2020届高考数学(理)一轮复习课时训练:第6章 数 列 30 Word版含解析
- 格式:doc
- 大小:127.50 KB
- 文档页数:6
其次节等差数列及其前n项和突破点(一)等差数列的性质及基本量的计算基础联通抓主干学问的“源”与“流”1.等差数列的有关概念(1)定义:假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n .(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(5)若数列{a n},{b n}是公差分别为d1,d2的等差数列,则数列{pa n},{a n+p},{pa n+qb n}都是等差数列(p,q都是常数),且公差分别为pd1,d1,pd1+qd2.考点贯穿抓高考命题的“形”与“神”等差数列的基本运算[例1](1)(2022·东北师大附中摸底考试)在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1 B.2C.3 D.4(2)(2022·惠州调研)已知等差数列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于()A.1 B.53C.-2 D.3[解析](1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S3=3(a1+a3)2=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案](1)B(2)C[方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2](1)在等差数列{a n}396n n S11=()A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析](1)由于a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)由于{a n},{b n}都是等差数列,本节主要包括3个学问点:1.等差数列的性质及基本量的计算;2.等差数列前n项和及性质的应用;3.等差数列的判定与证明.所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)211.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,由于a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最终6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1). (4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. [解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d=5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? [解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d=na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 由于a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法 (1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解. (2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则: ①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.力量练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n 为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干学问的“源”与“流” 等差数列的判定与证明方法方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯穿 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,推断{a n }是否为等差数列,并说明你的理由.[解] 由于a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n -1-1a n -1=a n -1a n -1=1,∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n ,∴b n =S nn +c =2n 2-n n +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2022·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 2.(2021·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2021·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( ) A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2021·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得微小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2022·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)由于b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2022·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考 [练基础小题——强化运算力量]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37B .36C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( ) A .9 B .8 C .7D .6解析:选D 设等差数列{a n }的公差为d .由于a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考力量] 一、选择题1.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2021·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉利数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉利数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,由于b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.由于对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n=2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,由于a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎪⎫1+212n -12≤121.即S n +10a 2n 的最大值为121. 二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________.解析:由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.依据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:13210.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 三、解答题11.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n ,∴b n +1-b n =2a n +1a n-1a n=2.又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. 12.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小.∵数列{b n }的首项是-29,公差为2,∴T 15=15(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.。
课时标准练31数列求和基础巩固组1.数列112,314,518,7116,…,(2n-1)+12n,…的前n项和S n的值等于()+1-12n +1-12n+1-12n-1+1-12n2.(2018河北衡水中学金卷十模,3)已知数列{a n}是各项为正数的等比数列,点M(2,log2a2),N(5,log2a5)都在直线y=x-1上,那么数列{a n}的前n项和为()+1-2+1-13.(2018山东潍坊二模,4)设数列{a n}的前n项和为S n,若S n=-n2-n,那么数列{2(n+1)n n}的前40项的和为()A.39 403940C.404140414.已知函数f(x)=x a的图象过点(4,2),令a n=1n(n+1)+n(n),n∈N*.记数列{a n}的前n项和为S n,则S2018= .5.(2018衡水中学金卷一模,17)已知数列{a n}的前n项和S n恰好与1-√2n n+1的展开式中含x-2项的系数相等.(1)求数列{a n}的通项公式;(2)记b n=(-1)n·n n+1n n,数列{b n}的前n项和为T n,求T2n.6.(2018山西晋城月考)已知数列{a n}知足a1=3,a n+1=2a n+(-1)n(3n+1).(1)求证:数列{a n+(-1)n n}是等比数列;(2)求数列{a n}的前10项和S10.7.(2018山东潍坊一模,17)公差不为0的等差数列{a n}的前n项和为S n,已知S4=10,且a1,a3,a9成等比数列.(1)求{a n}的通项公式;(2)求数列{n n}的前n项和T n.3n综合提升组8.(2018广东中山期末)等比数列{a n}中,已知对任意自然数n,a1+a2+a3+…+a n=2n-1,则n12+n22+ n32+…+n n2等于()(3n-1)B.12C.1(4n-1) D.以上都不对39.(2018湖北重点中学五模)设等差数列{a n}的前n项和为S n,a4=4,S5=15,假设数列{1mn n n n+1}的前项和为10,则m=()1110.(2018山东潍坊三模,17)已知数列{a n}的前n项和为S n,且1,a n,S n成等差数列.(1)求数列{a n}的通项公式;(2)假设数列{b n}知足a n·b n=1+2na n,求数列{b n}的前n项和T n.11.(2018江西上饶三模,17)已知等比数列{a n}的前n项和为S n,且6S n=3n+1+a(n∈N*).(1)求a的值及数列{a n}的通项公式;(2)若b n=(3n+1)a n,求数列{a n}的前n项和T n.创新应用组12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大伙儿学习数学的爱好,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项为哪一项20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求知足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()13.(2018云南玉溪月考)数列{a n}知足:a1=14,a2=15,且a1a2+a2a3+…+a n a n+1=nn1n n+1对任何的正整数n都成立,则1n1+1n2+…+1n97的值为()032 044 048 050课时标准练31 数列求和该数列的通项公式为a n =(2n-1)+12n ,则S n =[1+3+5+…+(2n-1)]+(12+122+…+12n )=n 2+1-12n .由题意log 2a 2=2-1=1,可得a 2=2,log 2a 5=5-1=4,可得a 5=16,n5n 2=q 3=8⇒{n =2,n 1=1⇒S n =1-2n1-2=2n -1,应选C .∵S n =-n 2-n ,∴a 1=S 1=-2.当n ≥2时,a n =S n -S n-1=-n 2-n+(n-1)2+(n-1)=-2n , 那么数列{a n }的通项公式为a n =-2n ,2(n +1)n n=2-2n (n +1)=-1n −1n +1,数列{2(n +1)n n}的前40项的和为S 40=-1-12+12−13+…+140−141=-4041.4.√2 019-1 由f (4)=2,可得4a =2,解得a=12,则f (x )=n 12.∴a n =1n (n +1)+n (n )=√n +1+√n=√n +1−√n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(√2−√1)+(√3−√2)+(√4−√3)+…+(√2 019−√2 018)=√2019-1. 5.解 (1)依题意得S n =2C n +12=n (n+1),故当n ≥2时,a n =S n -S n-1=n (n+1)-n (n-1)=2n , 又当n=1时,a 1=S 1=2,也适合上式,故a n =2n (n ∈N *).(2)由(1)得b n =(-1)n ×2n +1n (n +1)=(-1)n 1n +1n +1,故T 2n =b 1+b 2+…+b 2n =-1+12+12+13-…-12n -1+12n+12n +12n +1=-1+12n +1=-2n2n +1(n ∈N *).6.(1)证明 ∵a n+1=2a n +(-1)n (3n+1),∴n n +1+(-1)n +1(n +1)n n +(-1)nn=2n n +(-1)n (3n +1)-(-1)n(n +1)n n +(-1)nn=2[n n +(-1)n n ]n n +(-1)nn=2.又a 1-1=3-1=2,∴数列{a n +(-1)n n }是首项为2,公比为2的等比数列.(2)解 由(1)得a n +(-1)n n=2×2n-1=2n ,∴a n =2n -(-1)n n ,∴S 10=(2+22+…+210)+(1-2)+(3-4)+…+(9-10)=2(1-210)1-2-5=211-7=2 041.7.解 (1)设{a n }的公差为d ,由题设可得,{4n 1+6n =10,n 32=n 1·n 9,∴{4n 1+6n =10,(n 1+2n )2=n 1(n 1+8n ),解得{n 1=1,n =1.∴a n =n.(2)令c n =n 3n ,则T n =c 1+c 2+…+c n =13+232+333+…+n -13n -1+n 3n ,① 13T n =132+233+…+n -13n+n3n +1,②①-②得:23T n =13+132+…+13n -n3n +1=13(1-13n )1-13−n3n +1=12−12×3n −n3n +1,∴T n =34−2n +34×3n .当n=1时,a 1=21-1=1,当n ≥2时,a 1+a 2+a 3+…+a n =2n -1,a 1+a 2+a 3+…+a n-1=2n-1-1, 两式做差可得a n =2n -2n-1=2n-1,且n=1时,21-1=20=1=a 1,∴a n =2n-1,故n n 2=4n-1,∴n 12+n 22+n 32+…+n n2=1×(1-4n)1-4=13(4n -1).S n 为等差数列{a n }的前n 项和,设公差为d ,则{n 4=4,n 5=15=5n 3,解得d=1,则a n =4+(n-4)×1=n. 由于1n n n n +1=1n (n +1)=1n −1n +1, 则S m =1-12+12−13+…+1n −1n +1=1-1n +1=1011,解得m=10. 10.解 (1)由已知1,a n ,S n 成等差数列,得2a n =1+S n ,①当n=1时,2a 1=1+S 1=1+a 1,∴a 1=1.当n ≥2时,2a n-1=1+S n-1,②①-②,得2a n -2a n-1=a n ,∴n nnn -1=2,∴数列{a n }是以1为首项,2为公比的等比数列, ∴a n =a 1q n-1=1×2n-1=2n-1.(2)由a n ·b n =1+2na n 得b n =1n n +2n ,∴T n =b 1+b 2+…+b n =1n 1+2+1n 2+4+…+1n n+2n=(1n 1+1n 2+…+1n n)+(2+4+…+2n )=1-12n 1-12+(2+2n )n 2=n 2+n+2-12n -1. 11.解 (1)∵6S n =3n+1+a (n ∈N *),∴当n=1时,6S 1=6a 1=9+a ;当n ≥2时,6a n =6(S n -S n-1)=2×3n ,即a n =3n-1,∵{a n }为等比数列, ∴a 1=1,则9+a=6,a=-3, ∴{a n }的通项公式为a n =3n-1.(2)由(1)得b n =(3n+1)3n-1,∴T n =b 1+b 2+…+b n =4×30+7×31+…+(3n+1)3n-1,3T n =4×31+7×32+…+(3n-2)3n-1+(3n+1)3n ,∴-2T n =4+32+33+…+3n -(3n+1)3n ,∴Tn =(6n -1)3n+14. 设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n 组的项数为n ,那么前n 组的项数和为n (1+n )2.第n组的和为1-2n1-2=2n -1,前n组总共的和为2(1-2n)1-2-n=2n+1-2-n.由题意,N>100,令n (1+n )2>100,得n ≥14且n ∈N *,即N 出此刻第13组以后.假设要使最小整数N 知足:N>100且前N 项和为2的整数幂,则S N -n n (1+n )2应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),因此k=log 2(n+3),解得n=29,k=5.因此N=29×(1+29)2+5=440,应选A .∵a 1a 2+a 2a 3+…+a n a n+1=n n 1n n +1,① a 1a 2+a 2a 3+…+n n n n +1+n n +1n n +2=(n+1)n 1n n +2, ②①-②,得-n n +1n n +2=n n 1n n +1-(n+1)n 1n n +2,∴n +1n n +1−n n n +2=4,同理得nn n −n -1n n +1=4,∴n +1n n +1−n n n +2=n n n−n -1n n +1, 整理得2nn +1=1n n +1n n +2,∴{1n n}是等差数列.∵a 1=14,a 2=15,∴等差数列{1n n}的首项为4,公差为1,1n n=4+(n-1)×1=n+3,∴1n 1+1n 2+…+1n 97=97(4+100)2=5 044.。
专练30 等差数列及其前n 项和命题X 围:等差数列的概念和性质、等差数列的通项公式及前n 项和公式.[基础强化]一、选择题1.[2021·某某测试]记S n 为等差数列{a n }的前n 项和.若S 5=2S 4,a 2+a 4=8,则a 5=() A .6B .7 C .8D .102.[2021·某某某某测试]已知等差数列{a n }的前n 项和为S n ,且a 4=52,S 10=15,则a 7=()A.12B .1 C.32D .2 3.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=() A .-12B .-10 C .10D .124.记S n 为等差数列{a n }的前n 项和,若a 4+a 5=24,S 6=48,则{a n }的公差为() A .1B .2 C .4D .85.[2021·某某某某月考]等差数列{a n }的前n 项和为S n ,且a 3+a 7=22,S 11=143.若S n >195,则n 的最小值为()A .13B .14C .15D .16 6.[2021·皖南八校联考]已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为()A .-3B .-52C .-2D .-4 7.[2021·某某师大附中高三测试]已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7=()A .13B .49C .35D .63 8.[2020·全国卷Ⅱ]天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A .3699块B .3474块C .3402块D .3339块9.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则() A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n二、填空题10.记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.11.记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=________. 12.[2021·某某某某一调]等差数列{a n }的前n 项和为S n ,若a 4+a 5=25,S 6=57,则{a n }的公差为______.[能力提升] 13.[2021·某某某某测试]我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪是连续十二个节气,其日影子长依次成等差数列,经记录测算,夏至、处暑、霜降三个节气日影子长之和为尺,这十二个节气的所有日影子长之和为84尺,则夏至的日影子长为________尺.14.已知数列{a n }为等差数列,数列{b n }为等比数列,且满足a 2016+a 2017=π,b 20b 21=4,则tan a 1+a 40322+b 19b 22=()A.33B. 3 C .1D .-115.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.16.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值X 围是________.专练30 等差数列及其前n 项和1.D 设等差数列{a n }的公差为d .∵S 5=2S 4,a 2+a 4=8, ∴⎩⎪⎨⎪⎧5a 1+5×42d =2⎝⎛⎭⎫4a 1+4×32d ,a 1+d +a 1+3d =8,整理得⎩⎪⎨⎪⎧ 3a 1+2d =0,a 1+2d =4,解得⎩⎪⎨⎪⎧a 1=-2,d =3.∴a 5=a 1+4d =-2+12=10.故选D.2.A 设等差数列{a n }的首项为a 1,则由等差数列{a n }的前n 项和为S n 及S 10=15,得10(a 1+a 10)2=15,所以a 1+a 10=3.由等差数列的性质,得a 1+a 10=a 4+a 7,所以a 4+a 7=3.又因为a 4=52,所以a 7=12.故选A.3.B 设等差数列{a n }的公差为d ,则3⎝⎛⎭⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,得d =-32a 1,又a 1=2,∴d =-3,∴a 5=a 1+4d =-10.4.C ∵S 6=(a 1+a 6)×62=48,∴a 1+a 6=16,又a 4+a 5=24,∴(a 4+a 5)-(a 1+a 6)=8, ∴3d -d =8,d =4.5.B 设等差数列{a n }的公差为d .因为a 3+a 7=22,所以2a 5=22,即a 5=11.又因为S 11=(a 1+a 11)×112=2a 6×112=143,解得11a 6=143,即a 6=13.所以公差d =a 6-a 5=2,所以a n =a 5+(n -5)d =11+(n -5)×2=2n +1,所以S n =(a 1+a n )n2=(n +2)n .令(n +2)n >195,则n 2+2n -195>0,解得n >13或n <-15(舍).故选B. 6.D ∵{a n }为等差数列,∴S 5=5a 3=-15, ∴a 3=-3,∴d =a 3-a 2=-3-1=-4.7.B ∵S n =an 2+bn ,∴{a n }为等差数列,∴S 7=(a 1+a 7)×72=(a 2+a 6)×72=(3+11)×72=49.8.C 由题意可设每层有n 个环,则三层共有3n 个环,∴每一环扇面形石板的块数构成以a 1=9为首项、9为公差的等差数列{a n },且项数为3n .不妨设上层扇面形石板总数为S 1,中层总数为S 2,下层总数为S 3,∴S 3-S 2=[9(2n +1)·n +n (n -1)2×9]-[9(n +1)·n +n (n -1)2×9]=9n 2=729,解得n =9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+27×262×9=27×9+27×13×9=27×14×9=3402(块).故选C.9.A 方法一:设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ;选项C ,S 1=2-8=-6,排除C ;选项D ,S 1=12-2=-32,排除D.故选A.10.4解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1,所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.11.14解析:∵{a n }为等差数列,∴a 6=a 3+3d ,a 7=a 3+4d , ∴a 6+a 7=7d =14,∴d =2,∴a 4=a 3+d =2, ∴S 7=7a 4=7×2=14. 12.3解析:设{a n }的公差为d .因为a 4+a 5=25,S 6=57,所以⎩⎪⎨⎪⎧ 2a 1+7d =25,6a 1+15d =57,解得⎩⎪⎨⎪⎧a 1=2,d =3,所以{a n }的公差为3.13.解析:设此等差数列{a n }的公差为d ,前n 项和为S n ,由题意得,⎩⎪⎨⎪⎧S 12=84,a 1+a 5+a 9=,即⎩⎪⎨⎪⎧12a 1+12×112d =84,3a 5=3(a 1+4d )=,解得⎩⎪⎨⎪⎧a 1=,d =1,所以夏至的日影子长为尺. 14.Atan a 1+a 40322+b 19b 22=tan a 2016+a 20172+b 20b 21=tan π6=33,故选A.15.8解析:∵a 7+a 8+a 9>0,a 7+a 9=2a 8, ∴3a 8>0,即a 8>0.又∵a 7+a 10=a 8+a 9<0,∴a 9<0, ∴等差数列前8项的和最大.故n =8.16.⎝⎛⎭⎫-1,-78 解析:解法一:由于S n =7n +n (n -1)2d =d 2n 2+⎝⎛⎭⎫7-d 2n ,设f (x )=d 2x 2+⎝⎛⎭⎫7-d 2x ,则其图象的对称轴为直线x =12-7d.当且仅当n =8时,S n 取得最大值,故<12-7d <,解得-1<d <-78.解法二:由题意,得a 8>0,a 9<0,所以7+7d >0,且7+8d <0,即-1<d <-78.。
【30份】2020版高考数学北师大版(理)一轮复习课时规范练目录课时规范练1集合的概念与运算 (2)课时规范练2不等关系及简单不等式的解法 (5)课时规范练3命题及其关系、充要条件 (11)课时规范练4简单的逻辑联结词、全称量词与存在量词 (15)课时规范练5函数及其表示 (20)课时规范练6函数的单调性与最值 (24)课时规范练7函数的奇偶性与周期性 (30)课时规范练8幂函数与二次函数 (35)课时规范练9指数与指数函数 (40)课时规范练10对数与对数函数 (45)课时规范练11函数的图像 (50)课时规范练12函数与方程 (55)课时规范练13函数模型及其应用 (61)课时规范练14导数的概念及运算 (68)课时规范练15导数与函数的小综合 (72)课时规范练16定积分与微积分基本定理 (78)课时规范练17任意角、弧度制及任意角的三角函数 (82)课时规范练18同角三角函数的基本关系及诱导公式 (88)课时规范练19三角函数的图像与性质 (94)课时规范练20函数y=A sin(ωx+φ)的图像及应用 (102)课时规范练21两角和与差的正弦、余弦与正切公式 (112)课时规范练22三角恒等变换 (121)课时规范练23解三角形 (129)课时规范练24平面向量的概念及线性运算 (137)课时规范练25平面向量基本定理及向量的坐标表示 (143)课时规范练26平面向量的数量积与平面向量的应用 (149)课时规范练27数系的扩充与复数的引入 (154)课时规范练28数列的概念与表示 (158)课时规范练29等差数列及其前n项和 (163)课时规范练30等比数列及其前n项和 (169)2019年5月课时规范练1集合的概念与运算基础巩固组1.(2018厦门外国语学校一模,2)已知集合A={x|y=lg(x-1)},B={x||x|<2},则A∩B=()A.(-2,0)B.(0,2)C.(1,2)D.(-2,2)2.已知全集U=R,集合A={x|x<-2或x>2},则?U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)3.(2018百校联盟四月联考,1)设集合A={-1,0,1,2},B={y|y=2x,x∈A},则A∪B中元素的个数为()A.5B.6C.7D.84.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)5.(2018北京101中学3月模拟,1)已知集合A={x|x(x-2)<0},B={x|ln x>0},则A∩B是()A.{x|x>0}B.{x|x>2}C.{x|1<x<2}D.{x|0<x<2}6.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=()A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}7.(2018山东济南二模,1)设全集U=R,集合A={x|x-1≤0},集合B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A.{x|x<3}B.{x|-3<x≤1}C.{x|x<2}D.{x|-2<x≤1}8.已知全集U=R,A={0,1,2,3},B={y|y=2x,x∈A},则(?U A)∩B=()A.(-∞,0)∪(3,+∞)B.{x|x>3,x∈N}C.{4,8}D.[4,8]9.(2018湖南衡阳一模,1)已知集合A={x|(x+1)(x-3)<0},B={x|y=ln x},则A∩B=()A.{0,3}B.(0,3)C.(-1,3)D.{-1,3}10.已知集合A={x|x(x-4)<0},B={0,1,5},则A∩B=.11.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是.12.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A?B的B的个数为.综合提升组13.已知集合A={x|x2-2x-3≤0},B={x|x<a},若A?B,则实数a的取值范围是()A.(-1,+∞)B.[-1,+∞)C.(3,+∞)D.[3,+∞)14.(2018河北衡水中学十模,1)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(?U B)=()A.{1,3}B.{0,2}C.{0,1,3}D.{2}15.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]16.已知集合A={x|4≤2x≤16},B=[a,b],若A?B,则实数a-b的取值范围是.创新应用组17.已知集合A={x|x<a},B={x|1<x<2},且A∪(?R B)=R,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>218.若集合A={x|x2+4x+k=0,x∈R}中只有一个元素,则实数k的值为.参考答案课时规范练1集合的概念与运算1.C由题意,可知A={x|x>1},B={x|-2<x<2},∴A∩B={x|1<x<2},表示为区间即(1,2),故选C.2.C因为A={x|x<-2或x>2},所以?U A={x|-2≤x≤2}.故选C.3.B因为A={-1,0,1,2},B=,所以A∪B=-1,0,,1,2,4,A∪B中元素的个数为 6.4.D由(x-2)(x-3)≥0,解得x≥3或x≤2,所以S={x|x≤2或x≥3}.因为T={x|x>0},所以S∩T={x|0<x≤2或x≥3},故选D.5.C由题意,集合A={x|x(x-2)<0}={x|0<x<2},B={x|ln x>0}={x|x>1},所以A∩B={x|1<x<2}.故选C.6.D集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0}={x|-3<x<0},∴M∩N={-2,-1}.故选D.7.D由题意可得:A={x|x≤1},B={x|-2<x<3},∴A∩B={x|-2<x≤1},故选 D.8.C∵全集U=R,A={0,1,2,3},B={y|y=2x,x∈A}={1,2,4,8},∴(?U A)∩B={4,8}.故选 C.9.B A={x|-1<x<3},B={x|x>0},所以A∩B=(0,3),故选 B.10.{1}A={x|x(x-4)<0}=(0,4),所以A∩B={1}.11.(4,+∞)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A?B,则a>4.12.4因为A={1,2}且A?B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4}.13.C由题意,A=[-1,3],B=(-∞,a),∵A?B,∴a>3,∴a的取值范围是(3,+∞).14.A∵全集U=Z,A={0,1,2,3},B={x|x2=2x},∴?U B={x|x∈Z,且x≠0,且x≠2},∴A∩(?U B)={1,3}.故选 A.A∪B).15.C由题意可知阴影部分对应的集合为(?U(A∩B))∩(∵A={x|-2<x<0},B={x|-1≤x≤1},∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},∵?U(A∩B)={x|x<-1或x≥0},∴(?U(A∩B))∩(A∪B)={x|0≤x≤1或-2<x<-1}.故选 C.16.(-∞,-2]集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A?B,所以a≤2,b≥4.所以a-b≤2-4=-2.故实数a-b的取值范围是(-∞,-2].17.C∵A∪(?R B)=R,∴B?A,∴a≥2,故选C.18.4由题意x2+4x+k=0有两个相等的实根,∴Δ=16-4k=0,解得k=4.2019年5月课时规范练2不等关系及简单不等式的解法基础巩固组1.已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.函数f(x)=的定义域是()A.(-∞,1)∪(3,+∞)B.(1,3)C.(-∞,2)∪(2,+∞)D.(1,2)∪(2,3)3.已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系为()A.a<b≤cB.b≤c<aC.b<c<aD.b<a<c4.使不等式2x2-5x-3≥0成立的一个充分不必要条件是()A.x≥0B.x<0或x>2C.x∈{-1,3,5}D.x≤-或x≥35.若函数f(x)=的定义域为R,则实数m的取值范围为()A.[-4,0]B.[-4,0)C.(-4,0)D.(-∞,4]∪{0}。
【课时训练】第29节 等比数列及其前n 项和一、选择题1.(2018贵州遵义四中段测)设数列{a n }满足2a n =a n +1(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B .154 C .4 D .2【答案】A【解析】由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.故选A.2.(2018河南名校联考)在各项均为正数的等比数列{a n }中,a 1=3,a 9=a 2a 3a 4,则公比q 的值为( )A.2 B .3 C .2 D .3【答案】D【解析】由a 9=a 2a 3a 4得a 1q 8=a 31q 6,所以q 2=a 21.因为等比数列{a n }的各项都为正数,所以q =a 1=3.3.(2018辽宁沈阳二中质检)在等比数列{a n }中,a 5a 11=3,a 3+a 13=4,则a 15a 5=( )A .3B .-13C .3或13 D .-3或-13【答案】C【解析】根据等比数列的性质得⎩⎨⎧(a 3q 5)2=3,a 3(1+q 10)=4,化简得3q 20-10q 10+3=0,解得q 10=3或13,所以a 15a 5=a 5q 10a 5=q 10=3或13.4.(2018江苏泰州模拟)已知各项均是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( )A.5-12 B .5+12 C .-5-12 D .5-12或5+12【答案】B【解析】设{a n }的公比为q (q >0).由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.从而a 4+a 5a 3+a 4=q =1+52.5.(2018广东珠海综合测试)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a n a n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立.故选B.6.(2019辽宁盘锦高中月考)已知等比数列{a n }的前n 项积记为Ⅱn .若a 3a 4a 8=8,则Ⅱ9=( )A .512B .256C .81D .16【答案】A【解析】由题意知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)·(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.7.(2018湖南浏阳一中月考)已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值为( )A .126B .130C .132D .134【答案】C【解析】设等比数列{a n }的公比为q (q >0),由题意可知,lg a 3=b 3,lg a 6=b 6.又b 3=18,b 6=12,则a 1q 2=1018,a 1q 5=1012,∴q 3=10-6,即q =10-2,∴a 1=1022.∵{a n }为正项等比数列,∴{b n }为等差数列,且公差d =-2,b 1=22,故b n =22+(n -1)×(-2)=-2n +24.∴数列{b n }的前n 项和S n =22n +n (n -1)2×(-2)=-n 2+23n =-⎝⎛⎭⎪⎫n -2322+5294.又n ∈N *,故n =11或12时,(S n )m a x =132. 二、填空题8.(2018河南洛阳统考)已知{a n }为等比数列,且a 3+a 6=36,a 4+a 7=18.若a n =12,则n =________.【答案】 9【解析】设{a n }的公比为q ,由a 3+a 6=36,a 4+a 7=(a 3+a 6)q =18,解得q =12,由a 1(q 2+q 5)=36得a 1=128,进而a n =128·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -8.由a n =12,解得n =9.9.(2018天津六校联考)设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.【答案】15【解析】由题意得a n =(-2)n -1,所以a 1+|a 2|+a 3+|a 4|=1+|-2|+(-2)2+|(-2)3|=15.10.(2018福建上杭一中月考)已知等差数列{a n }的前5项和为105,且a 10=2a 5.对任意的m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m ,则数列{b m }的前m 项和S m =________.【答案】72m +1-748【解析】设数列{a n }的公差为d ,前n 项和为T n .由T 5=105,a 10=2a 5,得⎩⎪⎨⎪⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7,因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *).对任意的m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1,所以数列{b m }是首项为7,公比为49的等比数列,故S m =7×(1-49m )1-49=7×(72m -1)48=72m +1-748. 三、解答题11.(2018湖北鄂东南联盟期中联考)已知数列{a n }满足a 1=8999,a n +1=10a n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,并求数列{a n }的通项公式; (2)数列{b n }满足b n =lg ⎝ ⎛⎭⎪⎫a n +19,T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,求证:T n <12.(1)【解】由a n +1=10a n +1,得a n +1+19=10a n +109=10⎝ ⎛⎭⎪⎫a n +19,所以a n +1+19a n +19=10,所以数列⎩⎨⎧⎭⎬⎫a n +19是等比数列,首项为a 1+19=100,公比为10.所以a n +19=100×10n -1=10n +1,所以a n =10n +1-19. (2)【证明】由(1)可得b n =lg ⎝⎛⎭⎪⎫a n +19=lg 10n +1=n +1,所以1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,所以T n <12.12.(2018长沙模拟)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列. (1) 【解】当n =2时,4S 4+5S 2=8S 3+S 1, 即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1, 解得a 4=78.(2)【证明】由4S n +2+5S n =8S n +1+S n -1(n ≥2),得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1(n ∈N *). ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n2(2a n +1-a n )=12.∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.。
集合的概念与运算1.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=(A)A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.2.(2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=(A)A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}因为A={1,3,5},B={3,4,5},所以A∪B={1,3,4,5}.又U={1,2,3,4,5,6},所以∁U(A∪B)={2,6}.3.(2018·武汉调研测试)已知集合M={x|x2=1},N={x|ax=1},若N M,则实数a 的取值集合为(D)A.{1} B.{-1,1}C.{1,0} D.{1,-1,0}M={x|x2=1}={-1,1},又N M,N={x|ax=1},则N={-1},{1},∅满足条件,所以a=1,-1,0,即实数a的取值集合为{1,-1,0}.4.(2018·佛山一模)已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为(A)A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}因为B={x|x2-2x>0}={x|x>2或x<0},所以∁U B={x|0≤x≤2},所以图中阴影部分表示的集合为A ∩(∁U B )={0,1,2}.5.设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则集合M 中的元素个数为(B)A .3B .4C .5D .6M ={5,6,7,8},所以M 中的元素个数为4.6.(2017·江苏卷)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为 1 .因为A ∩B ={1},A ={1,2},所以1∈B 且2∉B .若a =1,则a 2+3=4,符合题意. 又a 2+3≥3≠1,故a =1.7.已知集合A ={y |y =1x},B ={y |y =x 2},则A ∩B = (0,+∞) .A ={y |y =1x}=(-∞,0)∪(0,+∞),B ={y |y =x 2}=[0,+∞),所以A ∩B =(0,+∞).8.设集合A ={x |x 2-3x -4<0},则A ∩Z = {0,1,2,3} ,A ∩Z 的所有子集的个数为 16 .A ={x |x 2-3x -4<0}={x |-1<x <4},所以A ∩Z ={0,1,2,3},A ∩Z 的子集个数有24=16个.9.(2017·山东卷)设集合M ={x ||x -1|<1},N ={x |x <2},则 M ∩N =(C) A .(-1,1) B .(-1,2) C .(0,2) D .(1,2)因为M ={x |0<x <2},N ={x |x <2},所以M ∩N ={x |0<x <2}∩{x |x <2}={x |0<x <2}.10.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是(B)A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)由x -x 2>0,得0<x <1,所以A =(0,1),由x 2-cx <0,得0<x <c ,所以B =(0,c ), 因为A ⊆B ,所以c ≥1.11.已知M ={x |-2≤x ≤5},N ={x |a +1≤x ≤2a -1}. (1)若a =3,则M ∪(∁R N )= R .(2)若N ⊆M ,则实数a 的取值范围为 (-∞,3] .(1)当a =3时,N ={x |4≤x ≤5},所以∁R N ={x |x <4或x >5}. 所以M ∪(∁R N )=R .(2)①当2a -1<a +1,即a <2时,N =∅, 此时满足N ⊆M .②当2a -1≥a +1,即a ≥2时,N ≠∅,由N ⊆M ,得⎩⎪⎨⎪⎧a +1≥-2,2a -1≤5,所以2≤a ≤3.综上,实数a 的取值范围为(-∞,3].12.(2018·黄石月考)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 12 人.设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设两者都喜欢的人数为x 人,则只喜爱篮球的有(15-x )人,只喜爱乒乓球的有(10-x )人,由此可得(15-x )+(10-x )+x +8=30,解得x =3.所以15-x =12,即所求人数为12人.命题及其关系、充分条件与必要条件1.(2018·深圳市第二次调研)设A ,B 是两个集合,则“x ∈A ”是“x ∈A ∩B ”的(B)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件因为x ∈A ∩B ⇒x ∈A 且x ∈B ⇒x ∈A .但x ∈A ≠> x ∈A ∩B .所以“x ∈A ”是“x ∈A ∩B ”的必要不充分条件. 2.命题“若α=π4,则tan α=1”的逆否命题为(C)A .若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4将条件和结论分别否定后作为结论和条件即得到逆否命题.3.(2018·天津卷)设x ∈R ,则“x 3>8”是“|x |>2”的(A) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件由x 3>8⇒x >2⇒|x |>2,反之不成立,故“x 3>8”是“|x |>2”的充分而不必要条件.4.(2018·广东肇庆一模)原命题:设a ,b ,c ∈R ,若“a >b ”,则“ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有(C)A .0个B .1个C .2个D .4个因为当c =0时,由a >b ≠> ac 2>bc 2,所以原命题为假,从而逆否命题为假.又ac 2>bc 2⇒a >b ,所以逆命题为真,从而否命题为真. 故真命题共有2个.5.(2018·湖北新联考四模)若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是(D)A .[-3,3]B .(-∞,-3]∪[3,+∞)C .(-∞,-1]∪[1,+∞) D.[-1,1]“x >2m 2-3”是“-1<x <4”的必要不充分条件,所以(-1,4) (2m 2-3,+∞),所以2m 2-3≤-1,解得-1≤m ≤1.6.命题“若a >b ,则2a>2b-1”的否命题为 若a ≤b ,则2a≤2b-1 .7.(2018·北京卷)能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为 1,-1(答案不唯一) .只要保证a 为正b 为负即可满足要求.当a >0>b 时,1a >0>1b.只要取满足上述条件的a ,b 值即可,如a =1,b =-1(答案不唯一).8.f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )+1<3},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围为 (3,+∞) .依题意P ={x |f (x +t )+1<3}={x |f (x +t )<2}={x |f (x +t )<f (2)},Q ={x |f (x )<-4}={x |f (x )<f (-1)}, f (x )是R 上的增函数,所以P ={x |x <2-t },Q ={x |x <-1}, 要使“x ∈P ”是“x ∈Q ”的充分不必要条件, 需2-t <-1,解得t >3,所以实数t 的取值范围是(3,+∞).9.(2016·天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的(C) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件(1)分别判断x >y ⇒x >|y |与x >|y |⇒x >y 是否成立,从而得到答案.当x =1,y =-2时,x >y ,但x >|y |不成立; 若x >|y |,因为|y |≥y ,所以x >y .所以“x >y ”是“x >|y |”的必要而不充分条件.10.(2017·浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 +S 6>2S 5”的(C)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(方法一)因为数列{a n }是公差为d 的等差数列, 所以S 4=4a 1+6d ,S 5=5a 1+10d ,S 6=6a 1+15d , 所以S 4+S 6=10a 1+21d,2S 5=10a 1+20d . 若d >0,则21d >20d,10a 1+21d >10a 1+20d , 即S 4+S 6>2S 5.若S 4+S 6>2S 5,则10a 1+21d >10a 1+20d ,即21d >20d , 所以d >0.所以“d >0”是“S 4+S 6>2S 5”的充分必要条件. (方法二)因为S 4+S 6>2S 5S 4+S 4+a 5+a 6>2(S 4+a 5a 6>a 5a 5+d >a 5d >0,所以“d >0”是“S 4+S 6>2S 5”的充分必要条件.11.(2018·武汉调研测试)在△ABC 中,角A ,B ,C 的对应边分别为a ,b ,c ,条件p :a ≤b +c 2,条件q :A ≤B +C 2,那么条件p 是条件q 成立的(A)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件条件q :A ≤B +C2A ≤π-A 2A ≤π3. 条件p :a ≤b +c2⇒cos A =b 2+c 2-a22bc≥b 2+c 2-b +c222bc=3b 2+3c 2-2bc 8bc ≥12⇒0<A ≤π3.所以p ⇒q ,但q p .如∠A =60°,a =3,b =1,c =2,不能得到a ≤b +c2.所以p 是q 的充分而不必要条件.12.(2018·江西赣中南五校二模)“a >0”是“函数y =ax 2+x +1在(0,+∞)上单调递增”的 充分不必要 条件.当a >0时,y =a (x +12a )2+1-14a ,在(-12a,+∞)上单调递增,因此在(0,+∞)上单调递增,故充分性成立.当a =0时,y =x +1,在R 上单调递增,因此在(0,+∞)上单调递增.故必要性不成立.综上,“a >0”是“函数y =ax 2+x +1在(0,+∞)上单调递增”的充分不必要条件.简单的逻辑联结词、全称量词与存在量词1.若p 是真命题,q 是假命题,则(D) A .p ∧q 是真命题 B .p ∨q 是假命题 C .﹁p 是真命题 D .﹁q 是真命题由“且”命题一假则假,“或”命题一真则真,命题与命题的否定真假相反,得A 、B 、C 都是错误的,故选D.2.(2018·河北五校高三联考)已知命题p :“a >b ”是“2a>2b”的充要条件;q :∃x ∈R ,|x +1|≤x ,则(D)A .﹁p ∨q 为真命题B .p ∧q 为真命题C .p ∧﹁q 为假命题D .p ∨q 为真命题对于p :因为a >b ⇒2a>2b,反之,2a>2b⇒a >b ,所以“a >b ”是“2a >2b”的充要条件,即p 是真命题.对于q :|x +1|≤x ⇔⎩⎪⎨⎪⎧x +1≥0,x +1≤x 或⎩⎪⎨⎪⎧x +1<0,-x -1≤x .解得x ∈∅,即不等式无实数解,所以q 是假命题. 所以p ∨q 为真命题.3.命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是(A) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x 0∈(0,+∞),ln x 0≠x 0-1 D .∃x 0∉(0,+∞),ln x 0=x 0-1修改原命题中的两个地方即可得其否定,∃改为∀,否定结论,即ln x ≠x -1,故选A.4.(2018·三亚校级期中)命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是(C) A .不存在x ∈R ,x 3-x 2+1≤0 B .存在x 0∈R ,x 30-x 20+1≥0 C .存在x 0∈R ,x 30-x 20+1>0 D .对任意的x ∈R ,x 3-x 2+1>05.(2018·湖南省六校联考) 下列各组命题中,满足“p ∨q ”为真、“p ∧q ”为假、“﹁q ”为真的是(B)A .p :0=∅;q :0∈∅B .p :x >2是x >1成立的充分不必要条件;q :∀x ∈{1,-1,0},2x +1>0C .p :a +b ≥2ab (a >0,b >0);q :不等式|x |>x 的解集是(-∞,0)D .p :y =1x在定义域内是增函数;q :f (x )=e x +e -x是偶函数由题意可知,满足“p ∨q ”为真、“p ∧q ”为假、“﹁q ”为真,可知p 为真、q为假.A 中,p 、q 都为假;B 中,p 为真,q 为假;C 中,p 、q 都为真;D 中,p 为假、q 为真.故选B.6.(2017·湖北武汉2月调研)命题“y =f (x )(x ∈M )是奇函数”的否定是(D) A .∃x ∈M ,f (-x )=-f (x ) B .∀x ∈M ,f (-x )≠-f (x ) C .∀x ∈M ,f (-x )=-f (x ) D .∃x ∈M ,f (-x )≠-f (x )命题“y =f (x )(x ∈M )是奇函数”的否定是∃x ∈M ,f (-x )≠-f (x ). 7.已知命题p :“∃x 0∈R ,|x 0|+x 20<0”,则﹁p 为 ∀x ∈R ,|x |+x 2≥0 _. 8.若x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为 1 .由题意,原命题等价于tan x ≤m 在区间[0,π4]上恒成立,即y =tan x 在[0,π4]上的最大值小于或等于m ,又y =tan x 在[0,π4]上的最大值为1,所以m ≥1,即m 的最小值为1.9.(2018·湖南长郡中学联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈(0,π2),tan x >sin x ,则下列命题为真命题的个数是(B)①p ∨q ;②p ∨(﹁q );③(﹁p )∧q ;④p ∧(﹁q ). A .1个 B .2个 C .3个 D .4个因为幂函数y =x α,当α<0时在(0,+∞)上递减, 由x 0<0,2<3,得2x 0>3x 0,所以p 为假命题.因为对于x ∈(0,π2),sin x <x <tan x ,所以q 为真命题.所以①为真,②为假,③为真,④为假. 即真命题的个数是2.10.(2018·兰州模拟)已知下列四个命题:p 1:若直线l 和平面α内的无数条直线垂直,则l ⊥α; p 2:若f (x )=2x -2-x ,则x ∈R ,f (-x )=-f (x ); p 3:若f (x )=x +1x +1,则∃x 0∈(0,+∞),f (x 0)=1;p 4:在△ABC 中,若A >B ,则sin A >sin B .其中真命题的个数是(B) A .1 B .2 C .3 D .4平面的斜线l 可以和平面内无数条平行直线垂直,p 1为假命题.因为f (-x )=2-x-2x=-f (x ),所以p 2为真命题. 因为f (x )=x +1x +1=x +1+1x +1-1 ≥2x +1x +1-1=1, 取等号的条件为x +1=1x +1,得到x =-,+∞),所以当x ∈(0,+∞)时,f (x )>1,不存在x 0∈(0,+∞),满足f (x 0)=1,所以p 3为假命题.在△ABC 中,A >B ⇒a >b ⇒sin A >sin B ,所以p 4为真命题. 故p 2和p 4为真命题,真命题的个数为2.11.若命题“存在实数x ,使x 2+ax +1<0”的否定为真命题,则实数a 的取值范围为 [-2,2] .(方法一)由题意,命题“对任意实数x ,都有x 2+ax +1≥0”是真命题,故Δ=a 2-4×1×1≤0,解得-2≤a ≤2.(方法二)若命题“存在实数x ,使x 2+ax +1<0”是真命题, 则Δ=a 2-4×1×1>0,解得a >2或a <-2.故所求的实数a 的取值范围是取其补集,即[-2,2]. 12.(2018·华南师大附中模拟)设有两个命题:p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0};q :函数y =lg(ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是 (0,12]∪(1,+∞) .p :“关于x 的不等式a x>1(a >0,且a ≠1)的解集是{x |x <0}”为真⇒0<a <1.q :“函数y =lg(ax 2-x +a )的定义域为R ”为真⇒ax 2-x +a >0恒成立⇒⎩⎪⎨⎪⎧a >0,Δ<0⇒a >12.因为p ∨q 为真命题,p ∧q 为假命题,所以p ,q 一真一假.⎩⎪⎨⎪⎧ p 真,q 假⇒⎩⎪⎨⎪⎧ 0<a <1,a ≤12⇒0<a ≤12.⎩⎪⎨⎪⎧p 假,q 真⇒⎩⎪⎨⎪⎧a >1,a >12⇒a >1.所以实数a 的取值范围是(0,12]∪(1,+∞).函数及其表示1.函数y =x ·ln(1-x )的定义域为(B) A .(0,1) B .[0,1) C .(0,1] D .[0,1]由⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x , x ≤1,11-x, x >1, 则f [f (-2)]的值为(C)A.12B.15 C .-15 D .-12因为f (-2)=(-2)2-(-2)=6,所以f [f (-2)]=f (6)=11-6=-15. 3.若函数f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是(B)A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)因为f (x )的定义域为[0,2],所以⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.4.(2018·黑龙江模拟) 设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式为(C) A .3x -1 B .3x +1 C .2x -1 D .2x +1g (x +2)=f (x )=2x +3,即g (x +2)=2x +3,令x +2=t ,所以x =t -2, 所以2x +3=2(t -2)+3=2t -1, 所以g (x )=2x -1.5.已知函数f (x )在[-1,2]上的图象如下图所示,则函数f (x )的解析式为f (x )= ⎩⎪⎨⎪⎧x +1, -1≤x ≤0,-12x , 0<x ≤2 .由图可知,图象是由两条直线的一段构成,故可采用待定系数法求出其表示式.当-1≤x ≤0时,设y =k 1x +b 1,将(-1,0),(0,1)代入得k 1=1,b 1=1,所以y =x +1, 当0<x ≤2时,设y =k 2x +b 2,将(0,0),(2,-1)代入得k 2=-12,b 2=0,所以y =-12x .所以f (x )=⎩⎪⎨⎪⎧x +1, -1≤x ≤0,-12x , 0<x ≤2.6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x , x >1,若f [f (56)]=4,则b 等于 12.因为56<1,所以f (56)=3×56-b =52-b .若52-b <1,即b >32时, f (52-b )=3(52-b )-b =152-4b =4,解得b =78,不满足b >32,舍去;若52-b ≥1,即b ≤32时, f (52-b )=2(52-b )=5-2b =4,解得b =12,满足b ≤32.故b =12.7.已知f (x )=⎩⎪⎨⎪⎧x +2, x ≤-1,x 2, -1<x <2,-2x +8, x ≥2.(1)求f (3),f [f (-2)],f (a )(a >0)的值;(2)画出f (x )的图象,并求出满足条件f (x )>3的x 的值.(1)因为3>2,所以f (3)=-2×3+8=2.因为-2<-1,所以f (-2)=2- 2. 又-1<2-2<2,所以f [f (-2)]=f (2-2)=(2-2)2=6-4 2. 又a >0,当0<a <2时,f (a )=a 2; 当a ≥2时,f (a )=-2a +8.综上所述,f (a )=⎩⎪⎨⎪⎧a 2, 0<a <2,-2a +8, a ≥2.(2)f (x )的图象如图所示.当x ≤-1时,f (x )=x +2≤1,此时无解;当-1<x <2时,由x 2=3,解得x =±3, 因为x =-3<-1,故舍去;当x ≥2时,由-2x +8=3,解得x =52.由图知,不等式f (x )>3的解为(3,52).8.(2018·湖北武汉调研)已知函数f (x )满足f (1x )+1xf (-x )=2x (x ≠0),则f (-2)=(C)A .-72 B.92C.72 D .-92令x =2,可得f (12)+12f (-2)=4,①令x =-12,可得f (-2)-2f (12)=-1,②联立①②解得f (-2)=72.9.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1, x ≤0,2x, x >0,则满足f (x )+f (x -12)>1的x的取值范围是 (-14,+∞) .由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,所以-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值范围是(-14,+∞).10.函数f (x )=-a2x 2+-a x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的定义域为[-2,1],求实数a 的值.(1)因为对于x ∈R ,(1-a 2)x 2+3(1-a )x +6≥0恒成立,所以①当a =1时,原不等式变为6≥0,此时x ∈R . ②当a =-1时,原不等式变为6x +6≥0,此时x R .③若a ≠±1时,则⎩⎪⎨⎪⎧1-a 2>0,Δ≤0,所以⎩⎪⎨⎪⎧1-a 2>0,-a 2--a2,解得-511≤a <1,所以实数a 的取值范围为[-511,1]. (2)因为f (x )的定义域为[-2,1],所以不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1], 所以x =-2,x =1是方程(1-a 2)x 2+3(1-a )x +6=0的两根,所以⎩⎪⎨⎪⎧1-a 2<0,-2+1=--a 1-a 2,-2×1=61-a2,解得a =2.函数的值域与最值1.已知函数f (x )的值域为[-2,3],则函数f (x -2)的值域为(D) A .[-4,1] B .[0,5]C .[-4,1]∪[0,5]D .[-2,3]函数y =f (x -2)的图象是由y =f (x )的图象向右平移2个单位而得到的,其值域不变.2.函数y =16-4x的值域是(C) A .[0,+∞) B.[0,4] C .[0,4) D .(0,4)因为16-4x≥0,且4x>0,所以0≤16-4x<16,所以0≤16-4x<4.3.已知函数f (x )=e x-1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为(B)A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)f (a )的值域为(-1,+∞),由-b 2+4b -3>-1,解得2-2<b <2+ 2.4.(2018·重庆期中)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x +a ,x <1,1-ln x , x ≥1的值域为R ,则实数a 的取值范围是(C)A .(-∞,-1]B .[-1,+∞)C .(-∞,54]D .[54,+∞)当x ≥1时,f (x )=1-ln x ≤1.由于函数f (x )=⎩⎪⎨⎪⎧x 2+x +a ,x <1,1-ln x , x ≥1的值域为R ,且当x <1时,f (x )=x 2+x +a ≥a -12+14=a -14,所以a -14≤1,解得a ≤54.5.函数y =x 2x 2+1(x ∈R )的值域为 [0,1) .y =x 2x 2+1=x 2+1-1x 2+1=1-1x 2+1.因为x 2+1≥1,所以0<1x 2+1≤1,所以0≤y <1. 6.若关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则m 的取值范围为 (-∞,-3] .只需要在x ∈(0,1]时,(x 2-4x )min ≥m 即可.而当x =1时,(x 2-4x )min =-3,所以m ≤-3. 7.求下列函数的值域: (1)y =x +1x -3; (2)y =2x +4x -1; (3)y =|x +1|+x -2.(1)y =x -3+4x -3=1+4x -3,因为4x -3≠0,所以y ≠1, 即所求函数的值域为(-∞,1)∪(1,+∞). (2)因为函数的定义域为{x |x ≥1},又函数是增函数,所以函数的值域为[2,+∞). (3)y =|x +1|+|x -2|=⎩⎪⎨⎪⎧2x -1, x ≥2,3, -1≤x <2,1-2x , x <-1.画出函数的图象,由图象观察可知,所求函数的值域为[3,+∞).8.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则m M的值为(A) A.22B. 2 C .2 2 D .2由⎩⎪⎨⎪⎧1-x ≥0,x +3≥0,得定义域为[-3,1],y ≥0,所以y 2=4+2x +-x =4+2-x +2+4,当x =-3或x =1,(y 2)min =4,所以y min =2; 当x =-1时,(y 2)max =8,所以y max =2 2. 即m =2,M =22,所以mM =22. 9.已知函数f (x )满足2f (x )-f (1x )=3x2,则f (x )的最小值为 2 2 .由2f (x )-f (1x )=3x2, ①令①式中的x 变为1x,可得2f (1x)-f (x )=3x 2, ②由①②可解得f (x )=2x2+x 2,由于x 2>0,由基本不等式可得f (x )=2x 2+x 2≥22x2·x 2=2 2.当x 2=2时取等号,因此,其最小值为2 2. 10.已知函数f (x )=1a -1x(a >0,x >0).(1)若f (x )在[m ,n ]上的值域是[m ,n ],求a 的取值范围,并求相应的m ,n 的值; (2)若f (x )≤2x 在(0,+∞)上恒成立,求a 的取值范围.(1)因为f (x )=1a -1x(a >0,x >0),所以f (x )在(0,+∞)上为增函数.那么当x ∈[m ,n ]时,y ∈[m ,n ],所以⎩⎪⎨⎪⎧fm =m ,fn =n .即m ,n 是方程1a -1x=x 相异的两实根,由1a -1x =x ,得x 2-1ax +1=0,由题设知:⎩⎪⎨⎪⎧m +n =1a>0,m ·n =1>0,Δ=1a 2-4>0.所以0<a <12.此时,m =1-1-4a 22a ,n =1+1-4a22a .(2)若1a -1x≤2x 在(0,+∞)上恒成立.那么a ≥12x +1x恒成立.令g (x )=12x +1x(x >0).所以g (x )≤122x ·1x=24. 故a ≥24.函数的单调性1.(2018·西城区期末)下列四个函数中,定义域为R 的单调递减函数是(D) A .y =-x 2B .y =log 0.5xC .y =1xD .y =(12)xy =-x 2在R 上没有单调性,排除A ;y =log 0.5x 的定义域不是R ,排除B ;y =1x的定义域不是R ,排除C ;y =(12)x的定义域为R ,且在R 上单调递减,故选D.2.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是(A) A .(-∞,1] B .(-∞,-1] C .[-1,+∞) D.[1,+∞)因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1.3.已知f (x )是R 上的减函数,则满足f (|1x|)<f (1)的实数x 的取值范围是(C)A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)因为f (x )是R 上的减函数,所以f (|1x |)<f1x|>1,所以0<|x |<1,所以x∈(-1,0)∪(0,1).4.(2018·城关区期中)已知f (x )=⎩⎪⎨⎪⎧a -x +4a , x <1,log a x , x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是(C)A .(0,1)B .(0,13)C .[17,13)D .[17,1)因为f (x )=log a x (x ≥1)是减函数,所以0<a <1,且f (1)=0.因为f (x )=(3a -1)x +4a (x <1)为减函数, 所以3a -1<0,所以a <13,又因为f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x , x ≥1是(-∞,+∞)上的减函数,所以f (x )在(-∞,1]上的最小值大于或等于f (x )在[1,+∞)上的最大值.所以(3a -1)×1+4a ≥0,所以a ≥17,故a ∈[17,13).5.函数f (x )=log 2(4x -x 2)的单调递减区间是 [2,4) .因为4x -x 2>0,所以0<x <4,又y =log 2t 为增函数,所求函数f (x )的递减区间为t =4x -x 2(0<x <4)的递减区间是[2,4).6.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为 (-3,-1)∪(3,+∞) .由条件得⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,即⎩⎪⎨⎪⎧a 2-2a -3>0,a >1或a <0,a >-3.解得⎩⎪⎨⎪⎧a >3或a <-1,a >1或a <0,a >-3,所以a 的取值范围为(-3,-1)∪(3,+∞). 7.已知函数f (x )=2x +1x +1.(1)判断f (x )在区间[1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[1,4]上的最大值与最小值.(1)函数f (x )在[1,+∞)上是增函数,证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2x 1+x 2+,因为x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以函数f (x )在[1,+∞)上为增函数. (2)由(1)知, 函数f (x )在[1,4]上是增函数, 故f (x )max =f (4)=95,f (x )min =f (1)=32.8.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是(A)A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x(方法一)若f (x )具有性质M ,则[e x f (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于选项A ,f (x )+f ′(x )=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意. 经验证,选项B ,C ,D 均不符合题意.故选A.(方法二)对于A ,e x f (x )=(e 2)x ,因为e 2>1,所以e xf (x )为增函数.9.函数f (x )=⎩⎪⎨⎪⎧1, x >0,0, x =0,-1, x <0,g (x )=x 2·f (x -1),则函数g (x )的递减区间是(B)A .[0,+∞)B .[0,1)C .(-∞,1)D .(-1,1)由条件知g (x )=⎩⎪⎨⎪⎧x 2, x >1,0, x =1,-x 2, x <1.如图所示,其递减区间是[0,1).10.(2018·安徽皖江名校联考题改编)已知定义在(-2,2)上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2).(1)求实数a 的取值范围;(2)求函数g (x )=log a (x 2-x -6)的单调区间.(1)因为定义在(-2,2)上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以f (x )在(-2,2)上单调递增, 又f (a 2-a )>f (2a -2), 所以⎩⎪⎨⎪⎧-2<a 2-a <2,-2<2a -2<2,2a -2<a 2-a ,即⎩⎪⎨⎪⎧-1<a <2,0<a <2,a <1或a >2.所以0<a <1.即a 的取值范围为(0,1).(2)g (x )=log a (x 2-x -6)可以看作由y =log a u 与u =x 2-x -6的复合函数. 由u =x 2-x -6>0,得x <-2或x >3.因为u =x 2-x -6在(-∞,-2)上是减函数,在(3,+∞)上是增函数, 因为0<a <1,所以y =log a x 在(0,+∞)上是减函数,所以y =log a (x 2-x -6)的单调递增区间为(-∞,-2),单调递减区间为(3,+∞).函数的奇偶性与周期性1.(2017·北京卷)已知函数f (x )=3x-(13)x ,则f (x )(B)A .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数因为函数f (x )的定义域为R ,f (-x )=3-x -(13)-x =(13)x -3x =-f (x ),所以函数f (x )是奇函数.因为函数y =(13)x在R 上是减函数,所以函数y =-(13)x在R 上是增函数.又因为y =3x在R 上是增函数,所以函数f (x )=3x-(13)x 在R 上是增函数.2.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C)A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数因为f (x )是奇函数,g (x )是偶函数,所以f (-x )=-f (x ),g (-x )=g (x ), 所以f (-x )g (-x )=-f (x )g (x ), 所以f (x )g (x )为奇函数.|f (-x )|g (-x )=|f (x )|g (x ), 所以|f (x )|g (x )为偶函数.f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|为奇函数. |f (-x )g (-x )|=|f (x )g (x )|, 所以|f (x )g (x )|为偶函数.3.(2018·华大新高考联盟教学质量测评)设f (x )是周期为4的奇函数,当0≤x ≤1时,f (x )=x (1+x ),则f (-92)=(A)A .-34B .-14C.14D.34f (-92)=f (-92+4)=f (-12)=-f (12)=-12(1+12)=-34.4.(2018·天津一模)已知偶函数f (x )对于任意x ∈R 都有f (x +1)=-f (x ),且f (x )在区间[0,2]上是递增的,则f (-6.5),f (-1),f (0)的大小关系为(A)A .f (0)<f (-6.5)<f (-1)B .f (-6.5)<f (0)<f (-1)C .f (-1)<f (-6.5)<f (0)D .f (-1)<f (0)<f (-6.5)由f (x +1)=-f (x ),得f (x +2)=-f (x +1)=f (x ), 故函数f (x )是周期为2的函数. 又f (x )为偶函数,所以f (-6.5)=f (-0.5)=f (0.5),f (-1)=f (1), 因为f (x )在区间[0,2]上是递增的, 所以f (0)<f (0.5)<f (1), 即f (0)<f (-6.5)<f (-1).5.(2017·山东卷)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)= 6 .因为f (x +4)=f (x -2),所以f [(x +2)+4]=f [(x +2)-2],即f (x +6)=f (x ),所以f (x )是周期为6的周期函数, 所以f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, 所以f (1)=f (-1)=6,即f (919)=6.6.已知奇函数f (x )在定义域[-10,10]上是减函数,且f (m -1)+f (2m -1)>0,则实数m 的取值范围为 [-92,23) .由f (m -1)+f (2m -1)>0f (m -1)>-f (2m -1),因为f (x )为奇函数,所以-f (x )=f (-x ), 所以f (m -1)>f (1-2m ), 又f (x )在[-10,10]上是减函数, 所以⎩⎪⎨⎪⎧-10≤m -1≤10,-10≤2m -1≤10,m -1<1-2m ,解得-92≤m <23.7.设f (x )是定义在R 上的奇函数,且对任意实数x 恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)…+f (2019)的值.(1)证明:因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ). 所以f (x )是周期为4的周期函数.(2)因为x ∈[2,4],所以-x ∈[-4,-2],所以4-x ∈[0,2], 所以f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8, 又f (x )是周期为4的奇函数, 所以f (4-x )=f (-x )=-f (x ), 所以f (x )=-f (4-x ),所以f (x )=x 2-6x +8,x ∈[2,4].(3)因为f (0)=0,f (1)=1,f (2)=0,f (3)=-1, 又f (x )是周期为4的周期函数,所以f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2016)+f (2017)+f (2018)+f (2019)=0,所以f (0)+f (1)+f (2)…+f (2019)=0.8.(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f (x +12)=f (x -12),则f (6)=(D)A .-2B .-1C .0D .2由题意知,当x >12时,f (x +12)=f (x -12),则当x >0时,f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), 所以f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1,所以f (-1)=-2,所以f (6)=2.故选D.9.(2018·全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )= -2 .(方法一)令g (x )=ln(1+x 2-x ),则f (x )=g (x )+1,因为1+x 2-x >|x |-x ≥0,所以g (x )的定义域为R , 因为g (-x )=ln(1+x 2+x )=ln 11+x 2-x=-g (x ), 所以g (x )为奇函数,所以f (a )=g (a )+1=4,所以g (a )=3,所以f (-a )=g (-a )+1=-g (a )+1=-3+1=-2.(方法二)因为f (x )+f (-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,所以f (a )+f (-a )=2,所以f (-a )=-2.10.已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-x 2+ax . (1)若a =-2,求函数f (x )的解析式; (2)若函数f (x )为R 上的单调减函数,①求a 的取值范围;②若对任意实数m ,f (m -1)+f (m 2+t )<0恒成立,求实数t 的取值范围.(1)当x <0时,-x >0,又因为f (x )为奇函数,且a =-2, 所以当x <0时,f (x )=-f (-x )=x 2-2x ,所以f (x )=⎩⎪⎨⎪⎧x 2-2x , x <0,-x 2-2x , x ≥0.(2)①当a ≤0时,对称轴x =a2≤0,所以f (x )=-x 2+ax 在[0,+∞)上单调递减, 由于奇函数在关于原点对称的区间上单调性相同, 所以f (x )在(-∞,0)上单调递减,又在(-∞,0)上f (x )>0,在(0,+∞)上f (x )<0, 所以当a ≤0时,f (x )为R 上的单调减函数.当a >0时,f (x )在(0,a 2)上单调递增,在(a2,+∞)上单调递减,不合题意.所以函数f (x )为单调减函数时,a 的取值范围为(-∞,0]. ②因为f (m -1)+f (m 2+t )<0, 所以f (m -1)<-f (m 2+t ),又因为f (x )是奇函数,所以f (m -1)<f (-t -m 2), 因为f (x )为R 上的减函数, 所以m -1>-t -m 2恒成立,所以t >-m 2-m +1=-(m +12)2+54对任意实数m 恒成立,所以t >54.即t 的取值范围为(54,+∞).二次函数1.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是(C)A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)函数f (x )的最小值是f (-b2a)=f (x 0),等价于x ∈R ,f (x )≥f (x 0),所以C 错误.2.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是(D)A .[0,4]B .[32,4]C .[32,+∞) D.[32,3]二次函数的对称轴为x =32,且f (32)=-254,f (3)=f (0)=-4,结合图象可知m ∈[32,3].3.(2018·双桥区校级月考)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是(D)(方法一)对于A 选项,因为a <0,-b2a<0,所以b <0,又因为abc >0,所以c >0,由图知f (0)=c <0,矛盾,故A 错.对于B 选项,因为a <0,-b2a>0,所以b >0,又因为abc >0,所以c <0,由图知f (0)=c >0,矛盾,故B 错.对于C 选项,因为a >0,-b2a<0,所以b >0,又因为abc >0,所以c >0,由图知f (0)=c <0,矛盾,故C 错.故排除A ,B ,C ,选D.(方法二)当a >0时,b ,c 同号,C ,D 两图中c <0,故b <0, 所以-b2a>0,选D.4.(2018·皖北联考)已知二次函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]上有最大值2,则a 的值为(D)A .2B .-1或-3C .2或-3D .-1或2因为f (x )=-(x -a )2+a 2-a +1,所以f (x )的图象是开口向下,对称轴是x =a 的抛物线,(1)当a <0时,对称轴x =a 在区间[0,1]的左边,f (x )在[0,1]上单调递减, 所以f (x )max =f (0)=1-a =2,解得a =-1. (2)当0≤a ≤1时,对称轴x =a ∈[0,1],f (x )在[0,a ]上单调递增,在[a,1]上单调递减,所以f (x )max =f (a )=a 2-a +1=2,无解.(3)当a >1时,对称轴x =a 在区间[0,1]的右边,f (x )在[0,1]上单调递增, 所以f (x )max =f (1)=a =2,有a =2. 综上可知,a =-1或a =2.5.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为 34 .由x ≥0,y ≥0,且x +2y =1,得x =1-2y ≥0,所以0≤y ≤12,设t =2x +3y 2,把x =1-2y 代入,得t =2-4y +3y 2=3(y -23)2+23.因为t =f (y )在[0,12]上单调递减,所以当y =12时,t 取最小值,t min =34.6.设f (x )=x 2-2ax +1.(1)若x ∈R 时恒有f (x )≥0,则a 的取值范围是 [-1,1] ;(2)若f (x )在[-1,+∞)上递增,则a 的取值范围是 (-∞,-1] ; (3)若f (x )的递增区间是[1,+∞),则a 的值是 1 .(1)由Δ≤0,得4a 2-4≤0,所以a ∈[-1,1].(2)a ≤-1.(3)由对称轴x =1知a =1.7.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.(1)因为f (x )=(x -a )2+5-a 2(a >1), 所以f (x )在[1,a ]上是减函数, 又定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧f=a ,fa =1,即⎩⎪⎨⎪⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2.(2)因为f (x )在区间(-∞,2]上是减函数,所以a ≥2. 又x =a ∈[1,a +1],且(a +1)-a ≤a -1, 所以f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2, 因为对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4, 因为f (x )max -f (x )min ≤4,得-1≤a ≤3.又a ≥2,所以2≤a ≤3. 故实数a 的取值范围为[2,3].8.(2017·浙江卷)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m (B)A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(方法一)设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .所以M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.(方法二)由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.9.(2018·重庆模拟)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是 (-22,0) .作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧fm ,fm +,即⎩⎪⎨⎪⎧m 2+m 2-1<0,m +2+m m +-1<0,解得-22<m <0.10.已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.(1)当a =0时,f (x )=-2x 在[0,1]上递减,所以f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x ,图象开口向上,且对称轴为x =1a.①当1a≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,所以f (x )在[0,1a ]上递减,在[1a,1]上递增,所以f (x )min =f (1a )=1a -2a =-1a.②当1a>1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,所以f (x )在[0,1]上递减, 所以f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象的开口向下,且对称轴x =1a<0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上递减, 所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2, a <1,-1a, a ≥1.指数与指数函数1. 若函数f (x )=12x +1, 则该函数在(-∞,+∞)上是(A)A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值f (x )在R 上单调递减,又2x+1>1,所以0<f (x )<1,无最大值也无最小值.2.若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为(C)A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x+12x -a ,化简可得a =1, 则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C.3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是(C) A .(-1,+∞) B.(-∞,1) C .(-1,1) D .(0,2)由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1.4.已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是(D)A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2c D .2a +2c<2作出函数y =|2x-1|的图象,如下图.因为a <b <c ,且f (a )>f (c )>f (b ),结合图象知, 0<f (a )<1,a <0,c >0,所以0<2a<1. 所以f (a )=|2a-1|=1-2a<1,。
2020版高考数学一轮复习第六章数列课时规范练30 数列求和文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020版高考数学一轮复习第六章数列课时规范练30 数列求和文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020版高考数学一轮复习第六章数列课时规范练30 数列求和文北师大版的全部内容。
课时规范练30 数列求和基础巩固组1。
数列1,3,5,7,…,(2n—1)+,…的前n项和S n的值等于()A.n2+1-B。
2n2—n+1—C.n2+1-D。
n2—n+1-2.(2018河北衡水中学金卷十模,3)已知数列{a n}是各项为正数的等比数列,点M (2,log2a2),N(5,log2a5)都在直线y=x—1上,则数列{a n}的前n项和为() A。
2n-2 B.2n+1—2C.2n-1D.2n+1—13。
(2018山东潍坊二模,4)设数列{a n}的前n项和为S n,若S n=-n2-n,则数列的前40项的和为()A. B.-C。
D.-4。
已知函数f(x)=x a的图像过点(4,2),令a n=,n∈N+.记数列{a n}的前n项和为S n,则S2 018= .5.(2018浙江余姚中学4月模拟,17)已知等差数列{a n}的前n项和为S n,且S 5=30,S10=110.(1)求S n;(2)记T n=+…+,求T n.6。
(2018山西晋城月考)已知数列{a n}满足a1=3,a n+1=2a n+(-1)n(3n+1).(1)求证:数列{a n+(-1)n n}是等比数列;(2)求数列{a n}的前10项和S10。
2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2020版高考数学一轮复习课时规范练6 函数的单调性与最值理北师大版的全部内容。
课时规范练6 函数的单调性与最值基础巩固组1。
(2018北京石景山一模,2)下列函数中既是奇函数,又在区间(0,+∞)上递减的函数为()A。
y= B.y=—x3C。
x D.y=x+2。
已知函数f(x)=x2-2ax+a在区间(—∞,1)内有最小值,则函数g(x)=在区间(1,+∞)内一定()A。
有最小值B。
有最大值C.是减函数D。
是增函数3。
设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x—2)>0}=()A。
{x|x<-2或x>4} B。
{x|x〈0或x〉4}C。
{x|x<0或x>6} D.{x|x<-2或x>2}4.已知函数f(x)=是R上的增函数,则实数a的取值范围是()A.(1,+∞) B。
[4,8)C。
(4,8) D。
(1,8)5。
已知函数f(x)=,则该函数的递增区间为()A.(-∞,1]B。
[3,+∞)C。
(-∞,-1] D.[1,+∞)6.函数f(x)=x|x|,若存在x∈[1,+∞),使得f(x-2k)—k〈0,则k的取值范围是()A。
(2,+∞) B.(1,+∞)C。
D.7。
已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)内递增。
若实数a 满足f(log2a)+f(lo a)≤2f(1),则a的取值范围是()A.[1,2] B。
【课时训练】第27节 数列的概念与简单表示法一、选择题1.(2018四川凉山诊断)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132【答案】B【解析】∵a n +a n +1=12,a 2=2,∴a n =⎩⎨⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎪⎫-32+10×2=72.2.(2018南昌模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B .158 C .34 D .38【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.3.(2018江西抚州七校联考)设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n =( )A.12n +1 B .12n +2C.12n +1+12n +2D .12n +1-12n +2【答案】D【解析】 ∵a n =1n +1+1n +2+1n +3+…+1n +(n -1)+1n +n ,n ∈N *,∴a n +1=1n +2+1n +3+…+1(n +1)+(n -1)+1(n +1)+n +1(n +1)+(n +1),n ∈N *,故a n +1-a n=12n +1+12n +2-1n +1=12n +1-12n +2. 4.(2018河北石家庄二中调研)已知数列{a n }的通项公式为a n =12n -15,则其最大项和最小项分别为( )A .1,-17 B .0,-17 C.17,-17 D .1,-111【答案】A【解析】由题意知a 1=-113,a 2=-111,a 3=-17,a 4=1,则当n ≥4时,a n>0.又当n ≥5时,a n -a n -1=12n -15-12n -1-15=-2n -1(2n -15)(2n -1-15)<0,所以a n<a n -1,于是数列{a n }的最大项为1,最小项为-17.5.(2018浙江湖州模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n=2a n -2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又a nn ≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.6.(2019河南信阳调研)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a 2018的值为()A .-8B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=1+a n 1-a n(n ∈N *)得,a 2=-3,a 3=-12,a 4=13,a 5=2,可见数列{a n }的周期为4,所以a 2 018=a 504×4+2=a 2=-3.7.(2018广西南宁模拟)已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n =n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞)B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n=n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A.8.(2018保定调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1) 【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.9.(2018宁夏银川模拟)若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( )A .19B .20C .21D .22 【答案】B【解析】由(n -1)a n =(n +1)a n -1得,a na n -1=n +1n -1,则a n =a 1×⎝ ⎛⎭⎪⎫a 2a 1×⎝ ⎛⎭⎪⎫a 3a 2×…×⎝ ⎛⎭⎪⎫a n a n -1=2×31×42×…×n +1n -1=n (n +1).又a n <462,即n (n +1)<462,所以n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.二、填空题10.(2018湖北八校联考)已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54. 11.(2018潍坊模拟)已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.【答案】⎝ ⎛⎭⎪⎫-12n -1【解析】当n =1时,a 1=S 1=13a 1+23,∴a 1=1; 当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }是首项a 1=1,公比q =-12的等比数列,故a n =⎝ ⎛⎭⎪⎫-12n -1.三、解答题12.(2018安徽淮南第四次考试)已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式.【解】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *. (2)∵a 2=4b 1=4,∴b 1=1.∵nb n +1-(n +1)b n =n 3+n 2,∴b n +1n +1-b nn=n ,故b n n -b n -1n -1=n -1,…,b 33-b 22=2,b 22-b 11=1,n ≥2,将上面各式累加得b n n -b 11=1+2+3+…+(n -1)=n (n -1)2, ∴b n =n 3-n 2+2n 2,n ∈N *. 13.(2018福建清流一中模拟)设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).。
【课时训练】第30节 数列求和一、选择题1.(2018阳泉质检)已知数列{a n }的前n 项和为S n ,且满足a n +2=2a n +1-a n ,a 5=4-a 3,则S 7=( )A .7B .12C .14D .21【答案】C【解析】由a n +2=2a n +1-a n 知数列{a n }为等差数列,由a 5=4-a 3得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14. 2.(2018辽宁五校联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为( ) A.10125 B .3536 C .25101 D .310【答案】C【解析】在等差数列{a n }中,a 5+a 7=2a 6=26⇒a 6=13.又数列{a n }的公差d =a 6-a 36-3=13-73=2,所以a n =a 3+(n -3)·d =7+(n -3)×2=2n +1,那么b n =1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,故S n =b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫n n +1⇒S 100=14⎝ ⎛⎭⎪⎫100101=25101. 3.(2018河南郑州模拟)已知在等差数列{a n }中,a 1=120,公差d =-4.若S n ≤a n (n ≥2),其中S n 为该数列的前n 项和,则n 的最小值为( )A .60B .62C .70D .72【答案】B【解析】由题意得a n =120-4(n -1)=124-4n ,S n =120n +n (n -1)2×(-4)=122n -2n 2.由S n ≤a n ,得122n -2n 2≤124-4n ,即n 2-63n +62≥0,解得n ≥62或n ≤1(舍去).故选B.4.(2018嘉兴调研)已知a n =32n -101(n ∈N *),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .99B .100C .101D .102【答案】C【解析】由通项公式得a 1+a 100=a 2+a 99=a 3+a 98=…=a 50+a 51=0,a 101=3101>0.故选C.5.(2018广东肇庆二模)已知数列{a n }的前n 项和是S n ,且4S n =(a n +1)2,则下列说法正确的是( )A .数列{a n }为等差数列B .数列{a n }为等差或等比数列C .数列{a n }为等比数列D .数列{a n }既不是等差数列也不是等比数列 【答案】B【解析】∵4S n =(a n +1)2,∴4S n +1=(a n +1+1)2,∴4S n +1-4S n =4a n +1=(a n+1+1)2-(a n +1)2,化简得(a n +1+a n )(a n +1-a n -2)=0,∴a n +1=a n +2,或a n +1+a n =0,∵4a 1=(a 1+1)2,∴a 1=1.故选B.6.(2019山西太原五中调考)在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099 B .101100 C .100101D .99100【答案】C 【解析】由题意得a2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0⇒a n +1=12-a n ⇒a n +1-1=a n -12-a n ⇒1a n +1-1=1a n -1-1,∴数列⎩⎨⎧⎭⎬⎫1a n -1为以-2为首项,-1为公差的等差数列,∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a n n 2=1n (n +1)=1n -1n +1.∴a 1+a 222+…+a 1001002=1-12+12-13+…+1100-1101=100101.7.(2018湖南衡阳模拟)已知数列{a n }满足a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),则该数列前2 017项的和S 2 017=( )A .1 345B .671C .1 342D .1 341【答案】A【解析】由a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),得a 3=0,a 4=1,a 5=1,a 6=0,则数列{a n }是以3为周期的周期数列,且a 1+a 2+a 3=2.又2 017=672×3+1,所以S 2 017=672×2+1=1 345.二、填空题8.(2018河北冀州中学月考)已知正项等比数列{a n }的前n 项和为S n ,且S 1,S 3,S 4成等差数列,则数列{a n }的公比为________.【答案】1+52【解析】设{a n }的公比为q ,由题意易知q >0且q ≠1.因为S 1,S 3,S 4成等差数列,所以2S 3=S 1+S 4,即2a 1(1-q 3)1-q =a 1+a 1(1-q 4)1-q,解得q =1+52.9.(2018泰安模拟)已知数列{a n }中,a 1=1,a n +1=(-1)n ·(a n +1),记S n为{a n }的前n 项和,则S 2 017=________.【答案】-1 007【解析】由a 1=1,a n +1=(-1)n (a n +1)可得,该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 2 017=504×(-2)+1=-1 007.10.(2018山东枣庄质检)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”.若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.【答案】 2n +1-2【解析】 ∵a n +1-a n =2n, ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.三、解答题11.(2018湖北稳派教育联考)设等差数列{a n }的公差为d ,前n 项和为S n ,S n =n 2+n (a 1-1)(n ∈N *),且a 1,a 3-1,a 5+7成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解】(1)∵S n =n 2+n (a 1-1), 又S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,∴d =2.又a 1,a 3-1,a 5+7成等比数列.∴a 1(a 5+7)=(a 3-1)2,即a 1(a 1+15)=(a 1+3)2,解得a 1=1,∴a n =1+2(n -1)=2n -1.(2)由(1)可得b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,故T n=b 1+b 2+…+b n-1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -3-12n -1+⎝ ⎛⎭⎪⎫12n -1-12n +1=n2n +1.12.(2018辽宁五校联考)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n<34.(1)【解】∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n=14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n 是以18为首项,14为公比的等比数列. ∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)【证明】由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),∴1c n=1(n +1)(n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n +1,∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1=34-12⎝ ⎛⎭⎪⎫1n +1n +1<34.又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
【课时训练】第30节 数列求和一、选择题1.(2018阳泉质检)已知数列{a n }的前n 项和为S n ,且满足a n +2=2a n +1-a n ,a 5=4-a 3,则S 7=( )A .7B .12C .14D .21【答案】C【解析】由a n +2=2a n +1-a n 知数列{a n }为等差数列,由a 5=4-a 3得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14. 2.(2018辽宁五校联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N *),数列{b n }的前n 项和为S n ,则S 100的值为( )A.10125 B .3536 C .25101 D .310【答案】C【解析】在等差数列{a n }中,a 5+a 7=2a 6=26⇒a 6=13.又数列{a n }的公差d =a 6-a 36-3=13-73=2,所以a n =a 3+(n -3)·d =7+(n -3)×2=2n +1,那么b n =1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,故S n =b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫n n +1⇒S 100=14⎝ ⎛⎭⎪⎫100101=25101.3.(2018河南郑州模拟)已知在等差数列{a n }中,a 1=120,公差d =-4.若S n ≤a n (n ≥2),其中S n 为该数列的前n 项和,则n 的最小值为( )A .60B .62C .70D .72【答案】B【解析】由题意得a n =120-4(n -1)=124-4n ,S n =120n +n (n -1)2×(-4)=122n -2n 2.由S n ≤a n ,得122n -2n 2≤124-4n ,即n 2-63n +62≥0,解得n ≥62或n ≤1(舍去).故选B.4.(2018嘉兴调研)已知a n =32n -101(n ∈N *),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .99B .100C .101D .102【答案】C【解析】由通项公式得a 1+a 100=a 2+a 99=a 3+a 98=…=a 50+a 51=0,a 101=3101>0.故选C.5.(2018广东肇庆二模)已知数列{a n }的前n 项和是S n ,且4S n=(a n +1)2,则下列说法正确的是( )A .数列{a n }为等差数列B .数列{a n }为等差或等比数列C .数列{a n }为等比数列D .数列{a n }既不是等差数列也不是等比数列 【答案】B【解析】∵4S n =(a n +1)2,∴4S n +1=(a n +1+1)2,∴4S n +1-4S n =4a n +1=(a n +1+1)2-(a n +1)2,化简得(a n +1+a n )(a n +1-a n -2)=0,∴a n+1=a n +2,或a n +1+a n =0,∵4a 1=(a 1+1)2,∴a 1=1.故选B. 6.(2019山西太原五中调考)在数列{a n }中,a n >0,a 1=12,如果a n +1是1与2a n a n +1+14-a 2n 的等比中项,那么a 1+a 222+a 332+a 442+…+a 1001002的值是( )A.10099B .101100C .100101D .99100【答案】C【解析】由题意得a 2n +1=2a n a n +1+14-a 2n⇒(2a n +1+a n a n +1+1)(2a n +1-a n a n +1-1)=0⇒a n +1=12-a n ⇒a n +1-1=a n -12-a n ⇒1a n +1-1=1a n -1-1,∴数列⎩⎨⎧⎭⎬⎫1a n -1为以-2为首项,-1为公差的等差数列,∴1a n -1=-2-(n -1)=-n -1⇒a n =n n +1⇒a n n 2=1n (n +1)=1n -1n +1.∴a 1+a 222+…+a 1001002=1-12+12-13+…+1100-1101=100101.7.(2018湖南衡阳模拟)已知数列{a n }满足a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),则该数列前2 017项的和S 2 017=( )A .1 345B .671C .1 342D .1 341【答案】A【解析】由a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),得a 3=0,a 4=1,a 5=1,a 6=0,则数列{a n }是以3为周期的周期数列,且a 1+a 2+a 3=2.又2 017=672×3+1,所以S 2 017=672×2+1=1 345.二、填空题8.(2018河北冀州中学月考)已知正项等比数列{a n }的前n 项和为S n ,且S 1,S 3,S 4成等差数列,则数列{a n }的公比为________.【答案】1+52【解析】设{a n }的公比为q ,由题意易知q >0且q ≠1.因为S 1,S 3,S 4成等差数列,所以2S 3=S 1+S 4,即2a 1(1-q 3)1-q =a 1+a 1(1-q 4)1-q ,解得q =1+52.9.(2018泰安模拟)已知数列{a n }中,a 1=1,a n +1=(-1)n ·(a n +1),记S n 为{a n }的前n 项和,则S 2 017=________.【答案】-1 007【解析】由a 1=1,a n +1=(-1)n (a n +1)可得,该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,所以S 2 017=504(a 1+a 2+a 3+a 4)+a 2 017=504×(-2)+1=-1 007.10.(2018山东枣庄质检)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”.若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.【答案】 2n +1-2【解析】 ∵a n +1-a n =2n, ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.三、解答题11.(2018湖北稳派教育联考)设等差数列{a n }的公差为d ,前n 项和为S n ,S n =n 2+n (a 1-1)(n ∈N *),且a 1,a 3-1,a 5+7成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .【解】(1)∵S n =n 2+n (a 1-1), 又S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,∴d =2.又a 1,a 3-1,a 5+7成等比数列.∴a 1(a 5+7)=(a 3-1)2,即a 1(a 1+15)=(a 1+3)2,解得a 1=1,∴a n =1+2(n -1)=2n -1.(2)由(1)可得b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1,故T n =b 1+b 2+…+b n-1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -3-12n -1+⎝ ⎛⎭⎪⎫12n -1-12n +1=n2n +1. 12.(2018辽宁五校联考)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n<34.(1)【解】∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n 是以18为首项,14为公比的等比数列.∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)【证明】由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),∴1c n=1(n +1)(n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n +1, ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1=34-12⎝ ⎛⎭⎪⎫1n +1n +1<34.又∵1c2+1c3+1c4+…+1c n≥1c2=13,∴原式得证.。