测量平差中条件方程的建立 - 副本
- 格式:doc
- 大小:132.00 KB
- 文档页数:12
附合导线平差步骤一、数据处理1.数据输入:将测站、观测角度、观测距离等原始数据输入计算机或平差软件。
2.数据质检:对输入的数据进行初步的质检,检查是否存在错误数据、异常数据等,发现并剔除异常数据。
3.角度数据处理:将观测角度转换为弧度,便于后续计算。
4.距离数据处理:对观测距离进行单位转换,通常将其转换为米或千米。
5.数据配对:将同一测站观测到的角度和距离数据做配对,构成观测组。
6.编点编号:对测站进行编号,便于后续计算。
二、导线控制要素计算1.导线连杆长度计算:根据测站坐标计算导线连杆的几何长度。
2.导线初始点坐标计算:根据导线方位角、连杆长度和已知控制点的坐标计算导线初始点的坐标。
3.导线朝向角计算:根据已知控制点的坐标和导线的方位角,计算导线的朝向角。
三、平差计算1.平差模型确定:选择适当的平差模型,常用的有单位权平差模型、具有不等权的平差模型等。
2.条件方程建立:根据平差模型和导线控制要素的计算结果,建立条件方程组。
3.条件方程系数矩阵确定:根据条件方程组,将其转化为系数矩阵形式。
4.闭合差计算:根据条件方程和系数矩阵,利用最小二乘法计算闭合差,并评估其精度。
5.参数平差:利用闭合差和条件方程系数矩阵,通过参数平差法计算出导线的平差结果。
6.残差计算:根据平差结果和原始观测数据,计算各个观测量的平差残差,并评估其精度。
四、结果分析和判断1.平差结果分析:对平差结果进行查验和分析,判断平差是否满足要求,是否符合实际测量误差的范围。
2.误差判断:根据平差结果和平差残差,判断是否存在异常误差,如超限误差、粗大误差等。
3.解释和修正:对异常误差进行解释和修正,如重新检查测量数据、进行补充观测等。
以上就是附合导线平差步骤的主要内容,通过这些步骤可以得到导线的最佳平差值,为后续的工程测量提供准确的基础数据。
在实际应用中,还需根据具体情况对平差步骤进行调整和优化,以满足实际工程测量的需求。
《测量平差》教案第五章 条件平差第一节 条件平差原理一、条件方程和改正数条件方程列出用观测值真值和真误差表示的条件平差函数模型导出用按最小二乘准则求得的观测值平差值和观测值改正数表示的条件平差的函数模型()1,1,0ˆr r LF =——条件方程 01,1,,=-r n n r W V A ——改正数条件方程()L F W -=——改正数条件方程常数项(闭合差)计算式举例(单三角形函数模型的建立)二、条件方程的纯量表达式和矩阵表达式r 个条件方程的纯量表达式:()()()⎪⎪⎭⎪⎪⎬⎫===0ˆ,,ˆ,ˆ0ˆ,,ˆ,ˆ0ˆ,,ˆ,ˆ21212211n r nnL L L F L L L F L L L F 线性化后得改正数条件方程⎪⎪⎭⎪⎪⎬⎫=-+++=-+++=-+++000221122112211r n n b n n a n n w v r v r v r w v b v b v b w v a v a v a其中()()()⎪⎪⎭⎪⎪⎬⎫-=-=-=n r r n b n a L L L F w L L L F w L L L F w ,,,,,,,,,21212211令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n r r r b bb a a a A 212121, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r r w w w W 211,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n v v v V 211, 则改正数条件方程及其闭合差计算的矩阵表达式分别为0=-W AV()L F W -=三、基础方程按求函数极值的拉格朗日乘数法,设其乘数为()T r b a r k k k K =1,,称为联系数向量。
组成函数()W AV K PV V T T --=Φ2,对其求导整理得改正数V 的计算公式K QA K A P V T T ==-1——改正数方程当P 为对角阵时,改正数方程的纯量形式为()n i k r k b k a v r i b i a i p i i,,2,1,1 =+++=改正数条件方程与改正数方程联立,称为条件平差的基础方程。
地形测量附合水准路线的平差计算步骤附合水准路线的平差计算步骤可以分为以下几个步骤:1.高程观测数据的准备:首先,需要准备高程观测数据,包括各测站观测的高程数值、观测时刻、观测仪器的基准高程等。
同时,还需要检查数据的准确性和完整性。
2.初始近似值的计算:根据高程观测数据,可以计算出初始近似的高程差值。
常用的初始近似值计算方法有重心化和里程法等。
重心化法是以平均高程为起点,将每个测站的高差逐步累加得到各标准差与组合因子之积的增量,而里程法是利用水准路线里程计算高程差。
3.条件方程的建立:根据观测数据和几何关系,可以建立附合水准路线的条件方程。
条件方程是高程平差问题的数学表达式,用来描述各观测值与未知数之间的关系。
常用的条件方程有平差方程、高差闭合差方程和封闭差方程等。
4.约束方程的引入:为了减小结果的误差,需要引入一定的约束条件。
约束方程是对观测值和未知数之间的约束关系的数学表达式,可以是已知高程值的约束、已知高程差值的约束或者其他几何约束。
5.平差计算的求解:根据条件方程和约束方程,可以将高程观测数据进行平差计算。
常用的平差方法有最小二乘法、最小二乘平差法等。
最终得到的结果是各个测站的高程值或者改正数,以及相应的精度估计。
6.检查和平差报告的编制:平差计算完成后,需要对结果进行检查,包括检查平差较验数、残差等。
如果结果符合要求,则可以编制平差报告,对计算过程和结果进行总结和描述,并进行精度评定和检验。
需要注意的是,以上步骤仅是附合水准路线的平差计算的基本步骤,具体的计算方法和步骤可能会因实际情况而有所不同。
此外,平差计算还需要考虑误差的传播和控制,以及精度要求等因素,以确保结果的准确性和可靠性。
授课题目:第二章 平差数学模型与最小二乘原理教学方法:理论讲授 教学手段:多媒体课件教学;以电子课件为主,投影及板书相结合为辅,使学生能够充分利用课堂有效的时间了解尽可能多的相关知识。
本章教学时数:4学时内容提要:主要介绍必要观测、多余观测、不符值、独立参数概念;测量平差的函数模型及两种平差的基本方程:条件方程和误差方程式;其它函数模型:附有参数的条件平差、附有限制条件的间接平差,以及平差的随机模型的概念及形态;平差基本方程的线性化,最小二乘原理。
教学要求:理解必要观测、多余观测、不符值、独立参数概念,掌握条件方程和误差方程式含义和最小二乘原理,会进行平差基本方程--条件方程和误差方程式的线性化。
本章重点:重点掌握测量平差数学模型的类型、建立方法,平差随机模型的意义和形态,以及最小二乘原理在测量平差中的应用。
教学难点:教学难点是对平差函数与随机模型含义与建立方法的理解。
本章教学总的思路:地理空间几何图形内部存在着严格的数学关系,测绘获得的是地理空间几何图形的基本元素,如角度(或方向值)、边长、高差的最佳估值,必须满足地理空间几何图形的基本数学关系,这是建立测量平差基本方程--条件方程和误差方程式的基础,在讲清楚这一点的基础上讲解基础方程的建立,进而推开讲解附有参数的条件方程、附有限制条件误差方程模型,并说明平差的随机模型的概念。
为解算的需要必须线性化条件方程式和误差方程式,其基本方法是利用泰勒级数展开基本方程并取其至一次项,从而完成线性化;在解释天然的平差模型为什么没有唯一解的原因基础上,讲解最小二乘原理,并举例验证,以此突破本课程难点内容的教学。
最后对教学重点内容作概括性总结,使学生加深理解与认知的程度。
§1测量平差概述本节教学时数:0.5学时本节重点:(1)测量元素-—角度(方向)、长度、高差、几何图的数学关系(2)观测值个数、必要观测数、多余观测数及其作用;(3)观测值、改正数、最优改正数、最优估值,平差的概念本节教学思路:以日常生活中最常见到的简单几何图三角形为例,说明测量观测值、平差值、几何图数学关系,平差模型与平差的概念,为下一节的讲讲解作好知识铺垫。
第一章测试1.误差是不可避免的。
A:对B:错答案:A2.构成观测条件的要素有哪些A:外界条件B:计算工具C:观测者D:测量仪器答案:ACD3.对中误差属于那种误差A:系统误差B:偶然误差C:不是误差D:粗差答案:B第二章测试1.两随机变量的协方差等于0时,说明这两个随机变量A:相关B:互不相关C:相互独立答案:B2.观测量的数学期望就是它的真值A:错B:对答案:A3.衡量系统误差大小的指标为A:精确度B:准确度C:不确定度D:精度答案:B4.精度是指误差分布的密集或离散程度,即离散度的大小。
A:错B:对答案:B5.若两观测值的中误差相同,则它们的A:测量仪器相同B:真误差相同C:观测值相同D:精度相同答案:D第三章测试1.设L的权为1,则乘积4L的权P=()。
A:1/4B:4C:1/16D:16答案:C2.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=()。
A:25B:45C:20D:5答案:A3.在水准测量中,设每站观测高差的中误差均为1cm,今要求从已知点推算待定点的高程中误差不大于5cm,问可以设25站。
A:对B:错答案:A4.已知距离AB=100m,丈量一次的权为2,丈量4次平均值的中误差为2cm,若以同样的精度丈量CD的距离16次,CD=400m,则两距离丈量结果的相对中误差分别为( 1/5000 )、(1/20000 )。
A:错B:对答案:B5.A:29B:35C:5D:25答案:D第四章测试1.当观测值为正态随机变量时,最小二乘估计可由最大似然估计导出。
A:对B:错答案:A2.多余观测产生的平差数学模型,都不可能直接获得唯一解。
A:对B:错答案:A3.在平差函数模型中,n、t、r、u、s、c等字母各代表什么量?它们之间有何关系?( n观测值的个数 )(t必要观测数 )(r多余观测数,r=n-t )(u所选参数的个数 )( s非独立参数的个数,s=u-t )( c所列方程的个数,c=r+u )A:对B:错答案:A4.A:对B:错答案:A5.A:错B:对答案:B第五章测试1.关于条件平差中条件方程的说法正确的是:A: 这r个条件方程应彼此线性无关B: 应列出r个条件方程C: r个线性无关的条件方程必定是唯一确定的,不可能有其它组合。
第二部分 自测题第一章 自测题一、判断题(每题2分,共20分)1、 通过平差可以消除误差,从而消除观测值之间的矛盾。
( )2、 观测值i L 与其偶然真误差i ∆必定等精度。
( )3、 测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( )4、 或然误差为最或然值与观测值之差。
( )5、 若X 、Y 向量的维数相同,则YX XY Q Q =。
( )6、 最小二乘原理要求观测值必须服从正态分布。
( )7、 若真误差向量的数学期望为0,即0=∆)(E ,则表示观测值中仅含偶然误差。
( ) 8、 单位权中误差变化,但权比及中误差均不变。
( ) 9、 权或权倒数可以有单位。
( )10、相关观测值权逆阵Q 的对角线元素ii Q 与权阵P 的对角线元素ii P 之间的关系为1=ii ii P Q 。
( )二、填空题(每空0.5分,共20分)1、测量平差就是在 基础上,依据 原则,对观测值进行合理的调整,即分别给以适当的 ,使矛盾消除,从而得到一组最可靠的结果,并进行 。
2、测量条件包括 、 、 和 ,由于测量条件的不可能绝对理想,使得一切测量结果必然含有 。
3、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
4、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
5、最优估计量应具有的性质为 、 和 。
若模型为线性模型,则所得最优估计量称为 ,最优估计量主要针对观测值中仅含 误差而言。
要证明某估计量为最优估计量,只需证明其满足 性和 性即可。
6、限差是 的最大误差限,它的概率依据是 ,测量上常用于制定 的误差限。
7、若已知观测值向量L 或其偶然真误差向量∆的协方差阵为∑,则L 或∆的权阵定义为L P =∆P = ,由于验前精度∑难以精确求得,实用中定权公式有 、 、,特别是对独立等精度观测向量L 而言,其权阵可简单取为L P = 。
8、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
§3-4 三角网条件平差计算2学时三角网测量的目的,是通过观测三角形的各角度或边长,计算三角网中各未知点的坐标、边的长度及方位角等。
三角网按条件平差计算时,首要的问题是列出条件方程。
因此了解三角网的构成,总结其条件方程的种类及各种条件方程的组成规律是十分重要的。
三角网的种类比较多,网的布设形式也比较复杂。
根据观测内容的不同,有测角网、测边网、边角同测网等;根据网中起始数据的多少,有自由三角网和非自由三角网。
自由三角网是指仅具有必要起算数据的三角网,网中没有多余的已知数据。
如果测角三角网中,只有两个已知点(或者已知一个已知点的坐标、一条已知边的长度和一个已知的方位角),根据数学理论,以这两个已知点为起算数据,再结合必要的角度测量值,就能够解算出网中所有未知点的坐标。
如果三角网中除了必要的起算数据外还有其它的已知数据,或者说已知数据有冗余,就会增加对网形的约束,从而增强其可靠性,这种三角网称之为非自由三角网。
无论多么复杂的三角网,都是由单三角形、大地四边形和中点多边形组合而成的。
在本节,我们先讨论三角网条件平差中条件方程个数的确定问题,然后主要讨论测角三角网的条件方程的形式问题。
一、网中条件方程的个数三角网平差的目的,是要确定三角点在平面坐标系中的坐标最或然值。
如图3-9所示,根据前面学到的测量基础知识,我们知道,必须事先知道三角网中的四个数据,如两个三角点的4个坐标值,或者一个三角点的2个坐标值、一条边的长度和一个方位角,这4个已知数据我们称之为三角网的必要起算数据。
有了必要起算数据,就可以确定三角网在平面坐标系中的位置、网的大小及其方位,就可以计算三角网中未知点的坐标。
要对三角网进行平差计算,还必须先知道网中的总观测数n、判定必要观测数t,从而确定了多余观测数:r = n - t由条件平差原理知,多余观测数与条件方程数是相等的,有了多余观测数,也就确定出了条件方程的个数。
因此,问题的关键是判定必要观测数t。
1.网中有2个或2个以上已知点的情况三角网中有2个或2 个以上已知三角点,就一定具备了4个必要起算数据。
无论是测角网、测边网还是边角同测网,如果有2个已知点相邻,要确定一个未知点的坐标,需要观测两个观测值(2个角,或者1条边和1个角,或者2条边)。
也就是说,确定1个未知点要有2个必要观测值;那么如果网中有p个未知点,必要观测数应等于未知点个数的两倍。
t = 2 ·p(3-4-1)(1) 测角网图3-9所示,三角网中有2个已知点,待定点个数为p =6。
如果三角网中观测量全部是角度时。
总观测值个数:n = 23必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 11(2) 测边网在图3-9中,如果三角网中观测量全部是边的长度时:总观测值个数:n = 14必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 2(3) 边角同测网在图3-9中,如果三角网中的所有的角度值和所有的边长值都进行观测时:总观测值个数:n = 37必要观测数:t = 2 · p =12则多余观测数,即条件平差条件方程个数:r = n – t = 252. 网中已知点少于2个的情况有些情况下,三角网中已知点可能少于2个,只有1个已知点、1个已知边和1个已知方位角,或者没有已知点和已知方位角只有1个已知边。
但是,不管怎样说,1条已知边是必须已知的,或者需要进行观测的。
如果没有已知点,可以假定网中的1个未知点;如果没有已知方位角,可以取网中的1个方向的方位角为某一假定值。
这样也就间接地等价于网中有2个相邻点的坐标是已知的。
(1) 测角网三角网中共有p个三角点、1个已知方位角(也可以没有)、1个已知点(也可以没有已知点)和1个已知边长S(或者也是观测得到的),并观测了所有的角度。
如果已知点和已知方位角都没有,就要进行必要的假设。
则在进行条件平差时,必要观测数为:t = 2 · ( p – 2) (3-4-2) 如图3-10所示,三角网中观测了所有角度值(如果没有已知边时,也观测1条边长作为起算数据)。
网中三角点个数:p = 6角度观测值个数:n = 12必要观测数:t = 2 · ( p – 2) = 8则多余观测数,即条件平差条件方程个数:r = n – t = 4(2) 测边网或边角同测网若三角网中,共有p个三角点和1个已知点(或者也是假定的),并对所有的边长,或者角度和边长进行了观测,观测值总个数为n。
在进行条件平差时,由于要加上必须的起算边长,则必要观测(边或者边和角)的个数为t = 2 · ( p – 2)+1 (3-4-3) 如图3-10所示,网中三角点个数:p = 6如果是测边网,则总观测值个数:n = 9必要观测数:t = 2 · ( p – 2) +1=9多余观测数,即条件平差条件方程个数:r = n – t = 0如果是边角同测网,则总观测值个数:n = 21必要观测数:t = 2 · ( p – 2) +1=9多余观测数,即条件平差条件方程个数:r = n – t = 12以上我们仅对几种三角网,讨论了条件平差时必要观测数及多余观测数和条件平差方程数的确定方法,还有很多情况没有涉及到。
在实际平差计算中,应针对不同情况进行具体分析。
二、条件方程的形式三角网中的条件方程主要有以下几种形式: 1. 图形条件方程图形条件,又叫三角形内角和条件,或三角形闭合差条件。
在三角网中,一般对三角形的每个内角都进行了观测。
根据平面几何知识,三角形的三个内角的平差值的和应为180˚,如图3-12中的三角形ABP ,其内角平差值的和应满足下述关系:0180ˆˆˆ321=-++ L L L (3-4-4)此即为三角形内角和条件方程。
由于三角形是组成三角网的最基本的几何图形,因此,通常称三角形内角和条件为图形条件。
因此图形条件也是三角网的最基本、最常见的条件方程形式。
与(3-4-4)式相对应的改正数条件方程为0321=-++w v v v(3-4-5) )180(321 -++-=L L L w(3-4-6)2. 水平条件方程水平条件,又称圆周条件,这种条件方程一般见于中点多边形中。
如图3-12所示,在中点P 上设观测站时,周围的五个角度都要观测。
这五个观测值的平差值之和应等于360˚,即0360ˆˆˆˆˆ1512963=-++++ L L L L L (3-4-7)相应的改正数条件方程为01512963=-++++w v v v v v(3-4-8) )360(1512963 -++++-=L L L L L w(3-4-9)3. 极条件方程极条件是一种边长条件,一般见于中点多边形和大地四边形中。
先看中点多边形的情况。
如图3-12所示,中心P 点为顶点,有五条边,从其中任一条边开始依次推算其它各边的长度,最后又回到起始边,则起始边长度的平差值应与推算值的长度相等。
在图3-12所示的三角网中,我们应用正弦定理,以BP 边为起算边,依次推算AP 、EP 、DP 、CP ,最后回到起算边BP 、,得到下式14131110875421ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆˆL L L L L L L L L L S S BP BP ⋅⋅⋅⋅= 整理得ˆ1ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 14118521310741=-L L L L L L L L L L (3-4-10)(3-4-10)式即为平差值的极条件方程。
为得到其改正数条件方程形式,可用泰勒级数对上式左边展开并取至一次项:1sin sin sin sin sin sin sin sin sin sin 1sin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 1411852131074114118521310741-=-L L L L L L L L L L L L L L L L L L L Lρρ''-''+22141185213107411114118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin vL L L L L L L L L L L v L L L L L L L L L L L ρρ''-''+55141185213107414414118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin v L L L L L L L L L L L vL L L L L L L L L L L ρρ''-''+88141185213107417714118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin vL L L L L L L L L L L v L L L L L L L L L L Lρρ''-''+111114118521310741101014118521310741cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin vL L L L L L L L L L L v L L L L L L L L L L L 0cot sin sin sin sin sin sin sin sin sin sin cot sin sin sin sin sin sin sin sin sin sin 141414118521310741131314118521310741=''-''+ρρv L L L L L L L L L L L v L L L L L L L L L L L化简,即得极条件的改正数条件方程:1414131311111010887755442211=--+-+-+-+-w v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v ctgL (3-4-11)⎪⎪⎭⎫⎝⎛-''-=13107411411852sin sin sin sin sin sin sin sin sin sin 1L L L L L L L L L L w ρ(3-4-12)在大地四边形中的极条件方程与中点多边形稍有不同。