课时跟踪检测(十七) 定积分与微积分基本定理
- 格式:ppt
- 大小:1.44 MB
- 文档页数:8
2019届高考数学一轮复习课时跟踪检测(十六)定积分与微积分基本定理理(重点高中)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习课时跟踪检测(十六)定积分与微积分基本定理理(重点高中))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习课时跟踪检测(十六)定积分与微积分基本定理理(重点高中)的全部内容。
课时跟踪检测(十六) 定积分与微积分基本定理(二)重点高中适用作业A级——保分题目巧做快做1。
-⎰22ππ(1+co s x )d x 等于( )A.π B .2C .π-2 ﻩD .π+2解析:选D 因为(x +sin x )′=1+cos x , 所以-⎰22ππ (1+cos x )d x =(x +sin x ) 错误!=\f(π,2)+sin 错误!-错误!=π+2.2.若错误! (x 2+m x)d x =0,则实数m 的值为( )A .-\f (1,3) ﻩB.-错误! C.-1 ﻩD .-2解析:选B 由题意知错误! (x2+mx )d x =错误!错误!=错误!+错误!=0,解得m =-错误!. 3.若f (x )=错误!则错误!f (x )d x=( )A.0 B.1C .2 ﻩ D.3解析:选D 错误!f(x )d x=错误!(x 3+sin x )d x +错误!3d x =0+3x错误!=6-3=3。
4。
若f(x )=x 2+2错误!f (x )dx,则错误!f (x )d x=( )A .-1B .-\f (1,3)C .错误!D.1解析:选B 因为f (x )=x 2+2错误!f (x )d x ,所以错误!f (x )dx =错误!错误! =\f(1,3)+2错误!f (x )d x,所以错误!f (x )d x=-错误!. 5.已知(x ln x )′=ln x +1,则错误!ln x d x =( )A .1 B.e C .e -1D.e +1解析:选A 由(x l n x)′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=l n x ,于是错误!ln x dx=(x ln x -x ) 错误!=(eln e -e)-(1×ln 1-1)=1。
A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.与定积分∫3π1-cos x d x 相等的是( ). A.2∫3π0sin x 2d x B.2∫3π0⎪⎪⎪⎪⎪⎪sin x 2d x C.⎪⎪⎪⎪⎪⎪2∫3π0sin x 2d x D .以上结论都不对 解析 ∵1-cos x =2sin 2x2,∴∫3π1-cos x d x =∫3π02|sin x 2|d x =2∫3π|sin x 2|d x . 答案 B2.(2012·芜湖一中月考)⎠⎛0e 1+ln xx d x =( ).A .ln x +12ln 2xB.2e -1C.32D.12解析⎪⎪⎪⎪⎠⎛0e1+ln x x d x =(ln x +ln 2x 2)e 1=32. 答案 C3.(2012·长春质检)以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ). A.1603 m B.803 m C.403 mD.203 m解析 v =40-10t 2=0,t =2,⎠⎛02(40-10t 2)d t =⎪⎪⎪⎝ ⎛⎭⎪⎫40t -103t 320=40×2-103×8=1603(m).答案 A4.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时F (x )作的功为( ). A. 3 J B.233 J C.433 JD .2 3 J解析 由于F (x )与位移方向成30°角.如图:F 在位移方向上的分力F ′=F ·cos 30°,W =⎠⎛12(5-x 2)·cos 30°d x=32⎠⎛12(5-x 2)d x=32⎝ ⎛⎪⎪⎪⎭⎪⎫5x -13x 321 =32×83=433(J). 答案 C5.(2011·全国新课标)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ).A.103 B .4 C.163D .6解析 由y =x 及y =x -2可得,x =4,所以由y =x 及y =x -2及y 轴所围成的封闭图形面积为⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x | 40=163.答案 C二、填空题(每小题4分,共12分)6.一物体以初速度v =9.8t +6.5 m/s 的速度自由落下,则下落后第二个4 s 内经过的路程是__________. 解析⎪⎪⎪⎠⎛48(9.8t +6.5)d t =(4.9t 2+6.5t )84 =4.9×64+6.5×8-4.9×16-6.5×4 =313.6+52-78.4-26 =261.2(m). 答案 261.2 m7.(2012·榆林模拟)曲线y =1x 与直线y =x ,x =2所围成的图形的面积为____________. 答案 32-ln 28.⎠⎛3-3(9-x 2-x 3)d x =________. 答案 9π2三、解答题(共23分)9.(11分)如图在区域Ω={(x ,y )|-2≤x ≤2,0≤y ≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.解 区域Ω的面积为S 1=16. 图中阴影部分的面积S 2=S 1-⎪⎪⎪⎠⎛2-2x 2d x =16-13x 32-2=323.设落在阴影部分的豆子数为m , 由已知条件m 900=S 2S 1,即m =900S 2S 1=600.因此落在图中阴影部分的豆子约为600粒.10.(12分)如图所示,直线y =k x 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-13x 310=16. 又⎩⎨⎧y =x -x 2,y =k x , 由此可得,抛物线y =x -x 2与y =k x 两交点的横坐标为 x 3=0,x 4=1-k ,所以, S 2=∫1-k 0(x -x 2-k x )d x =⎝ ⎛⎪⎪⎪⎭⎪⎫1-k 2x 2-13x 31-k 0=16(1-k )3. 又知S =16, 所以(1-k )3=12,于是k =1- 312=1-342.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2012·洛阳模拟)已知a =∑i =1n1n ⎝ ⎛⎭⎪⎫i n 2,n ∈N *,b =⎠⎛01x 2d x ,则a ,b 的大小关系是( ). A .a >b B .a =b C .a <b D .不确定答案 A 2.下列积分中①⎠⎛1e 1x d x ;②⎠⎛2-2x d x ;③⎠⎛024-x 2πd x ;④∫π20cos 2x2(cos x -sin x )d x ,积分值等于1的个数是( ).A .1B .2C .3D .4 解析 ①⎪⎪⎪⎠⎛1e 1x d x =ln x e1=1, ②⎪⎪⎪⎠⎛2-2x d x =12x 22-2=0,③⎠⎛024-x 2πd x =1π(14π22)=1,④∫π20cos 2x2(cos x -sin x )d x =12∫π20(cos x +sin x )d x=12(sin x -cos)|0π2=1.答案 C二、填空题(每小题4分,共8分) 3.(2012·福州模拟)⎠⎛12|3-2x |d x =________.解析∵|3-2x |=⎩⎪⎨⎪⎧-2x +3,x ≤32,2x -3,x >32,∴⎠⎛12|3-2x |d x =∫321(3-2x )d x +⎠⎛232(2x -3)d x= |(3x -x 2)321+(x 2-3x )|232=12.答案 124.(2012·新余模拟)抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.解析 如图所示,因为y ′=-2x +4,y ′|x =1=2,y ′|x =3=-2,两切线方程为y =2(x -1)和y =-2(x -3). 由⎩⎪⎨⎪⎧y =2(x -1),y =-2(x -3)得x =2.所以S =⎠⎛12[2(x -1)-(-x 2+4x -3)]d x +⎠⎛23[-2(x -3)-(-x 2+4x -3)]d x=⎠⎛12(x 2-2x +1)d x +⎠⎛23(x 2-6x +9)d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 2+x 21+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-3x 2+9x 32=23. 答案 23三、解答题(共22分)5.(10分)曲线C :y =2x 3-3x 2-2x +1,点P ⎝ ⎛⎭⎪⎫12,0,求过P 的切线l 与C 围成的图形的面积.解 设切点坐标为(x 0,y 0) y ′=6x 2-6x -2,则y ′|x =x 0=6x 20-6x 0-2,切线方程为y =(6x 20-6x 0-2)⎝⎛⎭⎪⎫x -12,则y 0=(6x 20-6x 0-2)⎝ ⎛⎭⎪⎫x 0-12,即2x 30-3x 20-2x 0+1=(6x 20-6x 0-2)⎝ ⎛⎭⎪⎫x 0-12.整理得x 0(4x 20-6x 0+3)=0,解得x 0=0,则切线方程为y =-2x +1. 解方程组⎩⎨⎧y =-2x +1,y =2x 3-3x 2-2x +1,得⎩⎨⎧x =0,y =1或⎩⎪⎨⎪⎧x =32,y =-2.由y =2x 3-3x 2-2x +1与y =-2x +1的图象可知S =∫320[(-2x +1)-(2x 3-3x 2-2x +1)]d x=∫320(-2x 3+3x 2)d x =2732.6.(12分)由曲线y =x 2和直线x =0,x =1,y =t 2,t ∈(0,1)所围成的图形(如图阴影部分),求其面积的最小值.解 S 1=t 3-⎠⎛0t x 2d x =t 3-13t 3=23t 3,S 2=⎠⎛t 1x 2d x -(1-t )t 2=13-13t 3-(1-t )t 2,=23t 3-t 2+13,S 1+S 2=43t 3-t 2+13,t ∈(0,1).可由导数求得当t =12时,S 1+S 2取到最小值,最小值为14.。
定积分、微积分基本定理
【定积分】
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积.即由y=0,x=a,x=b,y=f(X)所围成图形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个
面积,是一个数.
定积分的求法:
求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.
【微积分基本定理】
在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.
其中,微积分的核心(基本)定理是,其中F′(x)=f (x),而f(x)必须在区间(a,b)内连续.
例1:定积分=
解:
∫12|3﹣2x|dx
=+
=(3x﹣x2)|+(x2﹣3x)|
=
通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有dx;第二,每一段
对应的被积分函数的表达式要与定义域相对应;第三,求出原函数代入求解.
例2:用定积分的几何意义,则.
解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,
故==.
这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.
【考查】
定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.。
课时分层训练(十七) 定积分与微积分基本定理(对应学生用书第230页)A 组 基础达标一、选择题1.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1C [⎠⎛01(2x +e x )d x =(x 2+e x ) ⎪⎪10=1+e 1-1=e.故选C.] 2.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D.3D [由题意知S =⎠⎜⎛-π3π3cos x d x =sin x ⎪⎪⎪⎪π3-π3=32-⎝ ⎛⎭⎪⎫-32= 3.] 3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =g t (g 为常数),则电视塔高为( )【导学号:79140093】A.12g B .g C.32gD .2gC [由题意知电视塔高为⎠⎛12g t d t =12g t 2⎪⎪⎪21=2g -12g =32g.]4.定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8D [∵|x 2-2x |=⎩⎨⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪2=8.] 5.(2018·合肥一检)在如图2-12-1所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )图2-12-1A .5 000B .6 667C .7 500D .7 854B [图中阴影部分的面积为⎠⎛01(1-x 2)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=23,又正方形的面积为1,则10 000个点落入阴影部分个数估计为10 000×23≈6 667,故选B .] 二、填空题6.(2018·长沙模拟(二))若⎠⎛-aa (x 2+sin x )d x =18,则a =________.3 [⎠⎛-aa (x 2+sin x )d x =⎝ ⎛⎭⎪⎫13x 3-cos x ⎪⎪⎪a-a =23a 3=18,解得a =3.]7.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10(单位:m ),已知F (x )=x 2+1(单位:N )且和x 轴正向相同,则变力F (x )对质点M 所做的功为________J .342 [变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).]8.(2017·洛阳统考)函数f (x )=⎩⎨⎧x +1,-1≤x <0,e x ,0≤x ≤1的图像与直线x =1及x 轴所围成的封闭图形的面积为________.【导学号:79140094】e -12 [由题意知所求面积为⎠⎛-10(x +1)d x +⎠⎛01e x d x =⎝ ⎛⎭⎪⎫12x 2+x ⎪⎪⎪0-1+e x ⎪⎪⎪10=-⎝ ⎛⎭⎪⎫12-1+(e -1)=e -12.]三、解答题9.计算下列定积分:(1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ;(2)⎠⎛02-x 2+2x d x ;(3)⎠⎜⎛π22sin ⎝ ⎛⎭⎪⎫x +π4d x . [解] (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2;(2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图像的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式=⎠⎜⎛0π2(sin x +cos x )d x =(-cos x +sin x )⎪⎪⎪⎪π20=⎝ ⎛⎭⎪⎫-cos π2+sin π2-(-cos 0+sin 0)=2.10.求曲线y =x ,y =2-x,y =-13x 所围成图形的面积.[解] 如图所示,由⎩⎨⎧y =x ,y =2-x ,得交点A(1,1).由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B(3,-1).故所求面积S =⎠⎛01⎝ ⎛⎭⎪⎫x +13x d x +⎠⎛13⎝ ⎛⎭⎪⎫2-x +13x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2⎪⎪⎪10+⎝ ⎛⎭⎪⎫2x -13x 2⎪⎪⎪3=23+16+43=136.B 组 能力提升11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .1B [由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m)d x =⎝ ⎛⎭⎪⎫13x 3+2m x ⎪⎪⎪10 =13+2m =m ,∴m =-13.] 12.(2017·河南百校联盟4月模拟)已知1sin φ+1cos φ=22,若φ∈⎝ ⎛⎭⎪⎫0,π2,则⎠⎛-1tan φ(x 2-2x )d x =( ) A.13 B .-13 C.23D .-23C [由1sin φ+1cos φ=22⇒sin φ+cos φ=22·sin φ·cos φ⇒2s in ⎝ ⎛⎭⎪⎫φ+π4=2sin 2φ,因为φ∈⎝ ⎛⎭⎪⎫0,π2,所以φ=π4,所以tan φ=1,故⎠⎛-1tan φ(x 2-2x )d x=⎠⎛-11(x 2-2x )d x =⎝ ⎛⎭⎪⎫x 33-x 2⎪⎪⎪1-1=23.]13.设函数f (x )=ax 2+c(a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为______.33 [⎠⎛01f (x )d x =⎠⎛01(ax 2+c)d x =⎝ ⎛⎭⎪⎫13ax 3+c x ⎪⎪⎪0-1=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33.又因为0≤x 0≤1,所以x 0=33.]14.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g(x )=x 2围成的图形的面积.【导学号:79140095】[解] ∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,∵f ′(x )=3x 2-2x +1, 则k =f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1), 即y =2x .y =2x 与函数g(x )=x 2围成的图形如图.由⎩⎨⎧y =x 2,y =2x 可得交点A(2,4), ∴y =2x 与函数g(x )=x 2围成的图形的面积 S =⎠⎛02(2x -x 2)d x =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20=4-83=43.。
课时跟踪检测(十六) 定积分与微积分基本定理(二)重点高中适用作业A 级——保分题目巧做快做1.-⎰22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2解析:选D 因为(x +sin x )′=1+cos x ,所以-⎰22ππ (1+cos x )d x =(x +sin x ) ⎪⎪⎪π2-π2=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.若⎠⎛01 (x 2+mx )d x =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B 由题意知⎠⎛01 (x 2+mx )d x =⎝⎛⎭⎫x 33+mx 22⎠⎛01=13+m 2=0,解得m =-23. 3.若f (x )=⎩⎪⎨⎪⎧x 3+sin x ,-1≤x ≤1,3,1<x ≤2,则⎠⎛-12f (x )d x =( )A .0B .1C .2D .3解析:选D ⎠⎛-12f (x )d x =⎠⎛-11(x 3+sin x )d x +⎠⎛123d x =0+3x ⎪⎪⎪21=6-3=3.4.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .1解析:选B 因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )dx ⎪⎪⎪1=13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 5.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1解析:选A 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1eln x d x =(x ln x -x ) ⎪⎪⎪e1=(eln e -e)-(1×ln 1-1)=1.6.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是________. 解析:⎠⎛1a ⎝⎛⎭⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2⎪⎪⎪a 1+ln x ⎪⎪⎪a1=a 2-1+ln a =3+ln 2, 所以⎩⎪⎨⎪⎧a 2-1=3,ln a =ln 2,解得a =2.答案:27.汽车以v =3t +2(单位:m /s )作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的路程是________m .解析:s =⎠⎛12(3t +2)d t =⎝⎛⎭⎫32t 2+2t ⎪⎪⎪21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m ). 答案:1328.如图,由曲线y =x 2和直线y =t 2(0<t <1),x =1,x =0所围成的图形(阴影部分)的面积的最小值是________.解析:设图中阴影部分的面积为S(t ),则S(t )=⎠⎛0t (t 2-x 2)d x +⎠⎛t1(x 2-t 2)d x =43t 3-t 2+13.由S ′(t )=2t (2t -1)=0,得t =12为S(t )在区间(0,1)上的最小值点,此时S(t )min =S ⎝⎛⎭⎫12=14. 答案:149.计算下列定积分: (1) ⎠⎛01 (-x 2+2x )d x ;(2) ⎠⎛12⎝⎛⎭⎫e 2x +1x d x ; (3)⎰2π1-sin 2xd x .解:(1) ⎠⎛01 (-x 2+2x )d x =⎠⎛01 (-x 2)d x +⎠⎛012x d x=-13x 3⎪⎪⎪10+x 2⎪⎪⎪1=-13+1=23.(2) ⎠⎛12⎝⎛⎭⎫e 2x +1x d x =⎠⎛12e 2x d x +⎠⎛121xd x =12e 2x ⎪⎪⎪21+ln x ⎪⎪⎪21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (3)⎰2π1-sin 2x d x =⎰2π|sin x -cos x |d x=⎰4π (cos x -sin x )d x +⎰24ππ (sin x -cos x )d x=(sin x +cos x ) ⎪⎪⎪⎪π4+(-cos x -sin x ) ⎪⎪⎪π2π4=2-1+(-1+2)=22-2.10.已知f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,试求⎠⎛03f (x )d x 的值.解:∵f (x )=x 2+2f ′(2)x +3,∴f ′(x )=2x +2f ′(2), ∴f ′(2)=4+2f ′(2),∴f ′(2)=-4, ∴f (x )=x 2-8x +3.∴⎠⎛03f (x )d x =⎝⎛⎭⎫13x 3-4x 2+3x ⎪⎪⎪30=-18. B 级——拔高题目稳做准做1.若a =⎠⎛01x d x ,b =⎠⎛011-x d x ,c =⎠⎛011-x 2d x ,则将a ,b ,c 从小到大排列的顺序为( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b解析:选A 根据定积分的几何意义可知a =⎠⎛01x d x =⎠⎛01 (1-x )d x .当0<x <1时,1-x <1-x <1-x 2,所以在区间(0,1)上三个函数y =1-x ,y =1-x ,y =1-x 2的图象从低到高,在点x =0,x =1处三个函数的图象重合.根据定积分的几何意义得a <b <c .2.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A . ⎠⎛02|x 2-1|d xB.⎪⎪⎪⎪⎠⎛02(x 2-1)d x C. ⎠⎛02 (x 2-1)d xD. ⎠⎛01 (x 2-1)d x +⎠⎛12(1-x 2)d x解析:选A 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .3.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.解析:建立如图所示的平面直角坐标系,由抛物线过点(0,-2),(-5,0),(5,0)得抛物线的函数表达式为y =225x 2-2,抛物线与x轴围成的面积S 1=⎠⎛-55⎝⎛⎭⎫2-225x 2d x =⎝⎛⎭⎫2x -275x 3⎪⎪⎪5-5=403,梯形面积S 2=(6+10)×22=16.最大流量比为S 2∶S 1=1.2.答案:1.24.设M ,m 分别是f (x )在区间[a ,b ]上的最大值和最小值,则m (b -a )≤⎠⎛ab f (x )d x ≤M (b-a ).根据上述估值定理可知定积分⎠⎛-122-x 2d x 的取值范围是________.解析:因为当-1≤x ≤2时,0≤x 2≤4, 所以116≤2-x 2≤1.根据估值定理得116×[2-(-1)]≤⎠⎛-122-x 2d x ≤1×[2-(-1)],即316≤⎠⎛-122-x 2d x ≤3. 答案:⎣⎡⎦⎤316,35.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2.(1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解:(1)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b . 由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0,所以f (x )=ax 2+2-a .又⎠⎛01f (x )d x =⎠⎛01 (ax 2+2-a )d x=⎣⎡⎦⎤13ax 3+(2-a )x ⎪⎪⎪10 =2-23a =-2.所以a =6,从而f (x )=6x 2-4. (2)因为f (x )=6x 2-4,x ∈[-1,1]. 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )m ax =2.6.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点, 设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以在点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图所示.由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0).所以y =2x 与函数g (x )=x 2围成的图形的面积 S =⎠⎛02 (2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3⎪⎪⎪20=4-83=43.。
课时分层训练(十七) 定积分与微积分基本定理A 组 基础达标一、选择题1.定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1C [⎠⎛01(2x +e x )d x =(x 2+e x ) ⎪⎪⎪10=1+e 1-1=e.故选C.]2.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1C.32D.3D [由题意知S =⎠⎜⎜⎛-π3π3cos x d x =sin x ⎪⎪⎪⎪π3-π3=32-⎝ ⎛⎭⎪⎫-32=3.]3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =g t (g 为常数),则电视塔高为( )【导学号:79140093】A.12g B .g C.32g D .2gC [由题意知电视塔高为⎠⎛12g t d t =12g t 2⎪⎪⎪21=2g -12g =32g.]4.定积分⎠⎛-22|x 2-2x |d x =( )A .5B .6C .7D .8D [∵|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x=⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪2=8.] 5.(·合肥一检)在如图2121所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )图2121A .5 000B .6 667C .7 500D .7 854B [图中阴影部分的面积为⎠⎛01(1-x 2)d x =⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=23,又正方形的面积为1,则10000个点落入阴影部分个数估计为10 000×23≈6 667,故选B .]二、填空题6.(·长沙模拟(二))若⎠⎛-aa (x 2+sin x )d x =18,则a =________.3 [⎠⎛-aa(x 2+sin x )d x =⎝ ⎛⎭⎪⎫13x 3-cos x ⎪⎪⎪a-a =23a 3=18,解得a =3.]7.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10(单位:m ),已知F (x )=x 2+1(单位:N )且和x 轴正向相同,则变力F (x )对质点M 所做的功为________J . 342 [变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).] 8.(·洛阳统考)函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,e x,0≤x ≤1的图像与直线x =1及x 轴所围成的封闭图形的面积为________.【导学号:79140094】e -12 [由题意知所求面积为⎠⎛-10(x +1)d x +⎠⎛01e x d x =⎝ ⎛⎭⎪⎫12x 2+x ⎪⎪⎪0-1+e x ⎪⎪⎪10=-⎝ ⎛⎭⎪⎫12-1+(e -1)=e -12.]三、解答题9.计算下列定积分:(1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ; (2)⎠⎛02-x 2+2x d x ; (3)⎠⎜⎛0π22sin ⎝⎛⎭⎪⎫x +π4d x .[解] (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2;(2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图像的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式=⎠⎜⎛0π2(sin x +cos x )d x =(-cos x +sin x )⎪⎪⎪⎪π20=⎝⎛⎭⎪⎫-cos π2+sin π2-(-cos 0+sin 0)=2.10.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.[解] 如图所示,由⎩⎨⎧y =x ,y =2-x ,得交点A(1,1).由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B(3,-1).故所求面积S =⎠⎛01⎝ ⎛⎭⎪⎫x +13x d x +⎠⎛13⎝⎛⎭⎪⎫2-x +13x d x=⎝ ⎛⎭⎪⎫23x 32+16x 2⎪⎪⎪10+⎝ ⎛⎭⎪⎫2x -13x 2⎪⎪⎪3=23+16+43=136. B 组 能力提升11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C .13D .1B [由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m)d x =⎝ ⎛⎭⎪⎫13x 3+2m x ⎪⎪⎪10 =13+2m =m ,∴m=-13.] 12.(·河南百校联盟4月模拟)已知1sin φ+1cos φ=22,若φ∈⎝ ⎛⎭⎪⎫0,π2,则⎠⎛-1tan φ(x 2-2x )d x =( ) A.13 B .-13C.23 D .-23C [由1sin φ+1cos φ=22⇒sin φ+cos φ=22·sin φ·cos φ⇒2s in ⎝ ⎛⎭⎪⎫φ+π4=2sin 2φ,因为φ∈⎝ ⎛⎭⎪⎫0,π2,所以φ=π4,所以tan φ=1,故⎠⎛-1tan φ(x 2-2x )d x =⎠⎛-11(x 2-2x )d x =⎝ ⎛⎭⎪⎫x33-x 2⎪⎪⎪1-1=23.]13.设函数f (x )=ax 2+c(a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为______.33 [⎠⎛01f (x )d x =⎠⎛01(ax 2+c)d x =⎝ ⎛⎭⎪⎫13ax 3+c x ⎪⎪⎪0-1=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33.又因为0≤x 0≤1,所以x 0=33.]14.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g(x )=x 2围成的图形的面积.【导学号:79140095】[解] ∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,∵f ′(x )=3x 2-2x +1, 则k =f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1), 即y =2x .y =2x 与函数g(x )=x 2围成的图形如图.由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A(2,4),∴y =2x 与函数g(x )=x 2围成的图形的面积 S =⎠⎛02(2x -x 2)d x =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20=4-83=43.。
2019届高考数学一轮复习 课时跟踪检测(十六)定积分与微积分基本定理 理(普通高中)A 级——基础小题练熟练快1.定积分⎠⎛01(3x +e x)d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D ⎠⎛01 (3x +e x)d x =⎝ ⎛⎭⎪⎫32x 2+e x ⎪⎪⎪10=32+e -1=e +12.2.若f (x )=⎩⎪⎨⎪⎧x 3+sin x ,-1≤x ≤1,3,1<x ≤2,则⎠⎛-12f (x )d x =( )A .0B .1C .2D .3解析:选D ⎠⎛-12f (x )d x =⎠⎛-11(x 3+sin x )d x +⎠⎛123d x =0+3x ⎪⎪⎪21=6-3=3.3.-⎰22ππ(1+cos x )d x =( )A .πB .2C .π-2D .π+2解析:选D 因为(x +sin x )′=1+cos x ,所以-⎰22ππ(1+cos x )d x =(x +sin x ) ⎪⎪⎪π2-π2=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2. 4.若⎠⎛01(x 2+mx )d x =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B 由题意知⎠⎛01 (x 2+mx )d x =⎝ ⎛⎭⎪⎫x 33+mx 22⎪⎪⎪10=13+m2=0,解得m =-23.5.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A 因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a0=a 3,所以由f (f (1))=1得a3=1,所以a =1.6.已知f (x )为偶函数且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x 等于( )A .0B .4C .8D .16解析:选D 因为原函数f (x )为偶函数,即在y 轴两侧的图象对称,所以对应的面积相等,即⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =8×2=16.7.若函数f (x )=x +1x,则⎠⎛1e f (x )d x =________.解析:⎠⎛1e f (x )d x =⎠⎛1e ⎝ ⎛⎭⎪⎫x +1x d x =⎝ ⎛⎭⎪⎫12x 2+ln x ⎪⎪⎪e1=12e 2+12.答案:12e 2+128.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是________.解析:⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x=x 2⎪⎪⎪a 1+ln x ⎪⎪⎪a1=a 2-1+ln a =3+ln 2,所以⎩⎪⎨⎪⎧a 2-1=3,ln a =ln 2,解得a =2.答案:29.汽车以v =3t +2(单位:m /s )作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的路程是________m .解析:s =⎠⎛12 (3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m ). 答案:13210.如图,由曲线y =x 2和直线y =t 2(0<t <1),x =1,x =0所围成的图形(阴影部分)的面积的最小值是________.解析:设图中阴影部分的面积为S(t ),则S(t )=⎠⎛0t (t 2-x 2)d x +⎠⎛t1(x 2-t 2)d x =43t 3-t2+13.由S ′(t )=2t (2t -1)=0,得t =12为S (t )在区间(0,1)上的最小值点,此时S (t )min =S ⎝ ⎛⎭⎪⎫12=14. 答案:14B 级——中档题目练通抓牢1.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A .12B .1C .32D. 3解析:选D 由题意知封闭图形的面积S =-⎰33ππcos x d x =sin x =32-⎝ ⎛⎭⎪⎫-32= 3. 2.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1解析:选A 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x ) ⎪⎪⎪e1=(eln e -e)-(1×ln 1-1)=1.3.(2018·湘中名校联考)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,,x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为( )A .π2+43B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12×π×12+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=π2+43,故选A .4.若f (x )=x +2⎠⎛01f (t )d t ,则f (x )=________.解析:记a =⎠⎛01f (t )d t ,则f (x )=x +2a ,故⎠⎛01f (x )d x =⎠⎛01 (x +2a )d x =⎝ ⎛⎭⎪⎫12x 2+2ax ⎪⎪⎪10=12+2a ,所以a =12+2a ,a =-12,故f (x )=x -1.答案:x -15.由直线y =x +3和曲线y =x 2-6x +13围成的封闭图形的面积为________. 解析:由直线y =x +3和曲线y =x 2-6x +13围成的图形如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +3,y =x 2-6x +13,得x 1=2,x 2=5,所以所求面积为S =⎠⎛25[(x +3)-(x 2-6x +13)]d x =⎠⎛25 (-x 2+7x -10)d x =⎝ ⎛⎭⎪⎫-13x 3+72x 2-10x ⎪⎪⎪51=92. 答案:926.计算下列定积分:(1) ⎠⎛01 (-x 2+2x )d x ;(2) ⎠⎛12⎝⎛⎭⎪⎫e 2x +1x d x ;(3)⎰2π1-sin 2x d x .解:(1) ⎠⎛01 (-x 2+2x )d x =⎠⎛01 (-x 2)d x +⎠⎛012x d x=-13x 3| 10+x 2| 10=-13+1=23.(2) ⎠⎛12⎝ ⎛⎭⎪⎫e 2x +1x d x =⎠⎛12e 2xd x +⎠⎛121xd x=12e 2x | 21+ln x | 21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (3)⎰2π1-sin 2x d x =⎰2π|sin x -cos x |d x=⎰4π (cos x -sin x )d x +⎰24ππ (sin x -cos x )d x=(sin x +cos x ) ⎪⎪⎪⎪π4+(-cos x -sin x ) ⎪⎪⎪π2π4=2-1+(-1+2)=22-2.7.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2.(1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值. 解:(1)设f (x )=ax 2+b x +c(a ≠0), 则f ′(x )=2ax +b. 由f (-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0,所以f (x )=ax 2+2-a .又⎠⎛01f (x )d x =⎠⎛01 (ax 2+2-a )d x=⎣⎢⎡⎦⎥⎤13ax 3+-a x ⎪⎪⎪15=2-23a =-2.所以a =6,从而f (x )=6x 2-4. (2)因为f (x )=6x 2-4,x ∈[-1,1]. 所以当x =0时,f (x )min =-4; 当x =±1时,f (x )max =2.C 级——重难题目自主选做1.(2018·长沙模拟)设a =⎠⎛01cos x d x ,b =⎠⎛01sin x d x ,则下列关系式成立的是( )A .a >bB .a +b<1C .a <bD .a +b =1解析:选A ∵(sin x )′=cos x ,∴a =⎠⎛01cos x d x =sin x ⎪⎪⎪10=sin 1.∵(-cos x )′=sin x ,∴b=⎠⎛01sin x d x =(-cos x ) ⎪⎪⎪10=1-cos 1.∵s in 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A .2.设M ,m 分别是f (x )在区间[a ,b ]上的最大值和最小值,则m (b -a )≤⎠⎛ab f (x )d x ≤M(b-a ).根据上述估值定理可知定积分⎠⎛-122-x2d x 的取值范围是________.解析:因为当-1≤x ≤2时,0≤x 2≤4, 所以116≤2-x 2≤1.根据估值定理得116×[2-(-1)]≤⎠⎛-122-x2d x ≤1×[2-(-1)],即316≤⎠⎛-122-x2d x ≤3. 答案:⎣⎢⎡⎦⎥⎤316,3。
2020年领军高考数学一轮复习(文理通用)专题17定积分与微积分基本定理最新考纲1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.基础知识融会贯通1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .(2)若f (x )为奇函数,则ʃa -a f (x )d x =0.重点难点突破【题型一】定积分的计算【典型例题】函数为奇函数,则()A.2 B.1 C.D.【解答】解:由于函数为奇函数,则,得a=1,因此,.故选:D.【再练一题】计算(cos x+e x)dx为()A.e B.e 2 C.e D.e【解答】解:(cos x+e x)dx=(sin x+e x)()﹣(sin0+e0)=11.故选:A.思维升华运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.【题型二】定积分的几何意义命题点1利用定积分的几何意义计算定积分【典型例题】(π)dx=.【解答】解:依题意,(π)dx()dx(﹣π)dx()dx﹣πx|()dx﹣4π.而()dx的几何意义为圆x2+y2=4(y≥0)在x轴上方的面积,所以()dx﹣4π4π=﹣2π.故填:﹣2π.【再练一题】,则T的值为()A.B.C.﹣1 D.1【解答】解:根据题意,M dx的几何意义为半径为1的圆的的面积,则M dx,则T sin2xdx cos2x;故选:A.命题点2求平面图形的面积【典型例题】由直线与曲线y=sin x所围成封闭图形的面积为()A.B.C.D.【解答】解:作出对应的图象,则封闭区域的面积S=﹣∫sin xdx+∫sin xdx﹣∫sin xdx=﹣(﹣cos x)|(﹣cos x)|(﹣cos x)|=cos0﹣cos()﹣cosπ+cos0+cos cosπ=11+11=4,故选:B.【再练一题】如图是函数y=x与函数在第一象限的图象,则阴影部分的面积是()A.B.C.D.【解答】解:由,得两函数的交点为(0,0),(1,1).所以阴影部分的面积S()|.故选:A.思维升华(1)根据定积分的几何意义可计算定积分.(2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.【题型三】定积分在物理中的应用【典型例题】汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m【解答】解:根据题意,汽车在第1s至第2s间的1s内经过的位移S(3t+1)dt=(t) 5.5;故选:C.【再练一题】一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J【解答】解:由于F(x)与位移方向成30°角.如图:F在位移方向上的分力F′=F•cos30°,W=∫12(5﹣x2)•cos30°dx∫12(5﹣x2)dx(5x x3)|12故选:C .思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃb a v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃb a F (x )d x .基础知识训练1.【吉林省白城市通榆县第一中学2018-2019学年高二下学期第三次月考(期中)】已知函数,则( )A .16B .8C .2cos2D .2cos2-【答案】A 【解析】,故选:A2.【河南省焦作市2018-2019学年高二下学期期中考试】已知图中的三条曲线所对应的函数分别为,2y x =,314y x =,则阴影部分的面积为( )A .1ln2+B .ln 2C .1D .2【答案】B 【解析】由1y x y x ⎧=⎪⎨⎪=⎩得1x =;由14y xx y ⎧=⎪⎪⎨⎪=⎪⎩得2x =. 阴影部分的面积.故选:B3.【河南省豫南六市2018-2019学年高二下学期期中测试】已知11em dx x=⎰,函数()f x 的导数,若()f x 在xa 处取得极大值,则a 的取值范围是( )A .1a <B .10a -<<C .1a >或0a <D .01a <<或0a <【答案】C 【解析】,即1m =则当0a =或1a =时,()f x 不存在极值,不合题意 当0a <时或时,()0f x '<,此时()f x 单调递减时,()0f x '>,此时()f x 单调递增则()f x 在x a 处取得极大值,满足题意当01a <<时或时,()0f x '>,此时()f x 单调递增时,()0f x '<,此时()f x 单调递减则()f x 在x a 处取得极小值,不满足题意当1a >时或()1,x ∈-+∞时,()0f x '>,此时()f x 单调递增 时,()0f x '<,此时()f x 单调递减则()f x 在xa 处取得极大值,满足题意综上所述:1a >或0a <4.【辽宁省沈阳铁路实验中学2018-2019学年高二下学期期中考试】下列积分值最大的是( ) A .B .C .D .11edx x【答案】 A 【解析】 A :,函数y=2sin x x 为奇函数,故,,B:,C:表示以原点为圆心,以2为半径的圆的面积的14,故,D:,通过比较可知选项A 的积分值最大, 故选:A5.【福建省宁德市高中同心顺联盟校2018-2019学年高二下学期期中考试】由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( )A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22【答案】B 【解析】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 ,故选B .6.【湖南省醴陵市第一中学2018-2019学年高二下学期期中考试】如图所示,在边长为1的正方形OABC 内任取一点P,用M 表示事件“点P 恰好取自曲线2y x =与直线1y =及y 轴所围成的曲边梯形内”,N 表示事件“点P 恰好取自阴影部分内”,则P(N | M)等于( )A .14B .15C .16D .71 【答案】A 【解析】根据条件概率的公式得到()P MN 表示落在阴影部分的概率,故答案为:A.7.【福建省福州市2018-2019学年高二下学期期中联考】设1d a x x =⎰,,12d c x x =⎰,则,,a b c 的大小关系A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C 【解析】 ∵,由定积分的几何意义可知,表示单位圆在第一象限部分与x 轴、y 轴所围成的封闭曲线的面积,等于4π, ,∴b a c >>,故选C.8.【广东省佛山市第二中学2018-2019学年第二学期第三次月考高二级】已知,则22()d f x x -⎰的值为( )A .等于0B .大于0C .小于0D .不确定【答案】A 【解析】由题意,.故选A9.【云南省昭通市云天化中学2018-2019学年高二下学期5月月考】射线与曲线3y x =所围成的图形的面积为( ) A .2 B .4C .5D .6【答案】B 【解析】将射线方程与曲线方程联立34y xy x=⎧⎨=⎩,解得:1100x y =⎧⎨=⎩,2228x y =⎧⎨=⎩ 即射线与曲线3y x =有两个公共点所围成的图形的面积为本题正确选项:B10.【吉林省长春市九台区师范高中、实验高中2018-2019学年高二下学期期中考试】( )A .πB .2πC .2D .1【答案】A 【解析】 因为定积分表示直线与曲线24y x =-围成的图像面积,又24y x =-表示圆224x y +=的一半,其中0y ≥;因此定积分表示圆224x y +=的14,其中,故.故选A11.【福建省厦门第一中学2018-2019学年高二下学期期中考试】已知区域,区域,在Ω内随机投掷一点M,则点M落在区域A内的概率是()A.1112e⎛⎫-⎪⎝⎭B.1114e⎛⎫-⎪⎝⎭C.1118e⎛⎫-⎪⎝⎭D.11e-【答案】B【解析】由题意,对应区域为正方形区域,其面积为224S==;对应区域如下图阴影部分所示:其面积为,所以点M落在区域A内的概率是.故选B12.【湖南省衡阳市第一中学2018-2019学年高二下学期期中考试】如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为 ( )A.B.C.D.【答案】B【解析】由题意可得,当时,由可得;所以,又,所以在矩形内随机取一点,则此点取自阴影部分的概率为.故选B13.【福建省晋江市南侨中学2018-2019学年高二下学期第二次月考】若是偶函数,则______.【答案】【解析】由题意,函数是偶函数,则,即,所以,又由定积分的几何意义可知,积分,表示所表示的半径为2的半圆的面积,即,所以,故答案为:.14.【广西南宁市第三中学、柳州市高级中学2018-2019学年高二下学期联考(第三次月考)】二项式的展开式中,第三项系数为2,则11adx x=⎰_______ 【答案】ln 2 【解析】展开式的通项为,第三项系数为,因为0a >,所以2a =,,故答案为ln 2.15.【新疆乌鲁木齐市第七十中学2018-2019学年高二下学期期中考试】__________.【答案】8π 【解析】 由题表示的几何意义为:以(0,0)为圆心,4为半径的圆在第一第二象限的面积,所以=,440xdx -=⎰所以故答案为8π16.【福建省泉州市泉港区第一中学2018-2019学年高二下学期期中考】如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为_________.【答案】14【解析】由图象可知,直线OB 方程为:y x = 则阴影部分面积为:∴所求概率本题正确结果:1417.【云南省曲靖市会泽县茚旺高级中学2018-2019学年高二下学期期中考试】定积分______. 【答案】2 【解析】.18.【四川省树德中学2018-2019学年高二5月阶段性测试】定积分__________.【答案】2π+ 【解析】 因为表示圆224x y +=面积的14,所以;又,所以.故答案为2π+19.【安徽省六安市第一中学2018-2019学年高二下学期第二次段考】二项式的展开式的第四项的系数为-40,则21ax dx -⎰的值为__________.【答案】3 【解析】二项式(ax ﹣1)5 的通项公式为: T r +15rC =•(ax )5﹣r •(﹣1)r , 故第四项为35C -•(ax )2=﹣10a 2x 2, 令﹣10a 2=﹣40, 解得a =±2, 又a >0, 所以a =2. 则故答案为:3.20.【辽宁省沈阳铁路实验中学2018-2019学年高二下学期期中考试】曲线22y x =-与曲线y x =所围成的区域的面积为__________. 【答案】92【解析】由曲线y =x 与y =2-x 2,得2-x 2=x ,解得x =-2或x =1, 则根据积分的几何意义可知所求的几何面积(2x-231123x x -)1-2| ==78+4+2-63= 92; 故答案为:92.能力提升训练1.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】如图,在正方形OABC 内任取一点M ,则点M 恰好取自阴影部分内的概率为( )A .14 B .13 C .25D .37【答案】B 【解析】由图可知曲线与正方形在第一象限的交点坐标为(1,1),由定积分的定义可得:S 阴1=⎰(1x -)dx =(x 3223x -)101|3=,设“点M 恰好取自阴影部分内”为事件A , 由几何概型中的面积型可得:P (A ),故选:B .2.【甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟】如图,在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为( )A .e3B .43e- C .33e- D .13e - 【答案】B 【解析】由题意,阴影部分的面积为,又矩形OABC 的面积为=3OABC S 矩形,所以在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为.故选B3.【江西省新八校2019届高三第二次联考】如图,在半径为π的圆内,有一条以圆心为中心,以2π为周期的曲线,若在圆内任取一点,则此点取自阴影部分的概率是( )A .1πB .21πC .22πD .无法确定【答案】B【解析】由题意知:圆的面积为:周期为2π可得:22ππω= 1ω∴=设圆的圆心为:(),0πϕπ⇒=∴曲线为:∴阴影部分面积∴所求概率本题正确选项:B4.【河南省开封市2019届高三第三次模拟】如图,在矩形中的曲线是的一部分,点,在矩形内随机取一点,则此点取自阴影部分的概率是( )A .B .C .D .【答案】B 【解析】阴影部分面积为矩形的面积为则此点落在阴影部分的概率故选B。
♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中, 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数 叫做被积函数, 叫做积分变量, 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x = ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作 ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算例1:(2018·唐山调研)定积分ʃ1-1(x 2+sin x )d x =______. 答案 23解析 ʃ1-1(x 2+sin x )d x =ʃ1-1x 2d x +ʃ1-1sin x d x=2ʃ10x 2d x =2·310|3x =23.1.ʃ1-1e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +22.(2017·昆明检测)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34 B.45 C.56D .不存在题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2: (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y=0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. (2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 命题点2 求平面图形的面积例3: (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________. 答案 4-ln 3解析 由xy =1,y =3,可得A ⎝⎛⎭⎫13,3.由xy =1,y =x ,可得B (1,1),由y =x ,y =3,得C (3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1131(3)d x x -⎰+ʃ31(3-x )d x =113(3ln )|x x -+2311(3)|2x x -=(3-1-ln 3)+⎝⎛⎭⎫9-92-3+12=4-ln 3.3.定积分ʃ309-x 2d x 的值为________.4.如图所示,由抛物线y =-x 2+4x -3及其在点A (0,-3)和点B (3,0)处的切线所围成图形的面积为______.题型三定积分在物理中的应用例4: 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m. 答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得611122()d 2d s t t t x ==⎰⎰v +ʃ312d t +ʃ63⎝⎛⎭⎫13t +1d t =2132611321|2|()|6t t t t +++=494(m).所以物体在12 s ~6 s 间的运动路程是494m.5.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433J D .2 3 J★★★知能达标演练★★★一、选择题1.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 2.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14D.π2-1 3.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( )A .π B.π2 C .π+1D .π-14.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( ) A .2 B .-2 C .1D .-15.(2018·大连调研)若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .66.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43 B.54 C.65D.767.(2017·湖南长沙模拟)设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =18.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .29.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 210.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13B.310C.14D.1511.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1二、填空题 12. ʃe +121x -1d x =________. 13.ʃ0-11-x 2d x =________. 14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m.15.若ʃT 0x 2d x =9,则常数T 的值为________.16.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________.17.π)d 4x x += ________.18.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.19.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.20.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.21.(2017·郑州调研)ʃ1-1(1-x2+e x-1)d x=______.22.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则ʃ20f(x)d x=________.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算 ♦♦♦跟踪训练♦♦♦ 1.答案 C解析 ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C. 2.答案 C解析 如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=31220111|(2)|32x x x +- =13+⎝⎛⎭⎫4-2-2+12=56. 题型二 定积分的几何意义 ♦♦♦跟踪训练♦♦♦ 3.答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ309-x 2d x =π·324=9π4.4.答案 94解析 由y =-x 2+4x -3,得y ′=-2x +4.易知抛物线在点A 处的切线斜率k 1=y ′|x =0=4,在点B 处的切线斜率k 2=y ′|x =3=-2.因此,抛物线在点A 处的切线方程为y =4x -3,在点B 处的切线方程为y =-2x +6. 两切线交于点M ⎝⎛⎭⎫32,3.因此,由题图可知所求的图形的面积是 S =33222302[(43)(43)]d [(26)(43)]d x x x x x x x x ---+-+-+--+-⎰⎰33222302d (69)d x x x x x =+-+⎰⎰33323203211|(39)|33x x x x =+-+ =98+98=94.题型三 定积分在物理中的应用 ♦♦♦跟踪训练♦♦♦ 5.答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=3211[(5)3x x -=433, ∴F (x )做的功为433 J.★★★知能达标演练★★★一、选择题 1.答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8), 图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=24201(2)|4x x -=8-14×24=4,故选D.2.答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰=π2011(sin )|22x x -=π4-12.3.答案 B解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =211π1|22x -+=π2.故选B. 4.答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x + ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x=320311011()|()|33x x x x x ----+-=-13-23 =-1,故选D.5.答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2. 6.答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11xd x =3101|3x +ln x |e 1=13+1=43.故选A. 7.答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A. 8.答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x=221201()|()|22x x x x -+-=⎝⎛⎭⎫1-12+⎝⎛⎭⎫222-2-⎝⎛⎭⎫12-1=1. 9.答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40⎝⎛⎭⎫7-3t +251+t d t=2403[725ln(1)]|2t t t -++ =28-24+25ln 5=4+25ln 5. 10.答案 A解析 由题意得,所求阴影部分的面积31231200211)d ()|,333S x x x x ==-=⎰ 故选A. 11.答案 B解析 方法一 S 1=3211|3x =83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3. 二、填空题 12.答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 13.答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 14.答案132解析 s =ʃ21(3t +2)d t =2213(2)|2t t + =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 15.答案 3解析 ∵ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 16.答案 43解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x=30110||3x x -+=13+1=43. 17.答案 2解析 由题意得π)d 4x x +=ππ220(sin cos )d (sin cos )|x+x x x x =-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2. 18.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-⎝⎛⎭⎫-sin π3= 3. 19.答案 49解析 封闭图形如图所示,则332220022|0,33ax x a a ==-=⎰解得a =49.20.答案 43解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图象过(0,1)点,所以-a =1,即a =-1. 所以f (x )=-(x +1)(x -1)=1-x 2.所以S =ʃ1-1(1-x 2)d x =2ʃ10(1-x 2)d x=31012()|3x x -=2⎝⎛⎭⎫1-13=43. 21.答案 π2+e -1e-2解析 ʃ1-1(1-x 2+e x-1)d x =ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积,所以ʃ1-11-x 2d x =π2. 而ʃ1-1(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e -2,所以ʃ1-1(1-x 2+e x-1)d x =π2+e -1e -2. 22.答案 -4解析因为f(x)=x3+x2f′(1),所以f′(x)=3x2+2xf′(1).所以f′(1)=3+2f′(1),解得f′(1)=-3. 所以f(x)=x3-3x2.故ʃ20f(x)d x=ʃ20(x3-3x2)d x=432()|4xx=-4.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第三章 导数及其应用第17讲 定积分与微积分基本定理★★★核心知识回顾★★★知识点一、定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在ʃb a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 知识点二、定积分的性质(1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数);(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ;(3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).知识点三、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )|b a ,即ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).★★★高考典例剖析★★★考点一、定积分的计算例1:(2018·唐山调研)定积分ʃ1-1(x 2+sin x )d x =______. 答案 23解析 ʃ1-1(x 2+sin x )d x =ʃ1-1x 2d x +ʃ1-1sin x d x=2ʃ10x 2d x =2·310|3x =23.1.ʃ1-1e |x |d x 的值为()A .2B .2eC .2e -2D .2e +2答案 C解析 ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e x d x=-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C.2.(2017·昆明检测)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则ʃ20f (x )d x 等于( ) A.34 B.45 C.56 D .不存在答案 C解析 如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=31220111|(2)|32x x x +- =13+⎝⎛⎭⎫4-2-2+12=56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例2: (1)计算:ʃ313+2x -x 2d x =________.(2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2 d x 表示圆(x -1)2+y 2=4和x =1,x =3,y=0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. (2)根据定积分的几何意义ʃm -2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 命题点2 求平面图形的面积例3: (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为________. 答案 4-ln 3解析 由xy =1,y =3,可得A ⎝⎛⎭⎫13,3.由xy =1,y =x ,可得B (1,1),由y =x ,y =3,得C (3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1131(3)d x x -⎰+ʃ31(3-x )d x =113(3ln )|x x -+2311(3)|2x x -=(3-1-ln 3)+⎝⎛⎭⎫9-92-3+12=4-ln 3.3.定积分ʃ309-x2d x的值为________.答案9π4解析由定积分的几何意义知,ʃ309-x2d x是由曲线y=9-x2,直线x=0,x=3,y=0围成的封闭图形的面积.故ʃ309-x2d x=π·324=9π4.4.如图所示,由抛物线y=-x2+4x-3及其在点A(0,-3)和点B(3,0)处的切线所围成图形的面积为______.答案94解析由y=-x2+4x-3,得y′=-2x+4.易知抛物线在点A处的切线斜率k1=y′|x=0=4,在点B处的切线斜率k2=y′|x=3=-2.因此,抛物线在点A处的切线方程为y=4x-3,在点B处的切线方程为y=-2x+6.两切线交于点M⎝⎛⎭⎫32,3.因此,由题图可知所求的图形的面积是S=3322232[(43)(43)]d[(26)(43)]dx x x x x x x x---+-+-+--+-⎰⎰3322232d(69)dx x x x x=+-+⎰⎰33323203211|(39)|33x x x x =+-+ =98+98=94. 题型三 定积分在物理中的应用例4: 一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为____ m. 答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得611122()d 2d s t t t x ==⎰⎰v +ʃ312d t +ʃ63⎝⎛⎭⎫13t +1d t =2132611321|2|()|6t t t t +++=494(m).所以物体在12 s ~6 s 间的运动路程是494m.5.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 JC.433 J D.2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=3211[(5)3x x -=433, ∴F (x )做的功为433 J.★★★知能达标演练★★★一、选择题1.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8), 图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=24201(2)|4x x -=8-14×24=4,故选D.2.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰=π2011(sin )|22x x -=π4-12.3.(2018·东莞质检)ʃ1-1(1-x 2+x )d x 等于( )A .πB.π2 C .π+1D .π-1答案 B 解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =211π1|22x -+=π2.故选B.4.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( )A .2B .-2C .1D .-1 答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1, 所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x +ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x =320311011()|()|33x x x x x ----+-=-13-23 =-1,故选D.5.(2018·大连调研)若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2(a >1),则a 的值是( ) A .2 B .3 C .4 D .6答案 A解析 由题意知ʃa 1⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|a 1 =a 2+ln a -1=3+ln 2,解得a =2.6.设f (x )=⎩⎪⎨⎪⎧ x 2,x ∈[0,1],1x,x ∈(1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( ) A.43B.54C.65D.76答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11x d x=3101|3x +ln x |e 1=13+1=43.故选A. 7.(2017·湖南长沙模拟)设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( )A .a >bB .a +b <1C .a <bD .a +b =1答案 A 解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin 1.∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos 1.∵sin 1+cos 1>1,∴sin 1>1-cos 1,即a >b .故选A.8.定积分ʃ20|x -1|d x 等于( )A .1B .-1C .0D .2答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x=ʃ10(1-x )d x +ʃ21(x -1)d x =221201()|()|22x x x x -+- =⎝⎛⎭⎫1-12+⎝⎛⎭⎫222-2-⎝⎛⎭⎫12-1=1. 9.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止,则在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2 答案 C解析 令v (t )=0,得t =4或t =-83(舍去), ∴汽车行驶距离s =ʃ40⎝⎛⎭⎫7-3t +251+t d t =2403[725ln(1)]|2t t t -++ =28-24+25ln 5=4+25ln 5.10.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15答案 A 解析 由题意得,所求阴影部分的面积31231200211)d ()|,333S x x x x ==-=⎰ 故选A.11.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 答案 B解析 方法一 S 1=3211|3x =83-13=73, S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.二、填空题12. ʃe +121x -1d x =________. 答案 1解析 ʃe +121x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 13.ʃ0-11-x 2d x =________. 答案 π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________ m.答案 132解析 s =ʃ21(3t +2)d t =2213(2)|2t t +=32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 15.若ʃT 0x 2d x =9,则常数T 的值为________. 答案 3解析 ∵ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3. 16.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为________. 答案 43解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x =30110||3x x -+=13+1=43.17.π)d 4x x += ________. 答案 2解析 由题意得π)d 4x x + =ππ2200(sin cos )d (sin cos )|x+x x x x =-⎰=⎝⎛⎭⎫sin π2-cos π2-(sin 0-cos 0)=2. 18.(2018·太原调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案 3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰ =sin π3-⎝⎛⎭⎫-sin π3= 3. 19.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.答案 49解析 封闭图形如图所示,则332220022|0,33a x x a a ==-=⎰解得a =49.20.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.答案 43解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0).因为f (x )的图象过(0,1)点,所以-a =1,即a =-1.所以f (x )=-(x +1)(x -1)=1-x 2.所以S =ʃ1-1(1-x 2)d x =2ʃ10(1-x 2)d x =31012()|3x x -=2⎝⎛⎭⎫1-13=43.21.(2017·郑州调研)ʃ1-1(1-x 2+e x -1)d x =______.答案 π2+e -1e -2解析 ʃ1-1(1-x 2+e x -1)d x=ʃ1-11-x 2d x +ʃ1-1(e x -1)d x .因为ʃ1-11-x 2d x 表示单位圆的上半部分的面积,所以ʃ1-11-x 2d x =π2.而ʃ1-1(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e -2,所以ʃ1-1(1-x 2+e x -1)d x =π2+e -1e -2.22.若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________. 答案 -4解析 因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故ʃ20f (x )d x =ʃ20(x 3-3x 2)d x =4320()|4x x =-4.。