2020年中考数学二轮 翻折问题专题
- 格式:doc
- 大小:177.50 KB
- 文档页数:9
折叠问题一、选择题1.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A. 78°B. 7 5°C. 60°D. 45°2.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′G的长是A. 1B.C.D. 23.如图,在矩形ABCD中,AB<AD,E为AD边上一点,且AE= AB,连结BE,将△ABE沿BE翻折,若点A 恰好落在CE上点F处,则∠CBF的余弦值为()A. B.C.D.4.如图,在矩形纸片ABCD中,AB=6,AD=8,折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,则线段EF的长为()A. 3B. 4C. 5D. 65.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=2,则AB的值为()A. B.4 C.D. 8二、填空题6.如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为________.7.如图,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF的周长不变;③点C到线段EF的最大距离为1.其中正确的结论有________.(填写所有正确结论的序号)8.如图,在Rt△ABC中,∠C=90°,BC=2 ,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为________.9.如图,矩形ABCD中,AD=5,AB=6,点E为DC上一个动点,把△ADE沿AE折叠,点F为CD上一个动点,把△BCF沿BF折叠,当点D的对应点和点C的对应点都落在点D′处时,EF的长为________.10.矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=________ cm.11.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.12.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′的度数为________.13.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为________14.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.15.如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则________(结果保留根号).三、综合题16.已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.(1)求证:CE=CF;(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.17.如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围.参考答案一、选择题1. B2. C3.B4.A5. C二、填空题6.或7.①③8.3或9. 10.5.811.3 12.50° 13.80° 14.或15 15.三、综合题16.(1)证明:∵矩形纸片ABCD折叠,顶点A与C重合,折痕为EF,∴∠1=∠2,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CE=CF.(2)解:思路:连接AF① 由矩形纸片ABCD折叠,易证四边形AFCE为平行四边形;② Rt△CED中,设DE为x,则CE为16-x,CD=8,根据勾股定理列方程可求得DE,CE的长;③由CF=CE,可得CF的长;运用平行四边形面积公式计算CF×CD可得四边形AFCE的面积.17.(1)证明:如图,由四边形ABCD是矩形和折叠的性质可知,BE=B′E,∠BEF=∠B′EF,∴在等腰△BEB′中,EF是角平分线,∴EF⊥BB′,∠BOE=90°,∴∠ABB′+∠BEF=90°,∵∠ABB′+∠AB′B=90°,∴∠BEF=∠AB′B;(2)解:①当点F在CD之间时,如图1,作FM⊥AB交AB于点M,∵AB=6,BE=EB′,AB′=x,BM=FC=y,∴在Rt△EAB′中,EB′2=AE2+AB′2,∴(6﹣AE)2=AE2+x2解得AE=,tan∠AB′B==,tan∠BEF==,∵由(1)知∠BEF=∠AB′B,∴=,化简,得y=x2﹣x+3,(0<x≤8﹣2)②当点F在点C下方时,如图2所示.设直线EF与BC交于点K设∠ABB′=∠BKE=∠CKF=θ,则tanθ==.BK=,CK=BC﹣BK=8﹣.∴CF=CK•tanθ=(8﹣)•tanθ=8tanθ﹣BE=x﹣BE.在Rt△EAB′中,EB′2=AE2+AB′2,∴(6﹣BE)2+x2=BE2解得BE=.∴CF=x﹣BE=x﹣=﹣x2+x﹣3 ∴y=﹣x2+x﹣3(8﹣2<x≤6)综上所述,y=.。
三角形翻折变换专题训练二1.如图.△ABC中.∠ABC=90°,BC=l.将△ABC绕点B逆时针旋转得△A′BC′.C′恰好落在AC边的中点处.连接AA′,取AA′的中点D,则C′D的长为( )A .B .374C .52D.3542.(2019•大连二模)如图,在△ABC中,∠ACB=90°,AC=BC=4,点D在AC上,点E在AB上,将△ADE沿直线DE翻折,点A的对称点A'落在BC上,在CD=1,则A'B'的长是()A.1 B.C.D.3.如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在边BC上,且∠DAE=60°.将△ADE沿AE翻折,点D的对应点是D',连接CD',若BD=4,CE=5,则DE的长为()A.92B.21C.13D.234.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则△B′DE的面积为()A.925B.1825C.1225D.24255、(2019•重庆一中三模)等腰Rt△ABC,AC=BC=4,点E,F分别在边AB、BC上,将三角形沿EF翻折,使得B 刚好落在AC的中点D处,则EF的长为( )A.556B.56C.253D.253B CE第6题6.已知Rt △ABC 中,∠ACB =90°,AC =8,BC =4,D 为斜边AB 上的中点,E 是直角边AC 上的一点,连接DE ,将△ADE 沿DE 折叠至△A ′DE ,A ′E 交BD 于点F ,若△DEF 的面积是△ADE 面积的一半,则DE 的长为( )..2A .25B .22C .4D7.(2018•崇明县二模)如图,△ABC 中,∠BAC =90°,AB =6,AC =8,点D 是BC 的中点,将△ABD ,将△ABD 沿AD 翻折得到△AED ,联结CE ,那么线段CE 的长等于( ) A .125B .135C .145D .1658.(2018秋•坪山区期末)如图,在Rt △ABC 中,∠ACB =90°,AC =,BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别 交于点E 、F ,则线段B ′F 的长为( ). A . 22-B .32-C .22D .239.(2018•沙坪坝区模拟)如图,在Rt △ABC 中,∠ACB =90°,点D 是边AB 的中点,连结CD ,将△BCD 沿直线CD 翻折得到△ECD ,连结AE .若AC =6,CD =5,则线段AE 的长为( )12.5A 13.5B 14.5C 11.5D10、(2018秋•扬中市期末)如图△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE 沿着直线CE翻折,得到△CDE,连接AD,则线段AD的长等于()A.8 B.C.D.1011、(2018•西华县一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为.13、如图,△ABC中,∠BAC=90°,AB=5,AC=12,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.B.9 C.D.8111.37A 10111.37B 5111.37C 6111.37D三角形翻折变换专题训练二答案解析1.如图.△ABC中.∠ABC=90°,BC=l.将△ABC绕点B逆时针旋转得△A'BC'.C'恰好落在AC边的中点处.连接AA',取AA'的中点D,则C'D的长为(A )A .B .374C.52D.3542.(2019•大连二模)如图,在△ABC中,∠ACB=90°,AC=BC=4,点D在AC上,点E在AB上,将△ADE沿直线DE翻折,点A的对称点A'落在BC上,在CD=1,则A'B'的长是()A.1 B.C.D.解:∵AC=4,CD=1,∴AD=AC﹣CD=3.∵将△ADE沿直线DE翻折,点A的对称点A'落在BC上,∴A′D=AD=3.在Rt△A′CD中,∵∠C=90°,∴A′C===2,∴A′B=BC﹣A′C=4﹣2.故选:D.3.如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在边BC上,且∠DAE=60°.将△ADE沿AE翻折,点D的对应点是D',连接CD',若BD=4,CE=5,则DE的长为(B)A.92B.21C.13D.234.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则△B′DE的面积为(B)A.925B.1825C.1225D.2425第6题5、(2019•重庆一中三模)等腰Rt △ABC,AC=BC=4,点E,F 分别在边AB 、BC 上,将三角形沿EF 翻折,使得B 刚好落在AC 的中点D 处,则EF 的长为( A )A .556B .56C .253D .253解:作EG ⊥BC 于G ,作DH ⊥AB 于H ,如图所示:则∠BGE =∠EGF =∠AHD =90°, 由折叠的性质得:DF =BF ,△BEF ≌△DEF ,∵D 是AC 的中点,∴CD =AD =AC =2, ∵等腰Rt △ABC ,AC =BC =4,∴∠A =∠B =45°,AB =4,∴△ADH 是等腰直角三角形,∴DH =AH =AD =,设DF =BF =x ,在Rt △CDF 中,CF =BC ﹣BF =4﹣x ,由勾股定理得:x 2=(4﹣x )2+22,解得:x =,∴BF =,CF =, 设EG =y ,∵EG ⊥BC ,∴△BEG 是等腰直角三角形,∴BG =EG =y ,BE =y ,则AE =4﹣y ,∵四边形BFDE 的面积=△ABC 的面积﹣△CDF 的面积﹣△ADE 的面积, ∴2××y =×4×4﹣××2﹣(4﹣y )×,解得:y =,∴BG =EG =,∴FG =BF =BG =,在Rt △EFG 中,由勾股定理得:EF ==;6.已知Rt △ABC 中,∠ACB =90°,AC =8,BC =4,D 为斜边AB 上的中点,E 是直角边AC 上的一点,连接DE ,将△ADE 沿DE 折叠至△A ′DE ,A ′E 交BD 于点F ,若△DEF 的面积是△ADE 面积的一半,则DE 的长为( C )..2A .25B .22C .4DM解:如图连接BE第5题图BCE∵∠ACB =90°,AC =8,BC =4∴AB =4 ∵D 是AB 中点∴BD =AD =2∵折叠∴AD =A 'D =2,S △ADE =S △A 'DE ∵S △DEF =S △ADE ∴AD =2DF ,S △DEF =S △A 'DE∴DF =,A 'F =EF ∴BF =DF =,且A 'F =EF∴A 'D =BE = ∴根据勾股定理得:CE =2 作DM AE 可得DE=227.(2018•崇明县二模)如图,△ABC 中,∠BAC =90°,AB =6,AC =8,点D 是BC 的中点,将△ABD ,将△ABD 沿AD 翻折得到△AED ,联结CE ,那么线段CE 的长等于( ) A .125B .135C .145D .165解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =8,AB =6, ∴BC ==10,∵CD =DB ,∴AD =DC =DB =5,∵BC •AH =AB •AC ,∴AH =,∵AE =AB ,∴点A 在BE 的垂直平分线上.∵DE =DB =DC ,∴点D 在BE 使得垂直平分线上,△BCE 是直角三角形,∴AD 垂直平分线段BE ,∵AD •BO =BD •AH ,∴OB =, ∴BE =2OB =,在Rt △BCE 中,EC ===,8.(2018秋•坪山区期末)如图,在Rt △ABC 中,∠ACB =90°,AC =,BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( ). A . 22-B .32-C .22D .23解:∵∠ACB =90°,AC =,BC =,∴AB ==3 ∵S △ABC ==∴3×CE =×∴CE =∵BE ==2 ∵折叠∴BF =B 'F ,∠ACE =∠DCE ,∠BCF =∠B 'CF ,∵∠ACE +∠DCE +∠BCF +∠B 'CF =90°∴∠DCE +∠FCB '=45° ∴∠FCE =45°,且CE ⊥AB ∴∠ECF =∠EFC =45°∴EF =EC =∴BF =B 'F =BE ﹣EF =2﹣9.(2018•沙坪坝区模拟)如图,在Rt △ABC 中,∠ACB =90°,点D 是边AB 的中点,连结CD ,将△BCD 沿直线CD 翻折得到△ECD ,连结AE .若AC =6,CD =5,则线段AE 的长为( )12.5A 13.5B 14.5C 11.5D解:如图,连接BE ,延长CD 交BE 与点H ,作CF ⊥AB ,垂足为F .∵在Rt △ABC 中,∠ACB =90°,点D 是边AB 的中点,CD =5,∴AD =DB =CD =5,AB =10. ∵AC =6,∴BC ==8.∵S △ABC =AC •BC =AB •CF ,∴×6×8=×10×CF ,解得CF =.∵将△BCD 沿直线CD 翻折得到△ECD ,∴BC =CE ,BD =DE ,∴CH ⊥BE ,BH =HE .∵AD =DB =DE ,∴△ABE 为直角三角形,∠AEB =90°,∴S △ECD =S △ACD ,∴DC •HE =AD •CF , ∵DC =AD ,∴HE =CF =.∴BE =2EH =.∵∠AEB =90°,∴AE ===.10、(2018秋•扬中市期末)如图△ABC 中,∠ACB =90°,AC =8,BC =6,点E 是AB 中点,将△CAE 沿着直线CE 翻折,得到△CDE ,连接AD ,则线段AD 的长等于( )A.8 B.C.D.10解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,CE为中线,∴CE=AE=BE,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴=,即=,∴CF=6.4,∴EF=CF﹣CE=1.4,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=2.8,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,AD===,故选:C.11、(2018•西华县一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为或.解:如图1所示;点E与点F重合时.在Rt△ABC中,BC===4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AE,∠C=∠AED=90°.∵∠C=∠AED=∠CDE=90°,∴四边形ACDE为矩形.又∵AC=AE,∴四边形ACE′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=1.∵DF∥AC,∴△BDF∽△BCA.∴=,即.解得:DF=.点D在CB上运动,假设∠DBE=90°,则点A到BE的距离为BC的长,而AE=AC<BC,故∠DBE不可能为直角.故答案为:或.答案A13、(2018•高新区模拟)如图,△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .B .9C .D .解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =12,AB =5,∴BC ==13,∵CD =DB ,∴AD =DC =DB =6.5,∵BC •AH =AB •AC ,∴AH =,∵AE =AB ,∴点A 在BE 的垂直平分线上.∵DE =DB =DC ,∴点D 在BE 的垂直平分线上,△BCE 是直角三角形,∴AD 垂直平分线段BE , ∵AD •BO =BD •AH ,∴OB =,∴BE =2OB =,在Rt △BCE 中,EC ===,故选:D .8111.37A 10111.37B 5111.37C 6111.37D 答案D答案B11答案B。
2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
2020年中考数学二轮专项——B 卷综合能力提升专练(十三)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 若2a -3b =-1,则代数式4a 2-6ab +3b 的值为________.22. 定义[p ,q ]为一次函数y =px +q 的特征数.设点A ,B 分别为抛物线y =(x +m )(x -2)与x ,y 轴的交点,其中m >0,且△OAB 的面积为4,O 为原点,图象过A ,B 两点的一次函数的特征数为________.23. 如图,矩形ABCD 中,AB =1,BC =3,以点B 为圆心,BD 长为半径画弧,交BC 延长线于点M ,以点D 为圆心,CD 长为半径画弧,交AD 于点N ,则图中阴影部分的面积是________.第23题图24. 如图,Rt △ABC 中,∠ACB =90°,AC =2,BC =4,CD 是△ABC 的中线,E 是边BC 上一动点,将△BED 沿ED 折叠,点B 落在点F 处,EF 交线段CD 于点G ,当△DFG 是直角三角形时,CE =________.第24题图25. 已知点A 是双曲线y =1x 在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为一边向下作等边△ABC .随着点A 的运动,点C 的位置也不断变化,但始终在一个函数的图象上运动,则这个函数的表达式为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某蛋糕店出售网红“奶昔包”,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当以40元每件出售时,每天可以卖300件,当以55元每件出售时,每天可以卖150件.(1)求y 与x 之间的函数关系式;(2)如果规定每天“奶昔包”的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?27. (本小题满分10分)如图①,在△ABC中,∠BAC=90°,AB=AC,现在AC上截取一点D,在△ABC外作△CDE,其中DE=DC,CE⊥BC,连接BE,并取其中点F,连接AF,DF.(1)直接写出AF与DF的位置关系和∠DAF的度数;(2)若将图①中的△CDE绕点C顺时针方向旋转,点E落在BC的延长线上,其余条件不变,如图②所示,请求出∠DAF的度数,并判断AF与DF的位置关系是否与(1)中的相同,若相同,请说明理由;若不相同,请给出新的结论并加以证明;(3)若将图①中的∠BAC=90°更改为∠BAC=60°,并同(2)一样将△CDE绕点C顺时针方向旋转,其余条件不变,如图③所示,请求出∠DAF的度数,并直接判断AF与DF的位置关系.第27题图28. (本小题满分12分)如图①,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,3),过点A作AB⊥y 轴,垂足为点B,连接OA,抛物线y=-x2-2x+c经过点A,与x轴正半轴交于点C.(1)求c的值;(2)如图②,将△OAB沿直线OA翻折,记点B的对应点为B′,向左平移抛物线,使点B′恰好落在平移后抛物线的对称轴上,求平移后的抛物线解析式;(3)如图③,连接BC,设点E在x轴上,点F在抛物线上,如果以点B、C、E、F为顶点的四边形是平行四边形,请直接写出点E的坐标.第28题图B 卷专练(十三)参考答案21. 1 【解析】∵2a -3b =-1,∴4a 2-6ab +3b =2a (2a -3b )+3b =-2a +3b =-(2a -3b )=1.22. [-2,-4]或[2,-4] 【解析】∵y =(x +m )(x -2),∴抛物线与x 轴的交点为A 1(-m ,0),A 2(2,0),与y 轴的交点为B (0,-2m ).若S △OBA 1=4,则12m ·2m =4,解得m =2(负值舍去).若S △OBA 2=4,则12×2×2m =4,解得m =2.∴当m =2时,满足题设条件.∴此时抛物线为y =(x +2)(x -2),它与x 轴的交点为(-2,0),(2,0),与y 轴的交点为(0,-4),∴一次函数为y =-2x -4或y =2x -4,∴特征数为[-2,-4]或[2,-4].23.7π12-32 【解析】∵矩形ABCD 中,AB =1,BC =3,∴BD =12+(3)2=2,∴tan ∠DBC =CD BC =33,∴∠DBC =30°,∴图中阴影部分的面积=90·π×1360+30·π×22360-12×1×3=7π12-32.24. 1或52-52 【解析】①如解图①,当∠DGF =90°时,作DH ⊥BC 于点H .在Rt △ACB 中,∵∠ACB =90°,AC =2,BC =4,∴AB =AC 2+BC 2=22+42=25,∵AD =DB ,∴CD =12AB =5,∵DH ∥AC ,AD =DB ,∴CH=BH ,∴DH =DG =12AC =1,∴CG =5-1,∵DC =DB ,∴∠DCB =∠B ,∴cos ∠DCB =cos ∠B =255,∴CE=CG cos ∠DCB =52-52;②如解图②,当∠GDF =90°,作DH ⊥BC 于点H ,DK ⊥FG 于点K .易证四边形DKEH 是正方形,可得EH =DH =1,∵CH =BH =2,∴CE =1.综上所述,满足条件的CE 的值为1或52-52.图① 图②第24题解图25. y =-3x (x >0) 【解析】设A (a ,1a ),∵点A 与点B 关于原点对称,∴OA =OB ,∵△ABC 为等边三角形,∴AB ⊥OC ,OC =3AO ,∵AO =a 2+(1a)2,∴CO =3a 2+3a2,如解图,过点C 作CD ⊥x 轴于点D ,∵∠AOD+∠COD =∠COD +∠OCD =90°,∴∠AOD =∠OCD ,设点C 的坐标为(x ,y ),则tan ∠AOD =tan ∠OCD ,即1aa =x -y,解得y =-a 2x ,在Rt △COD 中,CD 2+OD 2=OC 2,即y 2+x 2=3a 2+3a 2,将y =-a 2x 代入得,(a 4+1)x 2=3×a 4+1a 2,解得x 2=3a 2,∴x =3a ,y =-a 2x =-3a ,则xy =-3,∴y =-3x(x >0).第25题解图26. 解:(1)设y 与x 之间的函数关系式为y =kx +b ,由题意得⎩⎪⎨⎪⎧40k +b =30055k +b =150,解得⎩⎪⎨⎪⎧k =-10b =700.∴y 与x 之间的函数关系式为y =-10x +700; (2)由题意,得-10x +700≥240, 解得x ≤46, 又∵x ≥30, ∴30≤x ≤46,设每天获取的利润为W 元,则W =(x -30)·y =(x -30)·(-10x +700)=-10x 2+1000x -21000=-10(x -50)2+4000, ∵-10<0,∴当x <50时,W 随x 的增大而增大,∴当x =46时,W 最大=-10×(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元. 27. 解:(1)AF ⊥DF ,∠DAF =45°;【解法提示】如解图①,延长DF 与AB 交于点G , ∵∠BAC =90°,AB =AC , ∴∠ACB =45°, 又∵DE =DC ,CE ⊥BC , ∴∠CDE =90°,即DE ⊥CD . ∵BA ⊥AC ,DE ⊥CD , ∴AB ∥DE , ∴∠GBF =∠DEF . 又∵点F 为BE 的中点, ∴BF =EF ,在△GBF 和△DEF 中, ⎩⎪⎨⎪⎧∠GBF =∠DEF BF =EF ∠GFB =∠DFE, ∴△GBF ≌△DEF (ASA ), ∴GF =DF ,BG =DE =CD ,∴AG =AD , 又∵∠BAC =90°, ∴AF ⊥DF ,∠DAF =45°.第27题解图①(2)∠DAF =45°,AF ⊥DF ,位置关系与(1)中的相同.理由如下:如解图②,延长DF 到点G ,使得GF =DF ,连接BG ,AG ,AD , 在△BGF 和△EDF 中, ⎩⎪⎨⎪⎧BF =EF ∠BFG =∠EFD GF =DF, ∴△BGF ≌△EDF (SAS),∴GB =DE =DC ,∠GBF =∠DEF =45°, ∴∠ABG =∠ACD =90°, 在△ABG 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABG =∠ACD BG =CD, ∴△ABG ≌△ACD (SAS), ∴AG =AD ,∠BAG =∠CAD , ∴∠GAD =∠BAC =90°, ∴∠DAF =45°,AF ⊥DF ;第27题解图②(3)∠DAF =30°,AF ⊥DF .【解法提示】如解图③,延长DF 到点G ,使得GF =DF ,连接BG ,AG . 由题意易得,△ABC 是等边三角形,∠DEC =∠DCE =30°. 在△BGF 和△EDF 中, ⎩⎪⎨⎪⎧BF =EF ∠BFG =∠EFD GF =DF, ∴△BGF ≌△EDF (SAS),∴GB =DE =DC ,∠GBF =∠DEF =30°, ∴∠ABG =∠ACD =90°,在△ABG 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABG =∠ACD BG =CD, ∴△ABG ≌△ACD (SAS), ∴AG =AD ,∠BAG =∠CAD , ∴∠GAD =∠BAC =60°, 又∵GF =DF ,∴AF ⊥DF ,∠DAF =30°.第27题解图③28. 解:(1)将点A (-2,3)代入抛物线解析式得3=-(-2)2-2×(-2)+c , 解得c =3;(2)如解图,过点B ′作B ′D ⊥x 轴交x 轴于点D ,延长BA 交直线B ′D 于点E . 由翻折的性质可知,△AB ′O ≌△ABO , ∴∠AB ′O =∠ABO =90°,AB ′B ′O =AB BO =23, ∵∠AEB ′=∠AB ′O =90°, ∴∠EAB ′+∠EB ′A =90°, ∠EB ′A +∠DB ′O =90°, ∴∠EAB ′=∠DB ′O , ∴△AB ′E ∽△B ′OD , ∴AE B ′D =EB ′DO =AB ′B ′O =23, 设AE =2x ,则B ′D =3x ,EB ′=3-3x ,DO =2+2x , ∴EB ′DO =3-3x 2+2x =23, 解得x =513,∴DO =2+2x =3613,即平移后的抛物线对称轴为x =-3613,∵原抛物线为y =-x 2-2x +3=-(x +1)2+4, ∴平移后的抛物线解析式为y =-(x +3613)2+4;第28题解图(3)点E 的坐标为(-1,0)或(3,0)或(-2-7,0)或(-2+7,0).【解法提示】∵点B 、C 在抛物线y =-x 2-2x +3上,点B 在y 轴上,点C 在x 轴上, ∴B (0,3),C (1,0).①当点F 在x 轴上方时,BF ∥CE 且BF =CE , ∴y F =y B =3,∴-x 2-2x +3=3,解得x 1=0,x 2=-2,∴此时点F 的坐标为(-2,3)((0,3)与点B 重合,舍去)), ∴CE =BF =2,∴点E 的坐标为(-1,0)或(3,0);②当点F 在x 轴下方时,BF 被CE 平分,故点F 纵坐标与点B 纵坐标互为相反数,把y =-3代入抛物线,得-3=-x 2-2x +3,解得x =-1±7,∴点F 的横坐标为-1±7, ∴BF 的中点横坐标为-1±72,设点E 的坐标为(x ,0), ∴1+x 2=-1±72, ∴x =-2±7,∴点E 的坐标为(-2-7,0)或(-2+7,0).综上所述,点E 的坐标为(-1,0)或(3,0)或(-2-7,0)或(-2+7,0).。
2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。
O ECDA BP四边形翻折变换专题训练二1.如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点F、G分别在边AD、BC上,则折痕FG的长度为( )A. 25B. 35C. 26D. 362.如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是()A.1B.3 C.6D.3.如图,矩形ABCD中,AB = 8,BC = 6,点P为AD边上一点,将△ABP沿着BP翻折至△EBP,PE与CD 交于点O,且OE = OD,则AP的长为()A.4.8 B.5 C. D.44. (2018•河南模拟)如图所示,ABCD为边长为1的正方形,E为BC边的中点,沿AP折叠使D点落在AE 上的H处,连接PH并延长交BC于F点,则EF的长为()525.A-55.B-.353C-1.4DB′GFEDCBA5.如图,在四边形ABCD中,AD∥BC,∠A=90°,∠ADC=120°,连接BD,把△ABD沿BD翻折,得到△A′BD,连接A′C,若AB=3,∠ABD=60°,则点D到直线A′C的距离为()A.B.C.D.6、(2019•大渡口区模拟)如图,矩形ABCD中,AB=4,AD=6,点E为BC上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EHG,且F落在线段EG上,当GF=GH时,则BE 的长为( )..1 A3.2B.2C5.2D7.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=3,AD=4,则FG的长为()A.B.C.D.8、(2018•周村区二模)一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M (图2),则EM的长为()A.2 B.C.D.9、(2018秋•市南区期末)如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG =2,BG =6,则AF 的长为( )26.7A 18.7B .4C .5D10. (2019春•沧州期末)矩形ABCD 中,AB =3,CB =2,点E 为AB 的中点,将矩形右下角沿CE 折叠,使点B 落在矩形内部点F 位置,如图所示,则AF 的长度为( ) A .B .2C .D .11. (2018•大连)如图,矩形ABCD 中,AB =2,BC =3,点E 为AD 上一点,且∠ABE =30°,将△ABE 沿BE 翻折,得到△A ′BE ,连接CA ′并延长,与AD 相交于点F ,则DF 的长为 .12.(2018秋•南岸区校级期末)如图,E 为矩形ABCD 边AD 上一点,连接BE ,将△ABE 沿BE 翻折得到△FBE ,连接AF ,过F 作FH ⊥BC 于F ,若AB =3,FH =1,则AF 的长度为 .A B C DOECD A BP四边形翻折变换专题训练二答案解析1.如图,将边长为4的正方形纸片ABCD 折叠,使得点A 落在边CD 的中点E 处,折痕为FG ,点F 、G 分别在边AD 、BC 上,则折痕FG 的长度为( A ) A. 25 B. 35 C. 26 D. 362.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将△BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若BE =2,则△CDF 的面积是( B )A .1B .3C .6D .3.如图,矩形ABCD 中,AB = 8,BC = 6,点P 为AD 边上一点,将△ABP 沿着BP 翻折至△EBP ,PE 与CD 交于点O ,且OE = OD ,则AP 的长为( A )A .4.8B .5C .D .44. (2018•河南模拟)如图所示,ABCD 为边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的H 处,连接PH 并延长交BC 于F 点,则EF 的长为( )B′G FEDCB A第3题图525.A - 55.B - .353C - 1.4D 解:连接AF .∵四边形ABCD 是正方形,∴AD =BC =1,∠B =90°, ∵BE =EC =,∴AE ==,由翻折不变性可知:AD =AH =AB =1, ∴EH =﹣1,∵∠B =∠AHF =90°,AF =AF ,AH =AB , ∴Rt △AFB ≌Rt △AFH ,∴BF =FH ,设EF =x ,则BF =FH =﹣x , 在Rt △FEH 中,∵EF 2=EH 2+FH 2, ∴x 2=(﹣x )2+(﹣1)2,∴x =,故选:A .5.如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,∠ADC =120°,连接BD ,把△ABD 沿BD 翻折,得到△A ′BD ,连接A ′C ,若AB =3,∠ABD =60°,则点D 到直线A ′C 的距离为( )A .B .C .D .解:过点D 作DE ⊥A ′C 于E ,过A '作A 'F ⊥CD 于F ,如图所示: ∵AD ∥BC ,∴∠ADB =∠DBC ,∠ADC +∠BCD =180°,∠BCD =180°﹣120°=60°, ∵∠ABD =60°,∴∠ADB=30°,∴BD=2AB=6,AD=AB=3,∠BDC=∠ADC﹣∠ADB=120°﹣30°=90°,∠DBC=30°,∴CD=tan∠DBC•BD=tan30°×6=×6=2,由折叠的性质得:∠A'DB=∠ADB=30°,A'D=AD=3,∴∠A'DC=120°﹣30°﹣30°=60°,∵A'F⊥CD,∴∠DA'F=30°,∴DF=A'D=,A'F=DF=,∴CF=CD﹣DF=2﹣=,∴A'C===,∵△A'CD的面积=A'C×DE=CD×A'F,∴DE===,即D到直线A′C的距离为;故选:C.6、(2019•大渡口区模拟)如图,矩形ABCD中,AB=4,AD=6,点E为BC上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EHG,且F落在线段EG上,当GF=GH时,则BE 的长为( )..1 A3.2B.2C5.2D解:如图,连接AH,由折叠可得,BE=FE,EC=EG,GH=CH,∠AEB=∠AEF,∠CEH=∠GEH,∴∠AEH=∠BEC=90°,∴Rt△AEH中,AE2+EH2=AH2,①设BE=x,则EF=x,CE=6﹣x=EG,∴GF=6﹣2x=GH=CH,DH=4﹣(6﹣2x)=2x﹣2,∵∠B =∠C =∠D =90°,∴Rt △ABE 中,AE 2=EB 2+AB 2=x 2+42,Rt △CEH 中,HE 2=EC 2+CH 2=(6﹣x )2+(6﹣2x )2, Rt △ADH 中,AH 2=DH 2+AD 2=(2x ﹣2)2+62,代入①式,可得x 2+42+(6﹣x )2+(6﹣2x )2=(2x ﹣2)2+62, 解得x 1=2,x 2=12(舍去),∴BE 的长为2,故答案为:.C .6、将矩形ABCD 折叠,点A 与对角线BD 上的点G 重合,折痕BE 交AD 于点E ,点C 与对角线上的点H 重合,折痕DF 交BC 于点F .若AB =6,AD =8,则EH 的长为( )..23A .13B .3C .22D解:∵AB =6,AD =8, ∴BD ==10,∴设EG =x ,则AE =x ,DE =(8﹣x ),AB =BG =6,则DG =10﹣6=4,在Rt △DEG 中,DG 2+EG 2=DE 2,∴42+x 2=(8﹣x )2,解得:x =3,∴EG =3,∵DH =BG =6, ∴HG =2,∴EH ==.故答案为:B .7.如图,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O .若AB =3,AD =4,则FG 的长为( )A .B .C .D .解:由折叠的性质可知:∠DBC =∠DBE , 又∵AD ∥BC ,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=3,AD=4,∴BD=5.∴OB=BD=.设DF=BF=x,∴AF=AD﹣DF=4﹣x.∴在直角△ABF中,AB2+AF2=BF2,即32+(4﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.故选:D.8、(2019•桂林二模)如图,一张矩形纸片ABCD,其中AD=10cm,AB=6cm,先沿对角线BD对折,使点C 落在点C′的位置,BC′交AD于点G(图1),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为()A.B.C.D.解:∵点D与点A重合,得折痕EN,∴DM =5cm ,∵AD =10cm ,AB =6cm , 在Rt △ABD 中,BD =cm ,∵EN ⊥AD ,AB ⊥AD , ∴EN ∥AB ,∴MN 是△ABD 的中位线, ∴DN =BD =cm ,在Rt △MND 中, ∴MN ==3(cm ),由折叠的性质可知∠NDE =∠NDC , ∵EN ∥CD , ∴∠END =∠NDC , ∴∠END =∠NDE ,∴EN =ED ,设EM =x ,则ED =EN =x +3,由勾股定理得ED 2=EM 2+DM 2,即(x +3)2=x 2+52,解得x =,即EM =cm .故选:B .9、(2018秋•市南区期末)如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG =2,BG =6,则AF 的长为( A )26.7A 18.7B .4C .5D 解:作FH ⊥BD 于H , 由折叠的性质可知,FG =FA , 由题意得,BD =DG +BG =8, ∵四边形ABCD 是菱形,∴AD =AB ,∠ABD =∠CBD =∠ABC =60°, ∴△ABD 为等边三角形, ∴AD =BD =8,设AF=x,则FG=x,DF=8﹣x,在Rt△DFH中,∵∠FDH=60°,∴DH=(8﹣x)=4﹣x,FH=(8﹣x),∴HG=2﹣DH=x﹣2,在Rt△FHG中,FG2=FH2+GH2,即x2=(4﹣x)2+(x﹣2)2,解得:x=,∴AF的长为,10. (2019春•沧州期末)矩形ABCD中,AB=3,CB=2,点E为AB的中点,将矩形右下角沿CE折叠,使点B落在矩形内部点F位置,如图所示,则AF的长度为()A.B.2 C.D.解:如图中,作EM⊥AF,则AM=FM,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,在Rt△ECB中,EC==,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=,故选:A.11.(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,12.(2018秋•南岸区校级期末)如图,E为矩形ABCD边AD上一点,连接BE,将△ABE沿BE翻折得到△FBE,连接AF,过F作FH⊥BC于F,若AB=3,FH=1,则AF的长度为2.解:设AF与BH交于G,∵将△ABE沿BE翻折得到△FBE,∴BF=AB=3,∵FH⊥BC,∴BH==2,∵四边形ABCD是矩形,∴∠ABC=90°,∴AB∥FH,∴△ABG∽△FHG,∴==3,∴BG=,HG=,∴AG==,∴FG=,∴AF=AG+GF=2,A B C D答案A。
专题05 图形的运动之翻折教学重难点1.理解图形翻折的概念和性质;2.培养学生利用图形翻折的性质解决相关问题;3.培养学生体验动感过程和动态思维能力;4.培养学生分析问题、解决问题的能力。
一.图形翻折的性质和特征:【备注】:根据第一个图回顾图形翻折的特征,可以先让学生自己说说,再分析填空;再根据第二个图总结图形翻折的常见题型,为后面例题讲解铺垫基础;时间大概5分钟。
二.图形翻折的常见题型:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题3-5分钟。
【参考教法】:翻折面积有关题目可参考以下教法引导学生分析问题、解决问题1.你能寻找一下哪一条是翻折线段吗?提示:让学生说说。
2.挖掘题目中的特殊条件。
题目中有哪些角相等?哪些边相等?找找看。
3.根据题意,计算求解相关图形的面积。
4.准确画出翻折后的图形是解题的关键。
例题讲解与具体思路分析1.(2020年协和双语学校一模)如图,在等腰△ABC中,AB=AC=4,BC=6点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.【整体分析】只要证明△ABD∽△MBE,得AB BDBM BE=,只要求出BM、BD即可解决问题.【满分解答】∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴CA CD CB AC=∴464CD =,∴CD=83,BD=BC-CD=6-83=103,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴AD DMBD DA=,即8310833DM=,∴DM=3215,MB=BD-DM=103-3215=65,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴AB BD BM BE=, ∴6105314BM BD BE AB ⋅⋅===. 【点睛】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题.2.(2020杨浦区上海控江中学附属民办学校一模)在Rt ABC V 中,∠A =90°,AC =4,AB a =,将ABCV 沿着斜边BC 翻折,点A 落在点1A 处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交1A B 所在直线于点F ,联结1A E ,如果1A EF △为直角三角形时,那么a =____________【整体分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF=90°时,如图1,根据对称的性质和平行线可得:A 1C= A 1E=4,根据直角三角形斜边中线的性质得:BC=2 A 1E=8,最后利用勾股定理可得AB 的长;②当∠A 1FE=90°时,如图2,证明△ABC 是等腰直角三角形,可得AB=AC=4.【满分解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF=90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C=AC=4,∠ACB=∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A1EF,∴AC∥A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C= A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2 A1E=8,由勾股定理得:AB2=BC2-AC2,∴②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CB A1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4;故答案为: 4.【点睛】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.【备注】:本部分对前面例题中讲到的解题方法进行归类总结,以引导式总结出,建议时间4分钟左右。
标答CBA Oyx币仍仅州斤爪反市希望学校第二轮第21题图形变换问题专题训练【四月调考真题重现】如图,在9×7的小正方形网格中,△ABC 的顶点A 、B 、C 在网格的格点上,将△ABC 向左平移3个单位、再向上平移3个单位得到△A ’B ’C ’;将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90°得到11A BC ,第2次,再将11A BC 绕点1A 顺时针旋转90°得到△A 1B 1C 1,第3次,将△A 1B 1C 2绕点C 2顺时针旋转90°得到222A B C ,第4次,将222A B C 绕点2B 顺时针旋转90°得到323A B C ,依次旋转下去。
〔1〕在网格中画出△A ’B ’C ’和222A B C ;〔2〕请直接写出至少在第几次旋转后所得的三角形刚好为△A ’B ’C ’。
【针对性训练】1、〔此题7分〕如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(0,1)、B(﹣1,1)、C(﹣1,3) .⑴画出△ABC 关于x 轴对称的△A 1B 1C 1,并直接写出点C 1的坐标; ⑵画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2, 并直接写出点C 2的坐标;⑶在〔2〕的条件下,线段AB 扫过的面积为 . 2、〔此题7分〕如图,在边长为1的小正方形组成的网格,直角梯形ABEF 的顶点均在格点上,请按要求完成以下各题: 〔1〕请在图中拼上一个直角梯形,使它与梯形ABEF 构成一个等腰梯形ABCD ;〔2〕将等腰梯形ABCD 绕点C 按顺时针方向旋转90°,画出相应的图形A1B1CD1;〔3〕点A旋转到点A1时,点A所经过的路线长为.〔结果保存π〕3、〔此题7分〕如图,方格纸中的每个小方格都是边长为1的正方形,我们把顶点在网格交点上的三角形称为“格点三角形〞,图中的△ABC是格点三角形.在建立平面直角坐标系后,点A的坐标为(2,2).(1)把△ABC平移,使点C到A点位置,得到△A1B1C1,画出△A1B1C1。
2020中考数学结合压轴专题:折叠问题与动点问题(含答案)1.如图①,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图②,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN=_____ .第1题图132.边长为4的菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在直线上的C′处,得到经过点D的折痕DE,则CE=________.43-43.如图,在矩形ABCD中,点E是AD的中点,连接BE,将∠ABE沿着BE翻折得到∠FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则BH=_______.第2题图第3题图7584.如图,在矩形ABCD中,点E是AD的中点,将∠ABE沿BE折叠后得到∠GBE,延长BG交CD于点F,若CF=1,FD=2,则BC 的长为________.第4题图第4题解图265.如图,在∠ABCD中,AC与BD相交于点O,∠AOB=75°,BD=4,将∠ABC沿AC所在直线翻折,若点B的落点记为E,连接BE 与OA交于点F,则OF的长度为______.第5题图6-226.如图①,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)如图②,M为AD的中点,在AB上取一点N,使∠BNC=2∠DCM.①若N为AB中点,BN=2,求CN的长;②若CM=3,CN=4,求BC的长.第题图(1)证明:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD是矩形.(2)解:如解图①中,延长CM、BA交于点E.第6题解图①∵AN =BN =2, ∴AB = CD =4, ∵AE ∥DC , ∴∠E =∠MCD , 在△AEM 和△DCM 中, ⎩⎪⎨⎪⎧∠E =∠MCD ∠AME =∠DMC AM =DM, ∴△AME ≌△DMC , ∴AE =CD =4,∵∠BNC =2∠DCM =∠NCD , ∴∠NCE =∠ECD =∠E , ∴CN =EN =AE +AN = 4+2= 6. ②如解图②中,延长CM 、BA 交于点E .第6题解图②由①可知,△EAM ≌△CDM ,EN =CN , ∴EM = CM = 3,EN = CN = 4,设BN = x ,则BC 2= CN 2-BN 2= CE 2-EB 2, ∴42-x 2=62-(x +4)2, ∴x =12,∴BC =CN 2-BN 2=42-(12)2= 372.7. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B 、C 重合),以AD为边作等边△ADE (顶点A 、D 、E 按逆时针方向排列),连接CE .(1)如图①,当点D 在边BC 上时,求证:①BD =CE ,②AC =CE +CD ;第7题图(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,结论AC =CE +CD 是否成立?若不成立,请写出AC 、CE 、CD 之间存在的数量关系,并说明理由;(3)如图③,当点D 在边BC 的反向延长线上且其他条件不变时,补全图形,并直接写出AC 、CE 、CD 之间存在的数量关系.(1)证明:①∵△ABC 和△ADE 都是等边三角形, ∴AB =AC =BC ,AD =AE , ∠BAC = ∠DAE = 60°,∴∠BAC -∠CAD =∠DAE -∠CAD ,即∠BAD = ∠CAE , 在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ∠BAD = ∠CAE AD =AE, ∴△ABD ≌△ACE (SAS), ∴BD =CE ;②∵BC =BD +CD ,AC =BC ,BD =CE , ∴AC =CE +CD ;(2)解:AC =CE +CD 不成立,AC 、CE 、CD 之间存在的数量关系是:AC =CE -CD . 理由:∵△ABC 和△ADE 都是等边三角形, ∴AB =AC =BC ,AD =AE , ∠BAC =∠DAE =60°,∴∠BAC +∠CAD = ∠DAE +∠CAD , 即∠BAD = ∠CAE , 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ∠BAD =∠CAE AD =AE, ∴△ABD ≌△ACE (SAS), ∴BD =CE , ∵BC =BD -CD , ∴BC =CE -CD , ∵AC =BC , ∴AC =CE -CD ;(3)解:补全图形如解图,第7题解图AC、CE、CD之间存在的数量关系是:AC=CD-CE.8.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连接CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=12时,求CG的长;(3)连接AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第8题图(1)证明:如解图,在正方形ABCD中,DC=BC,∠D=∠CBA=∠CBF=∠DCB =90°,第8题解图∴∠1+∠2= 90°, ∵CF ⊥CE , ∴∠2+∠3= 90°, ∴∠1= ∠3, 在△CDE 和△CBF 中, ⎩⎪⎨⎪⎧∠D = ∠CBF DC =BC ∠1= ∠3, ∴△CDE ≌△CBF (ASA);(2)解:在正方形ABCD 中,AD ∥BC , ∴△GBF ∽△EAF , ∴BG AE = BFAF, 由(1)知,△CDE ≌△CBF , ∴BF = DE = 12,∵正方形的边长为1, ∴AF =AB +BF = 32,AE =AD -DE = 12,∴BG 12=1232, ∴BG =16,∴CG =BC -BG = 56;(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,∴AD-AE=BC-CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CF A=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.9.如图,已知△ABC中,AB=10 cm,AC=8 cm,BC=6 cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2 cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).第9题图(1)当t为何值时,PQ∥BC;(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值;(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.解:(1)由题意知BP=2t,AP=10-2t,AQ=2t,∵PQ∥BC,∴△APQ ∽△ABC , ∴AP AB =AQ AC, 即10-2t 10=2t 8,解得t =209, 即当t 为209s 时,PQ ∥BC ;(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm , ∴AB 2=AC 2+BC 2, ∴△ABC 为直角三角形, ∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D ,第9题解图则PD ∥BC , ∴△APD ∽△ABC , ∴AP AB =PD BC, ∴10-2t 10=PD6, ∴PD =35(10-2t ),∴S =12AQ ·PD =12 ·2t ·35(10-2t )=-65t 2+6t =-65(t -52)2+7.5,∵-65<0,抛物线开口向下,有最大值,∴当t =52 秒时,S 有最大值,最大值是7.5 cm 2;(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =12S △ABC ,即-65t 2+6t =12×12×8×6,整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0, ∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.10. 已知:如图,在矩形ABCD 中,AB = 6 cm ,BC = 8 cm ,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为 1 cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s)(0<t <6),解答下列问题:(1)当t 为何值时,AP = PO ;(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.第10题图解:(1)∵在矩形ABCD 中,AB =6 cm ,BC =8 cm ,∠ABC =90°, ∴AC =10 cm ,AO =12AC =5 cm ,如解图①,过点P 作PM ⊥AO ,第10题解图①∵AP =PO =t , ∴AM =12AO =52 cm ,∵∠PMA =∠ADC =90°, ∠P AM =∠CAD , ∴△APM ∽△ACD , ∴AP AC =AM AD ,即t 10=528, 解得t =258,即t =258s 时,AP =PO ;(2)如解图②,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3 cm.由矩形的性质可知∠PDO =∠EBO ,DO =BO , 在△DOP 和△BOE 中, ⎩⎪⎨⎪⎧∠PDO =∠EBOOD =OB∠DOP =∠BOE, ∴△DOP ≌△BOE (ASA), ∴BE =PD =(8-t )cm ,则S △BOE =12BE ·OH =12×(8-t )×3=12-32t .∵FQ ∥AC ,第10题解图②∴△DFQ ∽△DOC ,相似比为DQ DC =t6,∴S △DFQ S △DOC =t 236, ∵S △DOC =14S 矩形ABCD =14×6×8=12 cm 2,∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC -S △BOE -S △DFQ =12×6×8-(12-32t )-t 23=-13t 2+32t +12,∴S 与t 的函数关系式为S =-13t 2+32t +12;(3)存在.如解图③,过点D 作DM ⊥PE 于点M ,作DN ⊥AC 于点N , 易证△ADN ∽△ACD , ∴DN CD =AD AC ,即DN 6=810, ∴DN =245,第10题解图③∵∠POD =∠COD ,∴DM =DN =245,∴ON =OM =OD 2-DN 2=75,∵S △POD =12OP ·DM ,S △POD =12×12PD ·DC ,∴OP ·DM =3PD , ∴OP =5-58t ,∴PM =185-58t ,∵PD 2=PM 2+DM 2, 即(8-t )2=(185-58t )2+(245)2,解得t 1=16(不合题意,舍去),t 2=11239,∴当t =11239s 时,OD 平分∠COP .11. 已知四边形ABCD 是菱形,AB = 4,∠ABC = 60°,∠EAF 的两边分别与射线CB ,DC相交于点E ,F ,且∠EAF = 60°.(1)如图①,当点E 是线段CB 的中点时,直接写出线段AE ,EF ,AF 之间的数量关系; (2)如图②,当点E 是线段CB 上任意一点时(点E 不与点B 、C 重合),求证:BE = CF ; (3)如图③,当点E 在线段CB 的延长线上,且∠EAB = 15°时,直接写出点F 到BC 的距离.第11题图(1)解:AE = EF = AF ;【解法提示】如解图①,连接AC ,第11题解图①∵四边形ABCD 是菱形,∠ABC = 60°, ∴∠BCD = 120°, ∴∠ACE = ∠ACF = 60°,∴AB = BC = AC ,即△ABC 为等边三角形, 又∵∠BAC = ∠1+∠2= 60°, ∠EAF = ∠2+∠3= 60°, ∴∠1= ∠3, 在△ABE 和△ACF 中, ⎩⎪⎨⎪⎧∠1= ∠3AB = AC∠ABE = ∠ACF , ∴△ABE ≌△ACF (ASA), ∴AE = AF , 又∵∠EAF = 60°, ∴△AEF 为等边三角形, ∴AE = EF = AF ;(2)证明:如解图②,连接AC ,由(1)知,AB = AC ,∠ACF = 60°,第11题解图②∵∠BAC = ∠4+∠5= 60°, ∠EAF = ∠5+∠6= 60°, ∴∠4= ∠6, 在△ABE 和△ACF 中, ⎩⎪⎨⎪⎧∠4= ∠6AB = AC∠ABE = ∠ACF , ∴△ABE ≌△ACF (ASA), ∴BE = CF ;(3)解:点F 到BC 的距离为3- 3.【解法提示】由(2)知,BE = CF ,如解图③,过点A 作AG ⊥CE 于点G ,过点F 作FH ⊥CE 于点H ,第11题解图③∵∠EAB = 15°,∠ABC = 60°, ∴∠BAG = 90°-∠ABC = 30°, ∴∠EAG = 15°+30°= 45°, ∴△AEG 为等腰直角三角形, 又∵AB = 4,∴AG = AB ·cos ∠BAG = 4×32= 23, ∴BG =AB 2-AG 2=42-(23)2= 2,∵EG = AG = 23,∴BE = EG -BG = 23-2, ∴CF = 23-2, ∵FH ⊥CE ,∴∠FCH = 180°-∠BCD = 60°,∴FH=CF ·sin∠FCH=(23-2)×32=3-3,∴点F到BC的距离为3- 3.12.在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.第12题图(1)问题猜想:如图①,若点E在线段CD上,试猜想AG与EG的数量关系和位置关系;(2)类比探究:如图②,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在图③中画出图形,并直接写出DE的长度.解:(1)由平移得EF=CD=AD,∵BD是正方形ABCD的对角线,∴∠ADB=∠CDB=45°,∵FG⊥BD,∴∠DGF=90°,∴∠GFD+∠CDB=90°,∴∠DFG=45°,∴GD = GF ,在△AGD 和△EGF 中,⎩⎪⎨⎪⎧AD = EF ∠ADG = ∠EFG DG = FG ,∴△AGD ≌△EGF (SAS), ∴AG = EG ,∠AGD = ∠EGF ,∴∠AGE = ∠AGD +∠DGE = ∠EGF +∠DGE = 90°, ∴AG ⊥EG ;(2)证明:由平移得EF =CD =AD , ∵BD 是正方形ABCD 的对角线, ∴∠ADB =∠CDB = 45°, ∵FG ⊥BD , ∴∠DGF = 90°, ∴∠GFD +∠CDB = 90°, ∴∠DFG =45°, ∴GD =GF ,在△AGD 和△EGF 中,⎩⎪⎨⎪⎧AD = EF ∠ADG = ∠EFG DG = FG ,∴△AGD ≌△EGF (SAS), ∴AG =EG ,∠AGD =∠EGF ,∴∠AGE =∠AGD-∠DGE =∠EGF-∠DGE =90°, ∴AG ⊥EG ;(3)画出图形如解图,DE = 2 3.第12题解图【解法提示】同(1)可得,AG=EG,AG⊥EG,∴∠GEA=45°,∵∠AGF=120°,∴∠AGB=∠EGF=30°,又∵∠GFD=45°,∴由外角性质得∠CEG=∠EFG+∠EGF=75°,∴∠AED=∠CEG-∠GEA=30°,在Rt△ADE中,AD=2,∴DE=2 3.。
中考数学二轮复习重难题型突破类型二平移旋转折叠问题中考数学二轮复习重难题型突破类型二平移旋转折叠问题类型二平移旋转折叠问题例1、如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论:①△BDF是等腰三角形;②DE= BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.其中一定正确的个数是( ).A.1B.2C.3D.4[解析]如图,分别过点D,E作BC的垂线DG,EH;连接AF,由于折叠是轴对称变分别是AB,AC的中点,即DE是△ABC的中位线,所以②DE= BC是正确的;由于折叠是轴对称变换知AD=DF,AE=EF,所以DA=DB=DF,所以①△BDF是等腰三角形是正确的;因DG∥AF∥EH,所以∠BDG=∠DAM,又因为DG是等腰三角形BDF的高,所以∠BDF=2∠DAM,同理∠CEF = 2 ∠EAM, 所以④∠BDF+∠FEC=2∠A是正确的;如图显然四边形ADFE不是菱形,③是错误的.[答案]C例2、下列图形中,是中心对称图形但不是轴对称图形的是( ).[解析]把一个图形沿着某一条直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形;把一个平面图形绕某一点旋转180°,如果旋转后的图形能和原图形互相重合,那么这个图形叫做中心对称图形.对照定义,可知A是轴对称图形,且有1条对称轴,但不是中心对称图形;B是中心对称图形,不是轴对称图形;C是轴对称图形,有1条对称轴,但不是中心对称图形;D既是中心对称图形又是轴对称图形,有4条对称轴.[答案]B例3、如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为 .[解析]作AM⊥x轴于点M.根据等边三角形的性质得OA=OB=2,∠AOB=60°,在Rt△OAM中,利用含30°角的直角三角形的性质求出OM=1,AM= ,从而求得点A的坐标为(1,),直线OA的解析式为y= x,当x=3时,y=3 ,所以点A′的坐标为(3,3 ),所以点A′是由点A向右平移2个单位,向上平移23个单位后得到的,于是得点B′的坐标为(4,2 ).[答案](4,23)例4、在Rt△ABC中,∠BAC=90°,∠B=30°,线段AD是BC边上的中线,如图1,将△ADC沿直线BC平移,使点D与点C重合,得到△FCE,如图2,再将△FCE绕点C顺时针旋转,设旋转角为α(0°<α≤90°),连接AF,DE.(1)在旋转过程中,当∠ACE=150°时,求旋转角α的度数;(2)探究旋转过程中四边形ADEF能形成哪些特殊四边形?请说明理由.[解析](1)由题意分析可知此问需分两种情况讨论:①点E和点D在直线AC两侧;②点E和点D在直线AC同侧;(2)在旋转过程中,总是存在AC=CE,DC=CE.由图形的的性质,较易证明.[答案]:(1)在图1中,∵∠BAC=90°,∠B=30°,∴∠ACE=∠BAC+∠B=120°.如图2,当点E和点D在直线AC两侧时,由于∠ACE=150°,∴α=150°-120°=30°.当点E和点D在直线AC同侧时,由于∠ACB=180°-∠BAC-∠B=60°,∴∠DCE=∠ACE-∠ACB=150°-60°=90°.∴α=180°-∠DCE=90°.∴旋转角α为30°或90°;(2)四边形ADEF能形成等腰梯形和矩形.∵∠BAC=90°,∠B=30°,∴AC= BC.又∵AD是BC边上的中线,∴AD=DC= BC=AC.∴△ADC为正三角形.①当α=60°时,如图3,∠ACE=120°+60°=180°.∵CA=CE=CD=CF,∴四边形ADEF为矩形.②当α≠60°时,∠ACF≠120°,∠DCE=360°-60°-60°-∠ACF≠120°.显然DE≠AF.∵AC=CF,CD=CE,∴2∠FAC+∠ACF=2∠CDE+∠DCE=180°.∵∠ACF+∠DCE=360°-60°-60°=240°,∴∠FAC+∠CDE=60°.∴∠DAF+∠ADE=120°+60°=180°.∴AF∥DE.又∵DE≠AF,AD=EF,∴四边形ADEF为等腰梯形.例5、如图,矩形纸片ABCD,将△AM P和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上的点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(2)如果AM=1,sin∠DMF= ,求AB的长.[解析](1)由矩形的性质得∠A=∠B=∠C=90°,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;(2)先证明MD=MQ,然后根据sin∠DMF= DFMD=35,设DF=3x,MD=5x,再分别表示出AP,BP,BQ,解:(1)△AMP∽△BPQ∽△CQD.∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°.由折叠的性质可知∠APM=∠EPM,∠EPQ=∠BPQ.∴∠APM+∠BPQ=∠EPM+∠EPQ=90°.∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP.∴△AMP∽△BPQ.同理:△BPQ∽△CQD.(2)∵AD∥BC,∴∠DQC=∠MDQ.由折叠的性质可知∠DQC=∠DQM.∴∠MDQ=∠DQM.∴MD=MQ.∵AM=ME,BQ=EQ,∴BQ=MQ-ME=MD-AM.∵sin∠DMF= ,则设DF=3x,MD=5x,则BP=PA=PE= ,BQ=5x-1. ∵△AMP∽△BPQ,∴ ,即,解得x= (舍去)或x=2,∴AB=6.A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().A.(4,)B.(3,)C.(4,)D.(3,)[答案]A[解析]如图,当点B的坐标为(2, 0),点A的横坐标为1.当点A’的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=.此时B′ .例7、图形的折叠:如图,在矩形ABCD中,AD=15,点E在边DC上,联结=3GD,那么DE=_____.[答案][解析]思路如下:如图,过点F作AD的平行线交AB于M,交DC于N.因为AD=15,当AD=3GD时,MF=AG=10,FN=GD=5.在Rt△AMF中,AF=AD=15,MF=10,所以AM=.设DE=m,那么NE=.由△AMF∽△FNE,得,即.解得m=.例8、图形的旋转:如图,已知Rt△ABC中,∠ABC=90°,AC=6,BC=4,将△ABC 绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF= .[答案] 5.[解析]思路如下:如图,作FH⊥AC于H.由于F是ED的中点,所以HF是△ECD的中位线,所以HF=3.由于AE=AC-EC=6-4=2,EH=2,所以AH=4.所以AF=5.例9、三角形:如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC =5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.[答案] 或1[解析]思路如下:设BE=x.由△ABE∽△ECM,得,即.等腰三角形AEM分三种情况讨论:①如图2,如果AE=AM,那么△AEM∽△ABC.所以.解得x=0,此时E、B重合,舍去.②如图3,当EA=EM时,.解得x=1.③如图4,当MA=ME时,△MEA∽△ABC.所以.解得x=.图2 图3 图4例10、四边形:如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F 在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是().A.B.C.5 D.6[答案]C.[解析]思路如下:拖动点E在AB上运动,可以体验到,当EF与AC垂直时,四边形EGFH是菱形(如图2).如图3,在Rt△ABC中,AB=8,BC=4,所以AC=.由cos∠BAC=,得.所以AE=5.图2 图3例11、圆:如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O 上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为__________.A. B. C. D.[答案] A.拖动点P在圆周上运动一周,可以体验到,当点P沿着圆周转过45°时,点Q走过的路径是圆心角为45°半径为1的一段弧.如图2,四边形PMON是矩形,对角线MN与OP互相平分且相等,因此点Q 是OP的中点.如图3,当∠DOP=45°时,的长为.图2 图3例12、函数图象:如图,直线l与半径为4的⊙O相切于点A,P是⊙O上一个动点(不与点A重合),过点P作PB⊥l,垂足为B,联结PA.设PA=x,PB=y,则(x-y)的最大值是_____.[答案] 2.[解析]思路如下:拖动点P在圆上运动一周,可以体验到,AF的长可以表示x-y,点F的轨迹象两叶新树丫,当AF最大时,OF与AF垂直(如图2).如图3,AC为⊙O的直径,联结PC.由△ACP∽△PAB,得,即.所以.因此.所以当x=4时,x-y最大,最大值为2.图2 图3例13、.如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B,C的对应点分别是点D,E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE 的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.[分析](1)点A不动,由于∠BAC=60°,因此旋转120°后AE与AB在同一条直线上;(2)过点M作MF⊥DE,垂足为F.连接MP,构造出Rt△MPF,再通过勾股定理解直角三角形并结合垂径定理即可求解;(3)易猜想AD与⊙M相切.欲证AD与⊙M相切,只需HM=NM即可,而HM=NM可由△MHA≌△MNA得到.[答案]证明:(1)如图1,Rt△ADE就是旋转后的图形;(2)如图2,过点M作MF⊥DE,垂足为F,连接MP.在Rt△MPF中,MP= ,MF=4-3=1,由勾股定理易得PF=2,再由垂径定理知PQ=2PF=2 ;(3)AD与⊙M相切.证法一:如图2,过点M作MH⊥AD于H,连接MN, MA,则MN⊥AE且MN= .在Rt△AMN中,tan∠ ,∴∠MAN=30°.∵∠DAE=∠BAC=60°,∴∠MAD=30°.∴∠MAN=∠MAD=30°.∴MH=MN(由△MHA≌△MNA或解Rt△AMH求得MH=3,从而得MH=MN 亦可).∴AD与⊙M相切;证法二:如图2,连接MA,ME,MD,则S△ADE=S△AMD+S△AME+S△DME,过M作MH⊥AD于H, MF⊥DE于F, 连接MN, 则MN⊥AE且MN= ,MF=1,∴ AC·BC= AD·MH+ AE·MN+ DE·MF,由此可以计算出MH= .∴MH=MN.∴AD与⊙M相切.。
2020年江苏省中考数学试题分类(8)——图形的变化一.翻折变换(折叠问题)(共3小题) 1.(2020•无锡)如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°,AB =3,BC =√3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =√32,则线段DE 的长度( )A .√63B .√73C .√32D .2√752.(2020•南通)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求AA AA的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.3.(2020•无锡)如图,在矩形ABCD 中,AB =2,AD =1,点E 为边CD 上的一点(与C 、D 不重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,记四边形P ADE 的面积为S . (1)若DE =√33,求S 的值;(2)设DE =x ,求S 关于x 的函数表达式.二.平移的性质(共1小题) 4.(2020•镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于 .三.旋转的性质(共1小题)5.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°四.旋转对称图形(共1小题)6.(2020•镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.五.中心对称图形(共1小题)7.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.六.关于原点对称的点的坐标(共1小题)8.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)七.坐标与图形变化-旋转(共1小题)9.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限八.作图-旋转变换(共1小题) 10.(2020•常州)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1.(1)点F 到直线CA 的距离是 ;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE =OB 时,求OF 的长.九.几何变换综合题(共1小题) 11.(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ; [思考说理](2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AA AA的值;[拓展延伸](3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM . ①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求AA AA的取值范围.一十.平行线分线段成比例(共1小题) 12.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .一十一.相似三角形的判定(共1小题)13.(2020•南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AA AA=A′A′A′A′.(1)当AAA′A′=AA A′A′=AAA′A′时,求证△ABC ∽△A 'B 'C '.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当AAA′A′=AA A′A′=AAA′A′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.一十二.相似三角形的判定与性质(共6小题)14.(2020•无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =12,有下列结论: ①CP 与QD 可能相等;②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31√316;④四边形PCDQ 周长的最小值为3+√372. 其中,正确结论的序号为( )A .①④B .②④C .①③D .②③ 15.(2020•南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则A 1A 2的值等于 .16.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AAAA的值为.17.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.18.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.19.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D =30°,DC=√3.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.一十三.相似形综合题(共2小题)20.(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AA AA=AA AA.【探究】如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且AA AA=AA AA,连接BG 交CD 于点H .求证:BH =GH .【拓展】如图③,点E 在四边形ABCD 内,∠AEB 十∠DEC =180°,且AA AA=AA AA,过E 作EF 交AD于点F ,若∠EF A =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .21.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果AA AA=AA AA,那么称点B 为线段AC的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.一十四.解直角三角形的应用(共3小题) 22.(2020•南通)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得∠CAB =30°,∠ABC =45°,AC =8千米,求A 、B 两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).24.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点? (2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上. (参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.(2020•苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作: (1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α; (2)量得测角仪的高度CD =a ;(3)量得测角仪到旗杆的水平距离DB =b .利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .a +b tan αB .a +b sin αC .a +A AAAAD .a +AAAAA26.(2020•镇江)如图,点E 与树AB 的根部点A 、建筑物CD 的底部点C 在一条直线上,AC =10m .小明站在点E 处观测树顶B 的仰角为30°,他从点E 出发沿EC 方向前进6m 到点G 时,观测树顶B 的仰角为45°,此时恰好看不到建筑物CD 的顶部D (H 、B 、D 三点在一条直线上).已知小明的眼睛离地面1.6m ,求建筑物CD 的高度(结果精确到0.1m ).(参考数据:√2≈1.41,√3≈1.73.)27.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)一十六.解直角三角形的应用-方向角问题(共3小题)28.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.29.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)30.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)一十七.简单几何体的三视图(共1小题)31.(2020•淮安)下列几何体中,主视图为圆的是()A.B.C.D.一十八.简单组合体的三视图(共3小题)32.(2020•镇江)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.33.(2020•盐城)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.34.(2020•苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.一十九.由三视图判断几何体(共1小题)35.(2020•常州)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥2020年江苏省中考数学试题分类(8)——图形的变化参考答案与试题解析一.翻折变换(折叠问题)(共3小题) 1.【解答】解:方法一:如图,延长ED 交AC 于点M ,过点M 作MN ⊥AE 于点N ,设MN =√3x , ∵tan ∠AED =√32, ∴AA AA=√32, ∴NE =2x ,∵∠ABC =90°,AB =3,BC =√3, ∴∠CAB =30°, ∴AC =2√3, 由翻折可知: ∠EAC =30°,∴AM =2MN =2√3x , ∴AN =√3MN =3x , ∵AE =AB =3, ∴5x =3, ∴x =35,∴AN =95,MN =3√35,AM =6√35, ∵AC =2√3,∴CM =AC ﹣AM =4√35, ∵MN =3√35,NE =2x =65, ∴EM =√AA 2+AA 2=3√75,∵∠ABC =∠BCD =90°, ∴CD ∥AB ,∴∠DCA =30°,由翻折可知:∠ECA =∠BCA =60°, ∴∠ECD =30°,∴CD 是∠ECM 的角平分线, ∴A △AAA A △AAA =AAAA=AA AA,∴√34√35=3√75−AA ,解得,ED =√73. 方法二:如图,过点D 作DM ⊥CE ,由折叠可知:∠AEC =∠B =90°, ∴AE ∥DM ,∴∠AED =∠EDM , ∴tan ∠AED =tan ∠EDM =√32,∵∠ACB =60°,∠ECD =30°,设EM =√3m ,由折叠性质可知,EC =CB =√3, ∴CM =√3−√3m ,∴tan ∠ECD =AA AA =√33, ∴DM =(√3−√3m )×√33=1﹣m ,∴tan ∠EDM =AA AA =√32,即√3A 1−A=√32解得,m =13,∴DM =23,EM =√33,在直角三角形EDM 中,DE 2=DM 2+EM 2,解得,DE =√73.故选:B . 2.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .∵四边形ABCD 是矩形, ∴∠BAD =∠C =90°,由翻折可知,AO =OP ,AP ⊥DE ,∠2=∠3,∠DAE =∠DPE =90°, 在Rt △EPD 中,∵EM =MD , ∴PM =EM =DM , ∴∠3=∠MPD ,∴∠1=∠3+∠MPD =2∠3, ∵∠ADP =2∠3, ∴∠1=∠ADP , ∵AD ∥BC ,∴∠ADP =∠DPC , ∴∠1=∠DPC ,∵∠MOP =∠C =90°, ∴△POM ∽△DCP , ∴AA AA =AAAA =812=23,∴AA AA=2AA 2AA=23.解法二:证明△ABP 和△DAE 相似,AA AA=AA AA=23.(2)如图②中,过点P 作GH ∥BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG =x ,则BG =4﹣x∵∠A =∠EPD =90°,∠EGP =∠DHP =90°, ∴∠EPG +∠DPH =90°,∠DPH +∠PDH =90°, ∴∠EPG =∠PDH , ∴△EGP ∽△PHD , ∴AA AA=AA AA=AA AA=412=13,∴PH =3EG =3x ,DH =AG =4+x , 在Rt △PHD 中,∵PH 2+DH 2=PD 2, ∴(3x )2+(4+x )2=122,解得x =165(负值已经舍弃), ∴BG =4−165=45,在Rt △EGP 中,GP =√AA 2−AA 2=125, ∵GH ∥BC ,∴△EGP ∽△EBF , ∴AA AA=AA AA,∴1654=125AA,∴BF =3.3.【解答】解:(1)∵在矩形ABCD 中,∠D =90°,AD =1,DE =√33,∴AE =√AA 2+AA 2=2√33,∴tan ∠AED =AAAA =√3,∴∠AED =60°, ∵AB ∥CD ,∴∠BAE =60°,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴∠AEC =∠AEM , ∵∠PEC =∠DEM ,∴∠AEP =∠AED =60°, ∴△APE 为等边三角形, ∴S =12×(2√33+√33)×1=√32; (2)过E 作EF ⊥AB 于F ,由(1)可知,∠AEP =∠AED =∠P AE , ∴AP =PE ,设AP =PE =a ,AF =ED =x , 则PF =a ﹣x ,EF =AD =1,在Rt △PEF 中,(a ﹣x )2+1=a 2,解得:a =A 2+12A ,∴S =12⋅A ×1+12×A 2+12A ×1=12A +A 2+14A =3A 2+14A .二.平移的性质(共1小题) 4.【解答】解:取AC 的中点M ,A 1B 1的中点N ,连接PM ,MQ ,NQ ,PN , ∵将△ABC 平移5个单位长度得到△A 1B 1C 1, ∴B 1C 1=BC =3,PN =5,∵点P 、Q 分别是AB 、A 1C 1的中点, ∴NQ =12B 1C 1=32, ∴5−32≤PQ ≤5+32, 即72≤PQ ≤132, ∴PQ 的最小值等于72, 故答案为:72.三.旋转的性质(共1小题) 5.【解答】解:∵AB '=CB ', ∴∠C =∠CAB ',∴∠AB 'B =∠C +∠CAB '=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB 'C ', ∴∠C =∠C ',AB =AB ', ∴∠B =∠AB 'B =2∠C ,∵∠B +∠C +∠CAB =180°, ∴3∠C =180°﹣108°, ∴∠C =24°,∴∠C '=∠C =24°, 故选:C .四.旋转对称图形(共1小题) 6.【解答】解:连接OA ,OE ,则这个图形至少旋转∠AOE 才能与原图象重合, ∠AOE =360°5=72°.故答案为:72.五.中心对称图形(共1小题) 7.【解答】解:A 、不是中心对称图形,不是轴对称图形,故此选项不合题意; B 、不是中心对称图形,是轴对称图形,故此选项不合题意; C 、既是中心对称图形,也是轴对称图形,故此选项符合题意; D 、不是中心对称图形,不是轴对称图形,故此选项不合题意; 故选:C .六.关于原点对称的点的坐标(共1小题) 8.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2). 故选:C .七.坐标与图形变化-旋转(共1小题) 9.【解答】解:如图,∵点P (4,5)按逆时针方向旋转90°,得点Q 所在的象限为第二象限. 故选:B .八.作图-旋转变换(共1小题) 10.【解答】解:(1)如图1中,作FD ⊥AC 于D ,∵Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1. ∴∠ACB =60°,∠FCE =∠BAC =30°,AC =CF , ∴∠ACF =30°, ∴∠BAC =∠FCD , 在△ABC 和△CDF 中,{∠AAA =∠AAAAAAA =AAAA AA =AA, ∴△ABC ≌△CDF (AAS ), ∴FD =BC =1,法二:∵∠ECF =∠FCD =30°,FD ⊥CD ,FE ⊥CE , ∴DF =EF , ∵EF =BC =1,∴DF =1. 故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.S 阴=S △EFC +S 扇形ACF ﹣S 扇形CEH ﹣S △AHC =S 扇形ACF ﹣S 扇形ECH =30⋅A ⋅22360−30⋅A ⋅(√3)2360=A12. 故答案为A12.(3)如图2中,过点E 作EH ⊥CF 于H .设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF , ∴EC =√3EF =√3,EH =√32,CH =√3EH =32,在Rt △BOC 中,OC =√AA 2+AA 2=√1+A 2, ∴OH =CH ﹣OC =32−√1+A 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+A 2)2,解得x =√73或−√73(不合题意舍弃),∴OC =1+(√73)2=43,∵CF =2EF =2,∴OF =CF ﹣OC =2−43=23. 九.几何变换综合题(共1小题)11.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC , ∴CN =BN ,∵∠MNB =∠ACB =90°, ∴MN ∥AC , ∵CN =BN , ∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6, ∴∠A =∠B ,由题意MN 垂直平分线段BC , ∴BM =CM , ∴∠B =∠MCB , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA ,∴610=AA6,∴BM =185, ∴AM =AB ﹣BM =10−185=325, ∴AA AA=325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA =AA AA∴69=AA 6,∴BM =4,∴AM =CM =5, ∴69=5AA ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′, ∴△PF A ′∽△MFC , ∴AA AA =AA′AA,∵CM =5, ∴AA AA =AA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32, ∴32≤P A ′≤154, ∴310≤AA AA≤34.一十.平行线分线段成比例(共1小题) 12.【解答】解:如图,过点D 作DF ∥AE ,则AA AA =AA AA =23,∵AA AA=13,∴DF =2EC , ∴DO =2OC , ∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC , ∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4, 此时△ABO 的面积最大为:23×4=83. 故答案为:83.一十一.相似三角形的判定(共1小题) 13.【解答】(1)证明:∵AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵AA A′A′=AAA′A′, ∴△ABC ∽△A ′B ′C ′. 故答案为:AAA′A′=AA A′A′=AAA′A′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC , ∴AA AA=AA AA=AA AA,同理,A′A′A′A′=A′A′A′A′=A′A′A′A′,∵AA AA =A′A′A′A′, ∴AA AA =A′A′A′A′,∴AAA′A′=AAA′A′,同理,AA AA =A′A′A′A′,∴AA −AA AA =A′A′−A′A′A′A′,即AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△DCE ∽△D ′C ′E ′, ∴∠CED =∠C ′E ′D ′, ∵DE ∥BC ,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°, ∴∠ACB =∠A ′C ′B ′, ∵AA A′A′=AAA′A′,∴△ABC ∽△A ′B ′C ′.一十二.相似三角形的判定与性质(共6小题)14.【解答】解:①利用图象法可知PC >DQ ,或通过计算可知DQ 的最大值为√212,PC 的最小值为3√32,所以PC >DQ ,故①错误.②设AQ =x ,则BP =AB ﹣AQ ﹣PQ =3﹣x −12=52−x , ∵∠A =∠B =60°, ∴当AA AA=AA AA 或AA AA=AA AA时,△ADQ 与△BPC 相似,即1252−A=A3或123=A52−A ,解得x =1或32或514,∴当AQ =1或32或514时,两三角形相似,故②正确③设AQ =x ,则四边形PCDQ 的面积=S △ABC ﹣S △ADQ ﹣S △BCP =√34×32−12×x ×√32×12−12×3×(3﹣x −12)×√32=3√38+5√38x ,∵x 的最大值为3−12=52,∴x =52时,四边形PCDQ 的面积最大,最大值=31√316,故③正确,如图,作点D 关于AB 的对称点D ′,作D ′F ∥PQ ,使得D ′F =PQ ,连接CF 交AB 于点P ′,在射线P ′A 上取P ′Q ′=PQ ,此时四边形P ′CDQ ′的周长最小.过点C 作CH ⊥D ′F 交D ′F 的延长线于H ,交AB 于J .由题意,DD ′=2AD •sin60°=√32,HJ =12DD ′=√34,CJ =3√32,FH =32−12−14=34, ∴CH =CJ +HJ =7√34,∴CF =√AA 2+AA 2=(34)2+(7√34)2=√392, ∴四边形P ′CDQ ′的周长的最小值=3+√392,故④错误, 故选:D .15.【解答】解:∵AA AA =√22=√2, AAAA=√22+222=√2, AA AA =√22√22=√2,∴AA AA =AA AA =AA AA =√2, ∴△ABC ∽△DEF ,∴A 1A 2=AA AA=√22, 故答案为:√22. 16.【解答】解:∵BC ∥DE , ∴△ADE ∽△ABC , ∴AA AA =AA AA =AAAA ,即4AA =AA 4=AA AA , ∴AB •DE =16,∵AB +DE =10, ∴AB =2,DE =8,∴AAAA=AA AA =84=2, 故答案为:2. 17.【解答】解:(1)∵PD ∥AB , ∴AAAA=AA AA , ∵AC =3,BC =4,CP =x , ∴A4=AA 3,∴CD =34A , ∴AD =AC ﹣CD =3−34A ,即AD =−34A +3;(2)根据题意得,S =12AA ⋅AA =12A (−34A +3)=−38(A −2)2+32,∴当x ≥2时,S 随x 的增大而减小,∵0<x <4,∴当S 随x 增大而减小时x 的取值范围为2≤x <4.18.【解答】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE =√AA 2+AA 2=√62+22=2√10,∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A ,∴AA AA =AA AA ,∴AA =AA ⋅AA AA =2√10=65√10. 19.【解答】证明:(1)∵DC 是⊙O 的切线,∴∠OCD =90°,∵∠D =30°,∴∠BOC =∠D +∠OCD =30°+90°=120°,∵OB =OC ,∴∠B =∠OCB =30°,∴∠DCB =120°=∠BOC ,又∵∠B =∠B =30°,∴△BOC ∽△BCD ;(2)∵∠D =30°,DC =√3,∠OCD =90°,∴DC =√3OC =√3,DO =2OC ,∴OC =1=OB ,DO =2,∵∠B =∠D =30°, ∴DC =BC =√3,∴△BCD 的周长=CD +BC +DB =√3+√3+2+1=3+2√3.一十三.相似形综合题(共2小题)20.【解答】【感知】证明:∵∠C =∠D =∠AEB =90°,∴∠BEC +∠AED =∠AED +∠EAD =90°,∴∠BEC =∠EAD ,∴Rt △AED ∽Rt △EBC ,∴AA AA =AA AA .【探究】证明:如图1,过点G 作GM ⊥CD 于点M ,由(1)可知AA AA =AA AA ,∵AA AA =AA AA ,AA AA =AA AA , ∴AA AA =AA AA ,∴BC =GM ,又∵∠C =∠GMH =90°,∠CHB =∠MHG ,∴△BCH ≌△GMH (AAS ),∴BH =GH ,【拓展】证明:如图2,在EG 上取点M ,使∠BME =∠AFE ,过点C 作CN ∥BM ,交EG 的延长线于点N ,则∠N =∠BMG ,∵∠EAF +∠AFE +∠AEF =∠AEF +∠AEB +∠BEM =180°,∠EF A =∠AEB ,∴∠EAF =∠BEM ,∴△AEF ∽△EBM ,∴AA AA =AA AA ,∵∠AEB +∠DEC =180°,∠EF A +∠DFE =180°,而∠EF A =∠AEB ,∴∠CED =∠EFD ,∵∠BMG +∠BME =180°,∴∠N =∠EFD ,∵∠EFD +∠EDF +∠FED =∠FED +∠DEC +∠CEN =180°,∴∠EDF =∠CEN ,∴△DEF ∽△ECN ,∴AA AA =AA AA , 又∵AA AA =AA AA , ∴AA AA =AA AA ,∴BM =CN ,又∵∠N =∠BMG ,∠BGM =∠CGN ,∴△BGM ≌△CGN (AAS ),∴BG =CG .21.【解答】解:(1)∵点B 为线段AC 的黄金分割点,AC =20cm ,∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10).(2)延长EA ,CG 交于点M ,∵四边形ABCD 为正方形,∴DM ∥BC ,∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG ,∴∠EMC =∠ECM ,∴EM =EC ,∵DE =10,DC =20,∴EC =√AA 2+AA 2=√102+202=10√5,∴EM =10√5,∴DM =10√5+10,∴tan ∠DMC =AA AA =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12, 即AA AA =√5−12, ∵AB =BC , ∴AAAA =√5−12, ∴G 是AB 的黄金分割点;(3)当BP =BC 时,满足题意.理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°,∵BE ⊥CF ,∴∠ABE +∠CFB =90°,又∵∠BCF +∠BFC =90°,∴∠BCF =∠ABE ,∴△ABE ≌△BCF (ASA ),∴BF =AE ,∵AD ∥CP ,∴△AEF ∽△BPF , ∴AAAA=AA AA , 当E 、F 恰好分别是AD 、AB 的黄金分割点时, ∵AE >DE , ∴AAAA =AA AA ,∵BF =AE ,AB =BC ,∴AA AA =AA AA =AA AA , ∴AA AA =AA AA ,∴BP =BC .一十四.解直角三角形的应用(共3小题)22.【解答】解:如图,过点D 作DE ⊥AB ,垂足为点E ,则DE =BC =5,DC =BE =1.5,在Rt △ADE 中,∵tan ∠ADE =AA AA ,∴AE =tan ∠ADE •DE =tan50°×5≈1.19×5=5.95(米),∴AB =AE +BE =5.95+1.5≈7.5(米),故答案为:7.5.23.【解答】解:过点C 作CD ⊥AB 于点D ,如图所示.在Rt △ACD 中,AC =8(千米),∠CAD =30°,∠CDA =90°,∴CD =AC •sin ∠CAD =4(千米),AD =AC •cos ∠CAD =4√3(千米)≈6.8(千米).在Rt △BCD 中,CD =4(千米),∠BDC =90°,∠CBD =45°,∴∠BCD =45°,∴BD =CD =4(千米),∴AB =AD +BD =6.8+4≈11(千米).答:A 、B 两点间的距离约为11千米.24.【解答】解:(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°,在Rt △ACO 中,cos ∠AOC =AA AA =2.23=1115. ∴∠AOC =43°,∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°,过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ),2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m .(3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN ,在Rt △OPM 中,cos ∠POM =AA AA =38,∴∠POM =68°,在Rt △COM 中,cos ∠COM =AA AA =2.28=1140,∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°,∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.【解答】解:过C 作CF ⊥AB 于F ,则四边形BFCD 是矩形,∴BF =CD =a ,CF =BD =b ,∵∠ACF =α,∴tan α=AA AA =AA A , ∴AF =b •tan α,∴AB =AF +BF =a +b tan α,故选:A .26.【解答】解:如图,延长FH,交CD于点M,交AB于点N,∵∠BHN=45°,BA⊥MH,则BN=NH,设BN=NH=x,∵HF=6,∠BFN=30°,∴tan∠BFN=AAAA=AAAA+AA,即tan30°=AA+6,解得x=8.19,根据题意可知:DM=MH=MN+NH,∵MN=AC=10,则DM=10+8.19=18.19,∴CD=DM+MC=DM+EF=18.19+1.6≈19.8(m).答:建筑物CD的高度约为19.8m.27.【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°=AAAA=15AA≈0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°=AAAA=21AA≈1.19,解得:DE≈17.6,∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.一十六.解直角三角形的应用-方向角问题(共3小题)28.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=√2x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=AA AA,∴A2−A=√3,解得x=3−√3.经检验,x=3−√3是原方程的根.∴AC=√2x=√2(3−√3)=(3√2−√6)km.答:船C离观测站A的距离为(3√2−√6)km.29.【解答】解:过点P作PN⊥BC于N,如图,则四边形ABNP是矩形,∴PN=AB,∵四边形ABCD是矩形,∴∠A=90°,∵∠APM=45°,∴△APM是等腰直角三角形,∴AM=√22PM=√22×30=15√2(m),∵M是AB的中点,∴PN=AB=2AM=30√2m,在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,∴NQ=√33PN=10√6m,PQ=2NQ=20√6≈49(m);答:小红与爸爸的距离PQ约为49m.30.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=AA AAA37°,在Rt△DBH中,∠DBH=45°,∴BH=AA AAA45°,∵BC=CH﹣BH,∴AAAAA37°−AAAAA45°=6,解得DH≈18km,在Rt△DAH中,∠ADH=26°,∴AD=AAAAA26°≈20km.答:轮船航行的距离AD约为20km.一十七.简单几何体的三视图(共1小题)31.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.一十八.简单组合体的三视图(共3小题)32.【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.33.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.34.【解答】解:从上面看,是一行三个小正方形.故选:C.一十九.由三视图判断几何体(共1小题)35.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.。
2020年中考数学二轮复习大专题-小突破之折叠(翻折)解析版一、选择题1.如图,在矩形ABCD 中,AB =2,BC =4,把矩形折叠,使点D 与点B 重合,点C 落在点E 处,则折痕FG 的长为( )A. 2.5B. 3C. √5D. 2√52.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为( )A. 31°B. 28°C. 62°D. 56°3.如图,在矩形OABC 中,0A=8,OC=4,沿对角线OB 折叠后,点A 与点D 重合,OD 与BC 交于点E ,则点D 的坐标是( )A. (4,8)B. (5,8)C. ( 245 , 325 )D. ( 225 , 365 )4.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为( )A. 32B. 3C. 1D. 435.将直角三角形纸片按如图方式折叠,不可能折出( )A. 直角B. 中位线C. 菱形D. 矩形6.如图,将长BC=8cm ,宽AB=4cm 的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕EF 的长为( )A. 4cmB. √17 cmC. 2√5 cmD. 3√5 c7.有一张矩形纸片ABCD ,AB=2.5,AD=1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F (如图),则CF 的长为( )A. 1 13B. 1C. 23D. 128.如图,△ABC 纸片中,AB =BC >AC ,点D 是AB 边的中点,点E 在边AC 上,将纸片沿DE 折叠,使点A 落在BC 边上的点F 处.则下列结论成立的个数有( )①△BDF 是等腰直角三角形;②∠DFE =∠CFE ;③DE 是△ABC 的中位线;④BF+CE =DF+DE.A. 1个B. 2个C. 3个D. 4个9.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A. CE =EFB. ∠BDF =90°C. △EOD 和△COF 的面积相等D. ∠BDC =∠CEF+∠A10.如图,一张矩形纸片ABCD ,其中AD =10cm ,AB =6cm ,先沿对角线BD 对折,使点C 落在点C′的位置,BC′交AD 于点G (图1),再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M (图2),则EM 的长为( )A. 165B. 83C. 85D. 10311.如图,把一张长方形纸片ABCD 沿对角线BD 折叠,使C 点落在E 处,BE 与AD 相交于点F ,下列结论:①BD=AD 2+AB 2;②△ABF ≌△EDF ;③ DE AB = EF AF④AD=BD•cos45°.其中正确的一组是( )A. ①②B. ②③C. ①④D. ③④12.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =3,b =4,则该矩形的面积为( )A. 20B. 24C.D.13.将矩形纸片ABCD 折叠,使点B 落在边CD 上的B′处,折痕为AE ,过B'作B'P ∥BC ,交AE 于点P ,连接BP.已知BC=3,CB'=1,下列结论:①AB=5;②sin ∠ABP= 35 ;③四边形BEB′P 为菱形;④S 四边形BEB'P ﹣S △ECB '=1,其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个14.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A. 1或2B. 2或3C. 3或4D. 4或515.如图,已知正方形ABCD,E为AB的中点,F是AD边上的一个动点,连接EF将△AEF沿EF折叠得△HEF,延长FH交BC于M,现在有如下5个结论:①△EFM定是直角三角形;②△BEM≌△HEM;AB2,在以上5个结③当M与C重合时,有DF=3AF;④MF平分正方形ABCD的面积;⑤FH•MH=14论中,符合题意的有()A. 2B. 3C. 4D. 5二、填空题16.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在A′处,当△A′BC是等腰三角形时,AP的长为________.17.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE=________.18.如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.19.如图,在Rt△ABC中,∠C=90°,BC=2 √3,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为________或________20.如图,以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若ADBD =23,且AB=10,则CB的长为________.21.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,当点F落在四边形OABC内部时,连接FE,若FE//x轴,则点P的坐标为________ .22.如图,在矩形纸片ABCD中,BM,DN分别平分∠ABC,∠CDA,沿BP折叠,点A恰好落在BM上的点E处,延长PE交DN于点F沿DQ折叠,点C恰好落在DN上的点G处,延长QG交BM于点H,若四边形EFGH恰好是正方形,且边长为1,则矩形ABCD的面积为________.23.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为________.24.如图,正方形ABCD的边长为(√2+1),点M、N分别是边BC、AC上的动点,沿MN所在直线折叠正方形,使点C的对应点C'始终落在边AB上,若△NAC'为直角三角形,则CN的长为________.25.如图,将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为FG.若BG=2cm,DE=3cm,则FG的长为________.三、解答题26.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若DPAD = 12,求EFAE的值.27.(1)【操作发现】如图①,在矩形ABCD中,E是BC中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,连接FC,猜想∠GFC与∠GCF的关系,并证明你的结论;(2)【类比探究】如图②,将(1)中的矩形ABCD改为平行四边形,其他条件不变,(1)中的结论是否仍然成立?请说明理由;(3)【应用】若满足(2)中条件,且∠AGD=80°,则∠FCG=________.28.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q.(1)求∠ABP的度数;(2)求S△PBFS△PEB的值;(3)若CD边上有且只有2个点G,使△GPD与△GFC相似,请直接写出BCAB的值.29.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=________,BC=________,AC=________;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择()题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.30.如图,在矩形ABCD中,AB=6,BC=10,将矩形沿直线EF折叠.使得点A恰好落在BC边上的点G处,且点E、F分别在边AB、AD上(含端点),连接CF.(1)当BG=3√2时,求AE的长;(2)当AF取得最小值时,求折痕EF的长;(3)连接CF,当△FCG是以CG为底的等腰三角形时,直接写出BG的长.31.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=k(k>0)与矩形两边AB、BC分别交于E、F.x(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.32.如图,平面直角坐标系中,矩形OABC 的顶点A(0,3),C(- 1,0). 将矩形OABC 绕原点顺时针旋转900,得到矩形OA’B’C’.解答下列问题:(1)求出直线BB’的函数解析式;(2)直线BB’与x 轴交于点M、与y 轴交于点N,抛物线y = ax2+ bx + c 的图象经过点C、M、N,求抛物线的函数解析式.(3)将△MON 沿直线MN 翻折,点O 落在点P 处,请你判断点P 是否在抛物线上,说明理由. 33.如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=4S△EDF,求ED的长;(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE= 87,求AFBF的值.34.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE 沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分(3)如果题设中“BE=2CE”改为“ BECE的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).35.已知:如图1,△ABC中,AB=6,AC= 3√3,BC=3,过边AC上的动点E(点E不与点A、C重合)作EF⊥AB于点F,将△AEF沿EF所在的直线折叠得到△A'EF,设CE=x,折叠后的△A'EF与四边形BCEF重叠部分的面积记为S.(1)如图2,当点A'与顶点B重合时,求AE的长;(2)如图3,当点A'落在△ABC的外部时,A'E与BC相交于点D,求证:△A'BD是等腰三角形;(3)试用含x的式子表示S,并求S的最大值.答案一、选择题1.如图,连接BD,交EF于O,则由轴对称的性质可知,FG垂直平分BD,Rt△ABD中,BD= √AD2+AB2=2 √5∴DO= √5,由折叠可得,∠BFO=∠DFO,由AD∥BC可得,∠DFO=∠BGO,∴∠BFO=∠BGO,∴BF=BG,即△BFG是等腰三角形,∴BD平分FG,设BF=DF=x,则AF=4﹣x,在Rt△ABE中,(4﹣x)2+22=x2,解得x= 52,即DF= 52,∴Rt△DOF中,OF= √DF2−DO2=√52,∴FG=2FO= √5.故答案为:C.2.解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故答案为:D.3.如图,过点D 作DF ⊥x 轴于点F ,交CB 于点Q ,∵将矩形OABC 沿对角线OB 折叠后,点A 与点D 重合,∴OC=BD=AB=4,CB ∥OA ,∠DOB=∠BOA ,OA=BC=OD∴∠CBO=∠BOA∴∠DOB=∠CBO∴OE=BE设OE=BE=x ,则DE=8-x在Rt △BDE 中,DE 2+BD 2=BE 2 ,(8-x )2+42=x 2解之:x=5∴BE=5,DE=CE=8-5=3,∵S △DEB =12DE·DB=12BE·DQ 即4×3=5DQ解之:DQ=125∴DF=4+125=325在Rt △DEQ 中,EQ 2+QD 2=DE 2 ,∴EQ 2+(125)2=32 ,解之:EQ=95∴CQ=3+95=245∴点D (245 , 325)故答案为:C4.∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC ≌△D′EC ,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD′)2+(ED′)2=AE 2 , 即22+x 2=(4﹣x )2,解得:x= 32故答案为:A.5.∵当直角三角形沿斜边中点和直角边中点所在直线折叠,可以得到图形有直角,中位线,矩形,∴不可能折出菱形,故答案为:C.6. 解:连结AC交EF于点O,如图:∵四边形ABCD为矩形,∴∠ABC=90°,在Rt△ABC中,∵AB=4cm,BC=8cm,∴AC=√AB2+BC2=4√5(cm),又∵折叠矩形是点C与点A重合时,有EF⊥AC,AO=CO=2√5(cm),EO=FO,∵∠EOC=∠ABC=90°,∠ECO=∠ACB,∴Rt△EOC∽Rt△ABC,∴OEOC =ABBC=48=12,∴OE=12OC=√5(cm),∴EF=2OE=2√5(cm).故答案为:C.7.解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴ABAD =BFBD,即0.51.5=BF1.5,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故答案为:B.8.解:①根据折叠知AD=DF,所以BD=DF,即一定是等腰三角形.因为∠B不一定等于45°,所以①错误;②连接AF,交DE于G,根据折叠知DE垂直平分AF,又点D是AB边的中点,在△ABF中,根据三角形的中位线定理,得DG∥BF.进一步得E是AC的中点.由折叠知AE=EF,则EF=EC,得∠C=∠CFE.又∠DFE=∠A=∠C,所以∠DFE=∠CFE,正确;③在②中已证明正确;④根据折叠以及中位线定理得右边=AB,要和左边相等,则需CE=CF,则△CEF应是等边三角形,显然不一定,错误.故答案为:B.9.解:∵点D为边AB的中点,∴AD=BD,由折叠知,FD=AD,∠DFE=∠A,∴BD=FD,∴∠B=∠DFB,∵∠EFC=∠DFB+∠DFE,∠ECF=∠B+∠A,∴∠EFC=∠ECF,∴CE=EF,故A符合题意;∵BD=FD,∴∠B=∠DFB=50°,∴∠BDF=180°﹣2×50°=80°,故B不正确;由折叠知,EF=AE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴DE∥BC,AB=2DE,∴△DCE的面积=△DEF的面积,△CFD的面积=△CFE的面积,当DE=CF时,△EOD和△COF的面积相等,故C不正确;∵∠BDC=∠DCE+∠A,当CD∥EF时,∠DCE=∠CEF,∠BDC=∠CEF+∠A,故D不正确;故答案为:A.10.解:∵点D与点A重合,得折痕EN,∴DM=5cm,∵AD=10cm,AB=6cm,在Rt△ABD中,BD=√AD2+AB2=√102+62=2√34cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=12BD=√34cm,在Rt△MND中,∴MN=√34−25=3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+52,解得x=83,即EM=83cm.故答案为:B。
翻折问题专题
知识点
1. 轴对称的定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,对应点叫对称点,直线叫对称轴,两个图形关于某条直线对称也叫轴对称.
2. 轴对称的性质
(1)关于某条直线对称的两个图形是全等形;
(2)对称轴这条直线是对应点连线段的垂直平分线.
方法
1. 轴折叠两侧的部分对应相等,如①对应角相等、②对应边相等、③折痕上的点到对应点的距离相等;
2. 对应点的连线段被折痕所在直线垂直平分,这会出现垂直于中点;
3. 折叠问题中,常常结合角平分线、等腰三角形、三线合一、设未知数解勾股定理等综合知识点;
4. 在平面直角坐标系中出现折叠,常常还会用到求解析式法、两点间距离公式、中点坐标公式等.
例题
【例题1】(2019•青岛模拟)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A 落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为.
【例题2】如图,在矩形ABCD中,AB=3,BC=4,点E是边AB上一点,且AE=2EB,点P是边BC上一点,连接EP,过点P作PQ⊥PE交射线CD于点Q.若点C关于直线PQ的对称点正好落在边AD上,求BP的值.
【例题3】(2019秋•双流区校级月考)如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_________.
【例题4】(2019•东西湖区模拟)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE
沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.
【例题5】如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B 折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N (1)若CM=x,则CH=(用含x的代数式表示);
(2)求折痕GH的长.
【例题6】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(1)如图①,当∠BOP=30°时,求点P的坐标;
(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);
(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).
1.如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG翻折,使点B落在AD边
上的点E处,若CE⊥AD,则cos∠EFG的值为.
2.(2019•江北区一模)如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),
将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.
3.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段
BE上.若AD=3,DE=1,则AB=.
4.(2019•罗山县一模)如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为.
5.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.
6.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB
沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为.
7.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=AE,把
四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.
9.如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC为半径作⊙O,将△ADE 折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=,⊙O半径=.
10.如图1,在△ABC中,AC=6,BC=8,AB=10,分别以△ABC的三边AB,BC,AC为边在三角形外部作正方形ABDE,BCIJ,AFGC.如图2,作正方形ABDE关于直线AB对称的正方形ABD′E′,AE′交CG于点M,D′E′交IC于点N点D′在边IJ上.则四边形CME′N的面积是.
11.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,
EF为折痕,当D′F⊥CD时,的值为.
12.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′
的位置,连接C′B,则C′B=.
13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,当线段AF=AC时,BE 的长为.
14.在正方形ABCD中,
(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.
15.如图,已知E是正方形ABCD边AB上一点,点A关于DE的对称点为F,∠BFC=90°,求的值.
16.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F 处.
(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.
(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.
(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.
17.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB =46°,则∠DBE的度数为°.
(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.
【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;
【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.。