电缆故障常见波形分析与精确定点三要素
- 格式:docx
- 大小:27.20 KB
- 文档页数:2
常见故障波形图的关键点识别及分析【电源⽹】本⽂以常见事故波形图为例,介绍故障波形图⼏个关键点识别和分析⽅法,从中了解相关故障信息和保护等设备的动作⾏为,以便快速帮助管理部门确定故障性质和制定事故处理⽅案,及时恢复送电。
⽬前,国内的⾼压或超⾼压保护对于多数的故障均可以做到在0.1S以内切除故障,甚⾄可以达到⼏个毫秒,故障过程是⾮常短暂的。
但各种故障被切除后,根据《电⼒⽣产事故调查规程》规定在⼀定时间范围,必须明确故障设备是否能否恢复送电,超时否则算电⽹事故处理。
为此需要了解故障前及故障时的全过程,判断事故性质。
其中最有效、最直接的⽅法是快速读懂故障波形图来了解故障发⽣的全过程。
即了解故障过程中电流、电压幅值和相位,故障性质、故障的持续时间,以及保护、断路器的动作时间等信息。
⼀、故障波形图录取现状电⼒系统的各种故障信息必须通过专⽤故障录波器或保护本⾝动作报告记录。
⽬前现场采⽤的均是微机保护和微机故障录波器,它主要由故障启动、信息数据采集、存储分析及波形输出等部分组成。
不论是保护或是专⽤的故障录波器启动主要是利⽤故障特征明显的电⽓量来启动⼯作,⼀般的启动量有电流、电压突变量启动,电流、电压越限启动,频率变化量启动及开关量启动等。
采集到的信息数据⼀般不作滤波处理,尽可能地保持故障信息真实性和实时性。
信息数据主要有两种类型,⼀种为记录电流、电压瞬时值的交变信号,⼀种为反映正负跃变的开关量信号。
为了便于分析故障,信息数据⼀般包括故障前的⼀部分和故障的全过程,反映电流、电压变化的瞬时值波形及反映电位变化的开关量均采⽤同⼀时标绘制。
输出部分包括简要分析报告、重要故障信息数据及故障全过程波形图、输出波形的幅度及多少可根据需要在显⽰和打印输出时设定。
⼆、关键点识别与分析在现场使⽤的保护⽣产长家较多,型号亦很多,各种型号的保护故障波形图结构不尽相同,标注信息的⽅式也差别很⼤,但归结起来可以分为两⼤部分,第⼀部分是故障分析简报,第⼆部分为故障波形图信息。
电缆故障检测方法在机电设备安装工程的施工及维护过程中,将会面对各种原因造成的电缆故障。
所以必须具有适用的理论及方法来解决各类故障,本文就传统的检测方法进行了阐述,对于电缆的故障点检测一般都要经过故障类型的诊断、故障点测距、精确定点三个主要步骤。
故障类型诊断主要是确定电缆故障点的故障相别,属于高阻接地或者低阻接地,以便于测试人员选择适当的检测方法。
故障点测距也叫预定位,故障电缆芯线上施加测试信号或者在线测量、分析故障信息,初步确定故障的距离,尽量缩小故障范围,以方便精确定点的进行。
预定位方法一般可归纳为两大类,即经典法,如电桥法等;现代法,如低压脉冲法、高压闪络法等。
精确定点是预定位距离的基础上,精确地确定故障点所在实际位置。
精确定点方法主要有声测定点法、感应定点法、时差定点法以及同步定点法等。
电缆故障的传统检测方法电缆敷设为机电安装施工中经济价值最大的分项施工,同时也是保证设备正常运行重要设施,在实际施工及维护运行过程中,往往因敷设方式设计不合理、施工人员操作不当、虫鼠等小动物的破坏等各种因数的影响,造成电缆的损坏而引起故障。
在大量的工程实践中我们发现电缆故障为高阻电流泄露故障(电阻值大于等于1),其原因往往为因绝缘层破坏而造成的。
低电阻故障一般为相间或对地短路经常出现在电缆分歧头位置,是由于施工时绝缘手段未充分引起的,但出现的几率很小,主要是预防为主,在施工阶段就严把质量关减少事故的出现。
电缆故障可能出现在配电线路施工、调试、维护等任何阶段,施工、除了少量的电缆故障出现在施工、调试阶段外,更多的电缆故障出现在维护运行期间,这类故障一般随着整个配线系统的老化而逐渐显现,造成设备频频跳闸给用户带来困扰。
因此使用单位必须熟练的掌握电缆检测方法。
在电缆故障检测过程中因采用高压或低压手段分为高压检测或低压检测两类,其中高压检测使用于低阻、断路、高阻等各种情况的电缆故障,低压检测方式只适用于低阻、断路情况,因此实际检测中多采用高压检测方法。
电力电缆常见故障及检测方法分析摘要:电力电缆作为电力系统的重要组成部分,一旦发生故障将直接影响电力系统的安全运行电力电缆供电以其安全、可靠、,得到广泛的应用。
但是电力电缆一般都埋在地下,一旦发生故障,要经过诊断、测距(预定位)、定点(精确定位)个步骤。
采用合适的故障测试方法,尽可能快速、准确地找到故障点,减少因停电造成的损失。
关键词:电缆;故障;方法;技术一、电缆的故障类型分析电力电缆的故障类型造成电力电缆故障的原因有很多,比如:机械损伤、绝缘受潮、绝缘老化变质、过电压、材料缺陷、电缆绝缘物流失、设计和制作工艺不良以及护层腐蚀等。
按照故障出现的部位,通常可将故障类型大致分为断线故障、主绝缘故障和护层故障断线一般是由于故障电流过大而烧断电缆芯线或外界机械破坏等原因造成的,其测试比较简单。
从今年已查找的低、中、高压电缆故障的结构特点分析,电缆单相接地故障较为普遍,多是因为电缆遭受外力破坏原因造成。
也不排除本体质量造成,但这种内部短路从外表看不出痕迹较少见。
电缆相间短路故障中较少,这是因为相间短路一般都是在运行中发生,发生故障时会产生强大的短路电流造成速断保护动作而跳闸。
强大的电流所造成的高温一般都会把电缆烧断造成开路性故障。
电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。
从电缆的故障位置看,一条电缆最薄弱的地方是中间接头,一般的电缆都有一个或几个中间接头,在做电缆中间接头时由于环境条件限制,加上电缆敷设后不进行防潮处理,制作时中间接管压接不紧密,都可能造成电缆中间接头受潮、工艺缺陷的出现。
当运行中长期在高压电场的作用下产生电晕及游离放电,使绝缘本体形成水树直至绝缘老化并击穿。
绝缘故障根据故障电阻和击穿间隙的情况,通常将绝缘故障分为低阻、高阻及闪络性故障。
低阻故障与高阻故障的区分界限一般取电缆本身波阻抗的l0倍,但在实际测试工作中并不要求很严格地区分。
闪络性故障的故障点电阻极高,可给故障电缆施加到较高的电压,故障点才闪络击穿。
电缆故障精确定点的四大方法
电缆故障精确定点通常按以下4个步骤的顺序进行:
1、判断故障点类型
根据故障的性质,电缆故障可以分为低电阻接地或短路故障,高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。
2、根据故障类型选择合适方法及相应的仪器
针对不同的故障类型采用不同的测试方法对其进行测试。
例如针对高阻故障可以使用冲闪法来定位故障位置。
3、粗测定位
粗测定位方法有电桥法、波反射法两种。
目前波反射法定位仪较普及。
但是有几种电缆故障很难用波反射法查找,比如高压电缆护套绝缘缺陷点、钢带铠装低压力缆、pvc电缆和短电缆都无法被定位。
另外,一些高阻击穿点在冲击电压下无法击穿,也难以定位。
4、精确定点。
电缆故障可以采用以下四大方法进行精确定点:
(1) 声测法:它是由高压脉冲发生器对故障电缆放电,故障点产生电弧,并产生放电声音,在电缆直埋情况下,产生地震波,定点仪的声测探头拣拾地震波信号并放大后通过耳机或表头输出。
(2) 跨步电压法:它主要针对对电缆外护套绝缘有要求的外护套接地故障定点,现在对部分直埋的无铠装的低压电缆、电线芯线接地故障、也可以采用跨步电压法定点。
(3) 电磁法及音频法:用电磁波定点或采用音频法定点,即是利
用电缆故障的前后点电磁波信号或音频信号的变化来确定故障点。
(4) 声磁同步法:是将声测法与电磁波法综合应用。
电缆故障测试仪波形分析一、按照波形分析测试数据波形测出后,若是想对测试波形进行进一步分析计算,可以按照波形上显示点数计算出任两点间代表距离,基中标尺每格代表时间为测试仪自动计算给定。
计算距离的方式如下:两点间距离=两点间实际格数×时间/格×速度÷2(米)具体步骤如下:(1)计算每点代表距离:每点代表距离计算公式为:S=V∕2f,其中V为电波传输速度(按照电缆类型自定),f为采样频率,默许选25MHz。
例如,油浸纸电缆V=160m∕µs,当f=25MHz时,每点代表距离S=160/2×25=3.2(米)。
(2)计算两点间总点数:波形上显示出每大格多少个测试点,按照两点间的格数,就可计算出两点间总点数。
例如测试波形显示“每格5点”,所计算的两点间为4.3大格,则两点产间总点数为4.3×5=21.5点(小数点为不满一格比例长度)。
(3)计算距离:别离计算出每点代表距离及总点数后,就可以够计算出两点间距离来。
例如:前面已经计算出每点代表距离为3.2米,总点数为21.5点,则计算距离为3.2×21.5=60.8(米)。
针对疑难故障,测试完毕后,可拍照测试波形,仔细分析波形特点,对找出故障点,提高测试效率会起到事半功倍作用。
二、测试波形分析与定标电缆故障探测时,首先必需熟练掌握设备操作方式;其次,必需能对各类测试波形进行分析,准确肯定光标起点、终点。
下面就对各类测试波形特点及定标方式做简要介绍。
2.1低压脉冲法测试开路故障(测全长、测速度)波形低压脉冲法测开路断线故障,或用电缆好相测全长、测速度(相线开路)时,测试波形如图19所示。
图19 低压脉冲测全长波形波形特点:发射脉冲与一次反射,二次反射等各反射波形都为正脉冲波形。
定光标方式:光标起点定在发射脉冲上升沿与基线交点处,光标终点定在一次反射脉冲上升沿与基线交点处。
2.2 低压脉冲法测低阻短路故障波形脉冲法测低阻短路故障,或将好相非测试端与铠装短接测全长、测速度时,测试波形如图20所示。
HT-TC电缆故障测试仪电缆故障测试仪波形分析1、根据波形分析测试数据波形测出后,如果想对测试波形进行进一步分析计算,可以根据波形上显示点数计算出任两点间代表距离,基中标尺每格代表时间为测试仪自动计算给定。
计算距离的方法如下:两点间距离=两点间实际格数×时间/格×速度÷2(米)具体步骤如下:(1)计算每点代表距离:每点代表距离计算公式为:S=V∕2f,其中V为电波传输速度(根据电缆类型自定),f为采样频率,默认选25MHz。
例如,油浸纸电缆V=160m∕µs,当f=25MHz时,每点代表距离S=160/2×25=3.2(米)。
(2)计算两点间总点数:波形上显示出每大格多少个测试点,根据两点间的格数,就可计算出两点间总点数。
例如测试波形显示“每格5点”,所计算的两点间为4.3大格,则两点产间总点数为4.3×5=21.5点(小数点为不满一格比例长度)。
(3)计算距离:分别计算出每点代表距离及总点数后,就可以计算出两点间距离来。
例如:前面已经计算出每点代表距离为3.2米, HT-TC电缆故障测试仪总点数为21.5点,则计算距离为3.2×21.5=60.8(米)。
针对疑难故障,测试完毕后,可拍照测试波形,仔细分析波形特点,对找出故障点,提高测试效率会起到事半功倍作用。
2、测试波形分析与定标电缆故障探测时,首先必须熟练掌握设备操作方法;其次,必须能对各种测试波形进行分析,准确确定光标起点、终点。
下面就对各种测试波形特点及定标方法做简要介绍。
2.1低压脉冲法测试开路故障(测全长、测速度)波形低压脉冲法测开路断线故障,或者用电缆好相测全长、测速度(相线开路)时,测试波形如图19所示。
图19 低压脉冲测全长波形波形特点:发射脉冲与一次反射,二次反射等各反射波形都为正脉冲波形。
定光标方法:光标起点定在发射脉冲上升沿与基线交点处,光标终点定在一次反射脉冲上升沿与基线交点处。
电缆故障的精确定位一、声测法:声测法是电缆故障定点的主要方法,多用于测试高阻、闪络性故障和部分低阻故障。
使用的设备与冲闪法相同,采用声电转换器将很小的震动波转换成电信号进行放大处理,用耳机来侦听,听测出最响点即位故障点位置。
二、声磁同步法:在实际测试中,环境噪声的干扰增加了声测法准确辨别的难度,由于故障点放电时,除了产生放电声外,还会产生高频电磁波向地面传播,通过同时接收声波和电磁波方法来判断当前的声波是否由故障点放电引起,这就是声磁同步法。
它是对声波测试方法的改进,提高抗干扰能力。
定点环境不可避免存在各种连续噪声和脉冲冲击噪声的干扰。
目前单纯的声测法定点仪已经被淘汰,取而代之的是声磁同步法定点仪。
此类仪器通过观察在现场接收电缆被冲击高压击穿时的辐射电磁波和故障点的震动声波同步与否来人为排除现场噪声干扰,利用故障点震动声音的最大点确定精确故障点位置。
尽管此法定点精度不高,一般也能满足要求。
国内大多数厂家生产的定点仪均属此类方法。
少数厂家也在液晶屏幕上显示电磁波与地震波的时间差来精确判断故障点位置,这无疑是一重大改进。
DDY-3000数显同步电缆故障定点仪具备了查找电缆路径、声磁同步法和显示声磁时间差法的全部优点,并且将声磁时间差转换为定点探头与电缆故障点的实际距离数,并在液晶屏上直接显示出来。
在液晶屏上利同时显示故障距离、电磁信号大小、声波信号大小、同时具有存储记录功能,在故障点正上方,地震波声音最大(此时的地震波声音大小变化已不重要),读数最小,而且此读数就是故障点距地面的埋设深度。
在故障点正上方,探头无论左右移动还是前后移动,但读数都会变大,尽管地震波声音变化不明显。
也就是说,此功能在现场同时也实现了对电缆路径的精确判断。
所以,DDY-3000数显同步电缆故障定点仪是目前国内同类型产品中功能最全,抗干扰能力最强、定点最准确的电缆故障精确定位仪。
DDY-3000电缆故障定位仪采用本公司所独创的电缆定点新理论。
电缆故障精确定位方法总结
电力部门经常对电缆进行大修,遇到电缆故障时如何正确处理?电缆故障精确定位方法的总结通常分四步进行,包括判断故障点的类型、选择合适的方法和相应的仪器、粗略定位和精确定位。
其中,粗定位方法有两种:桥法和波反射法。
目前,波反射定位仪比较流行。
但波反射法难以发现的电缆故障有高压电缆护套绝缘缺陷点、钢带铠装低压电缆、聚氯乙烯电缆、短电缆等。
另外,一些高阻击穿点在冲击电压下不能被击穿,难以定位。
一、步进电压法:采用步进电压法,主要针对电缆外护套绝缘所需的外护套接地故障点。
目前,对于一些没有铠装的直埋低压电缆,铁芯线的接地故障主要是针对外护套的接地故障。
也可以使用阶跃电压法。
二、声磁同步法:是声测量法和电磁波法的综合应用,如DTC系列磁同步固定点仪,它采用声测量法、声磁同步定点法和声磁同步定点法相结合的原理。
三、电缆故障点精确不动点法的声学测量方法:利用声测法点的方法是以往至今的电缆故障点测量法。
声测方法点由高压脉冲发生器放电到故障电缆上,故障点产生电弧和放电声。
对于直埋电缆,会产生地震波。
定点仪器的声学探头接收并放大地信号,然后通过耳机或表头输出。
四、电磁法和音频法:理论上可以用电磁波定点或音频法确定故障点,即利用电缆故障前后电磁波信号或音频信号的变化。
冲闪法电缆故障波形
冲闪法是检测电缆故障最常用方法,并得到广泛应用。
一般使用冲闪检测仪,在缆头处行冲击测试。
冲击是指一弧闪瞬间催生的电流,电压和磁场激励及在整个电缆系统中的传播。
冲击电流对整个电缆系统有良好的刺激,其中有损伤的部位会表现出应力过大的特征现象。
冲击波的测量结果在振幅和传播速度变化上,可以准确反映电缆中由于损伤引起的受损部分。
在电缆损伤定位方面,冲击法效果显著。
冲击测试中,冲击电源产生的冲击电流,像一个冲击波一样,发射到被测电缆中,传播,冲击电流随着冲击波传播,在损伤位置处出现反射损耗,故此,损伤位置的电流偏离了正常电源产生的冲击波线路,此时冲击电流强度出现变化,以此为依据可以将损伤位置的电流定位出来。
冲击电源给被测对象发射一个冲击波,被测对象出现了损伤时,发出的是如下形状的波形:
1、发射波形:发射在损伤处反射弱的孤立峰值波。
峰值波有重置点和波峰形成,即发出的冲击电流强度出现变化的趋势。
2、损伤处波形:当冲击电流经过损伤处时,故障电缆会产生反射波,显示一条有明显反射处的曲线。
电流加大,曲线显示的也会加大。
同时可以看到其它几个轻微的陡坡,这是由发射点发射的冲击电流,在变压器,断路器或其他电器附件处反射回来,甚至可以分辨出这些位置。
3、远处波形:由于冲击电流在故障处出现变化,会产生反射波,表现出振荡效应,从而形成一条椭圆形曲线,椭圆形曲线以发射点为原点,最下端为低电平持续时间,最上端为高电平持续时间。
电缆线路电缆故障的精确定点的四种方法电缆故障的精确定点是故障探测的关键。
目前,比较常用的方法是冲击放电声测法及主要用于低阻故障定点的音频感应法。
实际应用中,往往因电缆故障点环境困素复杂,如振动噪声过大、电缆埋设深度过深等,造成定点困难,成为快速找到故障点的主要矛盾。
1、声测法直接通过听故障点放点的声音信号或看故障点放电的声音信号所转换的其他可视信号来找到故障点的方法称为声测定点法。
声测法是目前电缆故障测试中应用最广泛而又最简便的一种方法,95%以上的电缆故障都用此法进行定点,很少发生判断错误。
声测定点主要是利用故障点的放电声音定点,使用可调压的高压设备,使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点。
对于电缆护层已被烧穿的故障,往往可在地面上用人耳直接听到故障点放电声。
对于护层未烧穿的电缆故障或电缆埋设较深时,地面上能听到的放电声太小,则要使用耳机来监听判断进行定点。
声测法是利用直流高压试验设备向电容器充电、储能,当电压达到某一数值时,经过放电间隙向故障线芯放电。
由于故障点具有一定的故障电阻,在电容器放电过程中,此故障电阻相当于一个放电间隙,在放电时将产生机械振动。
根据粗测时所确定的位置,用拾音器在故障点附近反复听测,找到地面振动最大、声音最大处,即为实际电缆故障点位置。
声测法放电电压的大小,由放电间隙来控制,一般在试验时,将放电间隙调至一定位置,将放电电压控制在20~25KV之间,每隔3~4s放电一次即可。
声测试验中如果采用电容量较大的电容器,则应考虑试验设备的容量问题。
一般以采用2KV·A的试验变压器和2-3KV·A的调压器较好。
硅堆也应采用容量较大的硅堆(如2DL—75KV/1A),以防止烧坏。
声测法的优点是容易理解,便于掌握,可信性较高;缺点就是受外界环境影响较大,受人的经验和测试心态的影响较大。
输电线路的电力电缆故障定位技术随着电力系统的发展和规模的扩大,输电线路的安全稳定运行对于电力供应的可靠性至关重要。
然而,由于电力电缆可能会遭受不同类型的故障,及时准确地定位故障点成为了迫切需要解决的问题。
本文将介绍一些常用的电力电缆故障定位技术,以助于提高电力系统的可靠性。
一、绝缘电阻法绝缘电阻法是一种通过测量电力电缆绝缘电阻来定位故障点的方法。
该方法适用于发生绝缘破裂、接地或局部短路等故障的情况。
具体实施过程包括:1. 断电:首先需要切断电力电缆的供电,确保施工过程的安全性;2. 清洁:清洁故障点周围的接地体和绝缘面,以确保测试的准确性;3. 测试:利用测试仪器测量电缆两端的绝缘电阻,并记录测量结果;4. 分析:根据测量结果进行故障点的定位。
二、时间绘图法时间绘图法是一种通过测量电力电缆两端的故障前后电压和电流波形来定位故障点的方法。
该方法适用于发生线路接地、短路等故障的情况。
具体实施过程包括:1. 断电:同样需要先切断电力电缆的供电,确保施工过程的安全性;2. 连接测量设备:将测量设备连接到故障线路的两端,包括电流互感器和电压互感器等;3. 测量:进行故障前后的电压和电流波形测量,并记录相应的数据;4. 分析:通过对比和分析波形数据,可以确定故障点所在的位置。
三、反射法反射法是一种通过测量电力电缆上信号的反射情况来定位故障点的方法。
该方法适用于发生局部绝缘破裂或局部短路等故障的情况。
具体实施过程包括:1. 发射信号:首先,向电力电缆中注入带有特殊频率的信号;2. 接收信号:利用接收器接收由故障点反射回来的信号,并记录信号强度和时间;3. 分析:通过分析信号的强度和时间,可以定位故障点所在的位置。
四、红外热像法红外热像法是一种通过测量电力电缆表面的热分布情况来定位故障点的方法。
该方法适用于发生高阻值接地、局部短路等故障的情况。
具体实施过程包括:1. 检查设备:确保红外热像仪工作正常,并进行必要的校准;2. 检查环境:确保测试环境没有干扰,例如没有阳光直射等;3. 观察:通过红外热像仪观察电力电缆表面的热分布情况,寻找异常热点;4. 定位:根据异常热点的位置确定故障点所在的位置。
电缆故障常见波形分析与精确定点三要素
摘要:本文首先介绍了电缆故障的分类及产生的原因,接着介绍了几种常见电
缆故障波形,通过波形分析判断电缆故障点。
关键词:电缆故障;波形分析;精确定点
1电缆故障的分类及原因
1.1故障分类:按故障性质划分:接地故障、短路故障、断线故障、闪络
性故障和混合故障。
现在国内主要分类方式:开路(断线)故障、低阻故障(相
间或接地)、高阻故障(相间或接地)。
1.2故障原因:绝缘击穿、机械损伤、过电压。
1.2.1绝缘击穿
其主要原因有以下几个方面,电缆本体及附件质量不合格、受潮、腐蚀、过热。
1.2.2机械损伤
其它设备造成的损伤(如冲击性负荷或震动造成电缆护套开裂)。
直接外力
损伤(如挖土,打桩,搬运,交叉施工敷设管线等)。
自然现象造成的损伤(如
地基下沉引起的过大拉力拉断电缆)
1.2.3过电压
主要是指由于雷电等形成的大气过电压和电缆内部过电压,过电压主要会引
起电缆终端头故障,而且还会加速有缺陷电缆发生故障。
2电缆故障常见波形分析
高阻故障,波形上幵始有明显差异的点即故障点。
低阻故障,波形上第一个
重合下探最深波形下探起始处。
开路故障,波形上第一处上升波形起始处。
主要分析方法:电缆故障测距的方法主要是三次脉冲法。
它是对故障电缆施
加高压脉冲,使高阻故障呈现出低压脉冲短路故障波形;在电缆故障点燃弧放电
瞬间,通过脉冲发生器发射三次脉冲,取其一标准波形与低压脉冲波形相比较。
比较两次探测设备接收到的脉冲反射波形,其中明显的发散点就是电缆的故障点。
常见的故障波形有以下7种。
3精确定点三要素
粗测距离米数、声测法定位、声磁时间差接收法定位、三要素吻合。
辅助因素:环境因素,在定位的同时注意观察电缆路径上方有无施工、有无塌陷、有无
管线敷设、有无种树等、马葫芦井等。
(因为电缆故障有50%是因为施工造成隐形缺陷后产
生故障)。
注意观察可以加快我们对电缆故障的查找。
3.1典型电缆故障。
(开放型故障)
3.1.1用绝缘摇表与万用表测试出电缆故障性质。
3.1.2粗测距离:电缆故障测距的方法主要是三次脉冲法,它是对故障电缆施加高压脉冲,使高阻故障呈现出低压脉冲短路故障波形;在电缆故障点燃弧放电瞬间,通过脉冲发生
器发射三次脉冲,取其一标准波形与低压脉冲波形相比较。
比较两次探测设备接收到的脉冲
反射波形,其中明显的发散点就是电缆的故障点。
测量出故障点的米数,再用测距仪或步量
出大概米数。
3.1.3声磁时间差接收信号距离:根据实际经验,电缆上方磁信号最强的地方,以电缆
故障点为中心,故障点上方强磁信号接收距离为6米开外。
外护套破损地方信号接收范围一
般为3米以内。
3.1.4声音与声磁时间差数值:声音与声磁时间差数值同时接收,声音大,声磁时间差
数值最小为标准,声磁时间差数值如大于5-7/us,就要多方核实电缆故障的准确性。
(因为
电缆埋设深度大部分一般为70公分—120公分)。
根据实际经验,测得声磁时间差数值在土
壤中传播的速度大概为每微秒为25公分。
3.2特殊电缆故障定点方法(非开放型故障)
3.2.1单相接地故障,本体故障,中间头故障,冬季冰层里故障,水覆盖电缆故障精确
定点方法:以粗测距离与微弱声音为主,声磁时间差数值信号接收为辅助,根据实际经验,
强磁信号接收范围在电缆故障点上方接收距离为3米左右。
3.2.2死接地故障(如穿铁管,卡死在管口型,电缆沟接地极卡死型):
以粗测距离与强磁接收信号范围为主,声音与声磁时间差数值为辅,用三次脉冲法测量
出故障点距离,测距仪或步测量出大概位置,用强磁信号接收方法在大概位置为中心前后以
强磁方法测出故障点范围,取其故障点范围中心点位置为故障点。
定点仪强磁信号表示方式:
4赛宝定点仪查找路径方法:
如路径不明确的情况下,从起始端每隔5米左右用定点仪测一下路径,查看电缆路径是
否在定点仪下方,查看电缆是否在定点仪下方的方法是:因为电缆正上方是电磁信号最强的,查看定点仪屏幕磁信号是否达到满屏2/3或者大于2/3,如达到地上数值基本可以确定电缆
路径,磁信号长度越长越准确,如发现信号达不到或没有信号,立即返回原处转圈查找,看
电缆方向是否转向了,如发现电缆转向后沿电磁信号最强方向向前查找。
5结束语
电缆线路多埋于地下,一旦发生停电事故查找故障十分困难,需要耗费大量的人、财、物,而且会带来电量损失以及社会、经济的负面影响。
因此,有必要针对电力电缆的特点,
分析其故障原因和探测方法,以便迅速查找故障点,提高抢修效率减少故障修复时间及停电
损失。
参考文献:
[1] 电力电缆/中国电力企业家协会供电分会编. 北京:中国电力出版社,1998. 17-19页
作者简介:
石武(1990),男,吉林省松原市,本科,助理工程师,电缆方向
陈至斌(1966),男,江苏省南京市,技校,技师,电缆方向。