎知識一﹑極管的結構﹑符號及其分類1. 三極管的結構 發射區 基區集電區 c發射極 e集電極發射結 b 基極 集電結 e PNP 型 PNP 管的符號晶體三極管是由兩個PN 結組成﹐有三個區﹕發射區﹑基區﹑集電區﹐各自引出一個電極稱為發射極﹑基極和集電極﹐分別用字母e ﹑ b ﹑ c 表示﹐每個三極管內部都有兩個PN 結﹐發射區和基區之間的PN 結﹐稱為發射結﹔集電區和基區之間的PN 結﹐稱為集電結。
2. 三極管的分類(1)以材料分﹕硅三極管和鍺三極管(2)以結構分﹕PNP 型三極管和NPN 型三極管(3)以工作頻率分﹕低頻管和高頻管(4)以功率分﹕小功率和大功率管(5)以用途分﹕普通三極管和開關管﹐如(3AK 表示PNP 型開關鍺三極管)二﹑三極管的特性1. 具有放大作用2. I C =βI B (β為直流放大系數)3. I e =I b +I c三﹑三極管的應用可以和其他電子零件構成放大電路及其他電子線路四.三極管的測試1. 硅﹑鍺管的判別如右圖﹐當放大電路處于正常工作狀態時硅管發射結正向壓降為0.6~0.8v ﹐而鍺管只有0.1~0.3 v(即可判別硅管或鍺管)2. NPN 管型和PNP 管型的判別及其基本質量判斷三極管內部有兩個PN 結﹐根據PN 結正向電阻小﹑反向電阻大的特性﹐可以測定管型(1)用數字萬用表打到““檔位。
(2)用紅筆接b極﹐分別用黑筆接c﹑e極﹐如測量值顯示為0.5~0.7 v﹐則該管型為NPN管型﹐質量合格﹔若用黑表接b極﹐則是PNP管型(3)不管NPN管型﹐還是PNP管型﹐c﹑e兩極結的電阻均為無窮大﹐萬用表應顯示為”1”時﹐這時兩種管型都是好的(4)若把黑表筆接b極﹐分別用紅筆接c﹑e極﹐數字表顯示為”1”時﹐此三極管是好的_3.估計比較β的大小kΩ用萬用表撥至R×1kΩ擋來測NPN管型﹐黑表筆接c極﹐紅表筆接e極﹐比較開關s斷開和接通時的電阻值﹐前后兩個讀數相差大﹐表示三極管的β越高。
三极管基础知识一、三极管的定义和作用三极管是一种半导体器件,也是电子工程中最常用的元件之一。
它由三个区域组成:P型区、N型区和P型区,分别称为发射极、基极和集电极。
三极管的主要作用是放大电流或控制电流,可以用于放大信号、开关电路等方面。
二、三极管的结构1. PNP型三极管PNP型三极管由两个N型半导体夹着一个P型半导体而成。
其中,N 型半导体称为发射区,P型半导体称为基区,另一个N型半导体称为集电区。
2. NPN型三极管NPN型三极管则与PNP型相反,由两个P型半导体夹着一个N型半导体而成。
其中,P型半导体称为发射区,N型半导体称为基区,另一个P型半导体称为集电区。
三、三极管的工作原理1. PNP型三极管工作原理当外加正向偏压时,发射结变窄并形成空穴少子浓度梯度,在这个梯度下空穴从基端向发射端扩散。
同时,由于集电区与发射区间的空间电荷区,使得集电区的少子浓度增加,形成一个反向偏压。
这个反向偏压越大,集电区的少子浓度就越高。
因此,当基极与发射极之间的电压增加时,会导致发射端的空穴扩散到集电端,从而导致集电电流增加。
2. NPN型三极管工作原理当外加正向偏压时,基结变窄并形成电子少子浓度梯度,在这个梯度下电子从发射端向基端扩散。
同时,由于集电区与发射区间的空间电荷区,使得集电区的少子浓度增加,形成一个反向偏压。
这个反向偏压越大,集电区的少子浓度就越高。
因此,当基极与发射极之间的电压增加时,会导致发射端的电子扩散到集电端,从而导致集电电流增加。
四、三极管参数1. 三极管放大系数三极管放大系数指输入信号和输出信号之比。
对于PNP型三极管来说,在其正常工作状态下该系数一般在0.95至0.99之间,对于NPN型三极管来说,该系数一般在100至300之间。
2. 最大集电电流最大集电电流指三极管在正常工作状态下能够承受的最大电流。
对于不同型号的三极管来说,其最大集电电流也不同。
3. 最大耗散功率最大耗散功率指三极管能够承受的最大功率。
三极管基本知识大全半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。
它最主要的功能是电流放大和开关作用。
三极管顾名思义具有三个电极。
二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。
其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。
由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。
三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观如图,大的很大,小的很小。
三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
电子制作中常用的三极管有9 0××系列,包括低频小功率硅管9013(NPN)、901 2(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。
它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。
在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31 (低频小功率锗管)等,它们的型号也都印在金属的外壳上。
我国生产的晶体管有一套命名规则,电子爱好者最好还是了解一下:第一部分的3表示为三极管。
第二部分表示器件的材料和结构,A: PNP型锗材料B: NPN型锗材料 C: PNP型硅材料 D: NPN型硅材料第三部分表竟δ埽琔:光电管 K:开关管 X:低频小功率管 G:高频小功率管 D:低频大功率管 A:高频大功率管。
另外,3 DJ型为场效应管,BT打头的表示半导体特殊元件。
三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。
三极管有一个重要参数就是电流放大系数β。
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。