河北省衡水中学2017届高三(下)二调数学试卷(理科)(解析版)
- 格式:doc
- 大小:1.11 MB
- 文档页数:31
河北衡水中学2016~2017学年度 高三下学期数学第二次摸底考试(理科)考生注意:1.本试卷分必考部分和选考部分两部分,共150分,考试时间120分钟。
2.请将各题答案填在试卷后面的答题卡上。
3.本试卷主要考试内容:高考全部内容必考部分一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|10}A k N k N =∈-∈,{|23,}N x x n x n n N ===∈或,则AB =( )A .{6,9}B .{3,6,9}C .{1,6,9,10}D .{6,9,10}2.若复数z 满足2(12)|13|z i i -+=+(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查。
已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,()ln 2x p x e x ∃>>;命题:1,1,log 2log 22a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧C .()p q ∧⌝D .()p q ∨⌝5.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320πC .3110π-D .3120π-6.若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C .1619D .127.已知()22214sin a x x dx π-=-+⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212-C .54-D .1-8.已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么1()3f =( )A .32π-B .12-C .14D .34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122++B .3643122++C .3642123++D .44122+10.执行如图所示的程序框图,输出S 的值等于( )A .2321tan9π-- B .25tan3922tan9ππ-- C .2322tan9π-- D .25tan3921tan9ππ-- 11.椭圆()222101y x b b +=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A .2,12⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12.已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦C .21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上。
河北省衡水2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N |}N ,{|2B x x n ==或3,x n n =∈}N ,则A B = ( )A .{}6,9B .{}3,6,9C .{}1,6,9,10D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C.3110π- D .3120π-6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619 D .127. 已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212- C.54- D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A ..12-C.14 D .34π- 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .28+.36+C. 36+.44+10. 执行如图所示的程序框图,输出S 的值等于( )A.21tan9π-- B.25tan922tan9ππ-C. 22tan9- D.25tan 921tan9ππ- 11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A.2⎛⎫⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭C.0,2⎛ ⎝⎭D .10,2⎛⎫⎪⎝⎭ 12. 已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( ) A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知4,5,(,a b c a b λμλμ===+∈ R),若(),⊥⊥- a b c b a ,则λμ= .14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,23B π=,若224a c ac +=,则()sin sin sin A C A C+= .15.已知点12,F F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P在双曲线C 的右支上,且满足12212,tan 4F F OP PF F =∠≥,则双曲线C 的焦点的取值范围为 .16.点M 为正方体1111ABCD A BC D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足12,a n ==∈N *.(1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足2214log log 1211(n n n b b a n n +⋅=++∈N *),求数列{}2log n n b b -的前n 项和n S .18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,2AB CD AB DC AC BD F === ,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为3+ADF ∆为等腰直角三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB的距离d 的取值范围.21. 设函数()()2,1(x f x e g x kx k ==+∈R ).(1)若直线()=y g x 和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t =⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立.(1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题参考答案一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC二、填空题13.2516 15. ⎛ ⎝⎦ 三、解答题17. 解:(1) 由题知数列是以2为首项,2为公差的等差数列,()22212,43n n n a n =+-==-.(2)设等比数列{}n b 的首项为1b ,则112n n b b -=⨯,依题有()()()()1221212121214log log 4log 2log 24log 1log n n n n b b b b b n b n -+⋅=⨯⋅⨯=+-+()()2222121214log 4log 42log 144128b b b n n n n =-+⨯-+=++,即()()212212142log 1124log 4log 8b b b ⨯-=⎧⎪⎨-=⎪⎩,解得211log 2,4b b ==,故()1112422,log 21n n n n n b b b n -++=⨯=-=-+ ,()()()2221221324222n n n n n n n S +-+++∴=-=--. 18. 解:设i A 表示事件“此人于3月i 日到达该市”()1,2,...,14i =.依题意知,()114i P A =,且()i j A A i j =∅≠ .(1)设B 为事件“此人停留2天空气质量都是重度污染” ,则12121314B A A A A A = ,所以()()()()()()12121314514P B P A P A P A P A P A == ,即此人停留2天空气质量都是重度污染的概率为514. (2) 由题意可知,X 的所有可能取值为0,1,2,3,且()()()()()4894893014P X P A A A P A P A P A ===++=,()()()()()21114211143214P X P A A A P A P A P A ===++= ,()()()()()11213112133314P X P A A A P A P A P A ===++= ,()()()()333511023114141414P X P X P X P X ==-=-=-==---=,(或()()()()()()()3567103567105114P X P A A A A A P A P A P A P A P A ===++++=),所以X 的分布列为故X 的期望()3100123141414147E X =⨯+⨯+⨯+⨯=. 19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG AF GH FC ∴==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC.(2) 平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,延长PG 交AD 的中点E ,连接,,,BE PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,以E 为原点建立如图所示的空间直角坐标系,)()()()()2,0,0,3,0,3,0,,0,0,1AB DC A P B D G == ,()()(),,AG AB AP ∴===,设()()()00000011,,,,,22C x y z DC AB x y z =∴+=,可得000333,0,,0,,0222222x y z C AC ⎛⎫⎛⎫=-==∴-∴=- ⎪ ⎪⎝⎭⎝⎭,设平面PAB 的一个法向量为()1111,,n x y z =,由11111111113030n AB y x n AP z x ⎧⎧⎧⊥+==⎪⎪⎪⇒⇒⎨⎨⎨⊥+==⎪⎪⎪⎩⎩⎩,令11z =,得)1n =,同理可得平面AGC的一个法向量)1121212,cos ,n n n n n n n ⋅====,所以平面AGC 与平面PAB 所成锐二面角的正切值为811. 20. 解:(1)由题知,0,3,4222p p F FA FD FA ⎛⎫=+==+⎪⎝⎭,则4,0,22p D FD ⎛⎫++ ⎪⎝⎭的中点坐标为(22,024p ⎛⎫+++ ⎪⎝⎭,则(22324p ++=+2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y xx my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+> ,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-,由题知//PE PA ,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y y x x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y y y y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,令()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以2d ⎫∈⎪⎪⎣⎭. 21. 解:(1)设切点的坐标为()2,t t e ,由()2x f x e =得()2'2xf x e =,所以切线方程为()222t t y e e x t -=-,即()2212t t y e x t e =+-,由已知()22212t ty e x t e =+-和1y kx =+为同一条直线,()222,121tte k t e ∴=-=,令()()1x h x x e =-,则()'xh x xe =-,当(),0x ∈-∞时,()()'0,h x h x >单调递增,当()0,x ∈+∞时,()()'0,h x h x <单调递减,()()01h x h ∴≤=.当且仅当0x =时等号成立,0,2t k ∴==.(注明:若由函数()2x f x e =与()1g x kx =+相交于点()0,1,直线()1g x kx =+和函数()2x f x e =的图象相切于()0,1,得出022k e ==,得3分)(2) ①当2k >时,由(1)结合函数的图象知,存在00x >,使得对于任意的()00,x x ∈,都有()()f x g x <,则不等式()()2f x g x x ->等价于()()2f x g x x ->,即()2210x k x e -+->,设()()()2221,'2x x t x k x e t x k x e =-+-=--,令()'0t x >得12ln 22k x -<,令()'0t x <得12ln 22k x ->.若()()0121224ln 0,0,ln ,,2222k k k x t x --⎛⎫<≤≤⊆+∞∴ ⎪⎝⎭在()00,x 上单调递减,注意到()00t =,所以对任意的()00,x x ∈,都有()0t x <,与题设不符. 若()1212124,ln 0,0,ln ,ln ,222222k k k k t x ---⎛⎫⎛⎫>>⊆-∞∴ ⎪ ⎪⎝⎭⎝⎭在120,ln 22k -⎛⎫ ⎪⎝⎭上单调递增, ()00t = ,所以对任意的120,ln 22k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题设.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意()0,x m ∈,都有()()2f x g x x ->.②当02k <≤时,由(1)结合函数的图象知()()22100,x e x x -+≥>()()()()()22121220x x f x g x e kx e x k x k x -=--=-++-≥-≥ ,对任意0x >都成立,()()2f x g x x ∴->等价于()2210xek x -+->.设()()221x x e k x ϕ=-+-,则()()2'22x x e k ϕ=-+,由()'0x ϕ>,得()12ln0,'022k x x ϕ+>><得()12ln ,22k x x ϕ+<∴在120,ln 22k +⎛⎫ ⎪⎝⎭上单调递减,注意到()00ϕ=,所以对任意的120,ln 22k x +⎛⎫∈ ⎪⎝⎭,都有()0x ϕ<,不符合题设.综上所述,k 的取值范围为()4,+∞.22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭)cos sin 2ρθρθ-=-)x y -=-l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l 的距离6d tπ⎛⎫===+⎪⎝⎭,当26t kππ+=,即2,6t k k Zππ=-∈时,maxd==,故点P到直线l的距离的最大值为(2)因为曲线C上的所有点均在直线l的右下方,t∴∀∈R,cos2sin40-+>a t t恒成立,()4tϕ+-(其中2tanaϕ=)恒成立,4<,又0a>,解得0a<<a取值范围为(.23. 解:(1)222x m x x m x m--≤--=,要使24x m x--<恒成立,则2m<,解得22m-<<.又m∈N*,1∴=m.(2)()()()()0,1,0,1,22223f fαβαβαβ∈∈∴+=-+-=,即()141414,22525182βααβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+=⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。
河北省衡水2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N |}N ,{|2B x x n ==或3,x n n =∈}N ,则A B =I ( ) A .{}6,9 B .{}3,6,9 C .{}1,6,9,10 D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )A .20B .24C .30D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝ 5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A .310π B .320π C.3110π- D .3120π- 6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619 D .127.已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212- C.54- D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A.32π- B.12-C.14D.34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.2843122++ B.3643122++C. 3642123++ D.44122+10. 执行如图所示的程序框图,输出S的值等于()A.321tan9π-- B.25tan3922tan9ππ-C.2322tan9D.25tan3921tan9ππ--11.椭圆()222101yx bb+=<<的左焦点为F,上顶点为A,右顶点为B,若FAB∆的外接圆圆心(),P m n 在直线y x=-的左下方,则该椭圆离心率的取值范围为()A.22⎛⎫⎪⎝⎭B.1,12⎛⎫⎪⎝⎭C.20,2⎛⎫⎪⎝⎭D.10,2⎛⎫⎪⎝⎭12. 已知()'f x是函数()f x的导函数,且对任意的实数x都有()()()'23(xf x e x f x e=++是自然对数的底数),()01f=,若不等式()0f x k-<的解集中恰有两个整数,则实数k的取值范围是()A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦D .21,0e ⎛⎫- ⎪⎝⎭ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知4,5,(,a b c a b λμλμ===+∈r r r r r R),若(),⊥⊥-r r r r r a b c b a ,则λμ= .14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,23B π=,若224a c ac +=,则()sin sin sin A C A C += .15.已知点12,F F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足12212,tan 4F F OP PF F =∠≥,则双曲线C 的焦点的取值范围为 . 16.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为92π,则动点M 的轨迹的长度为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足111,332,n n a a a n +=+=++∈N *. (1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足2214log log 1211(n n n b b a n n +⋅=++∈N *),求数列{}2log n n b b -的前n 项和n S .18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率; (2)若该人到达后停留3天(到达当日算1天〉,设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,223,AB CD AB DC AC BD F ===I ,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为322+时,ADF ∆为等腰直角三角形,求C 的方程; (2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB 的距离d 的取值范围.21. 设函数()()2,1(xf x eg x kx k ==+∈R ).(1)若直线()=y g x 和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t =⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 224πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当3a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立. (1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题参考答案一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC二、填空题13. 251615. 2,3⎛⎝⎦三、解答题17. 解:(1)由题知数列是以2为首项,2为公差的等差数列,()22212,43nn n a n=+-==-.(2)设等比数列{}n b的首项为1b,则112nnb b-=⨯,依题有()()()()1221212121214log log4log2log24log1logn nn nb b b b b n b n-+⋅=⨯⋅⨯=+-+()()2222121214log4log42log144128b b b n n n n=-+⨯-+=++,即()()212212142log1124log4log8bb b⨯-=⎧⎪⎨-=⎪⎩,解得211log2,4b b==,故()1112422,log21n nn n nb b b n-++=⨯=-=-+Q,()()()2221221324222nnnn n n nS+-+++∴=-=--.18. 解:设iA表示事件“此人于3月i日到达该市”()1,2,...,14i=.依题意知,()114iP A=,且()i jA A i j=∅≠I.(1)设B为事件“此人停留2天空气质量都是重度污染”,则12121314B A A A A A=U U U U,所以()()()()()()12121314514P B P A P A P A P A P A ==U U U U ,即此人停留2天空气质量都是重度污染的概率为514. (2) 由题意可知,X 的所有可能取值为0,1,2,3,且()()()()()4894893014P X P A A A P A P A P A ===++=U U ,()()()()()21114211143214P X P A A A P A P A P A ===++=U U ,()()()()()11213112133314P X P A A A P A P A P A ===++=U U , ()()()()333511023114141414P X P X P X P X ==-=-=-==---=,(或()()()()()()()3567103567105114P X P A A A A A P A P A P A P A P A ===++++=U U U U ), 所以X 的分布列为X123P314514314314故X 的期望()3533100123141414147E X =⨯+⨯+⨯+⨯=. 19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG AF GH FC ∴==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC .(2)Q 平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,延长PG 交AD 的中点E ,连接,,,BE PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,以E 为原点建立如图所示的空间直角坐标系,)()()()()223,3,0,0,0,0,3,0,3,0,3,0,0,0,0,1AB DC A P B D G ==∴-Q , ()()()3,0,1,3,3,0,3,0,3AG AB AP ∴=-=-=-u u u r u u u r u u u r,设()()()00000011,,,,3,,3,3,022C x y z DC AB x y z =∴=-u u u r u u u r Q ,可得000333,0,,0,,0222222x y z C AC ⎛⎫⎛⎫=-==∴-∴=- ⎪ ⎪⎝⎭⎝⎭u u u r ,设平面PAB 的一个法向量为()1111,,n x y z =u r,由11111111113030n AB y x n AP z x ⎧⎧⎧⊥+==⎪⎪⎪⇒⇒⎨⎨⎨⊥+==⎪⎪⎪⎩⎩⎩u r u u u ru r u u u r ,令11z =,得)1,1n =u r ,同理可得平面AGC的一个法向量)1121212,cos ,n n n n n n n ⋅====u r u ru u r u r u u r Q u r u u r AGC 与平面PAB 所成锐二面角的正切值为811. 20. 解:(1)由题知,0,3,422p p F FA FD ⎛⎫=+==+⎪⎝⎭,则4,0,22p D FD ⎛⎫++ ⎪⎝⎭的中点坐标为(22,024p ⎛⎫++ ⎪⎝⎭,则23+=+2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+>Q ,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-u u u r u u u r,由题知//PE PA u u u r u u u r,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y yx x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y y y y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,令()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以2d ⎫∈⎪⎪⎣⎭. 21. 解:(1)设切点的坐标为()2,tt e ,由()2x f x e =得()2'2xf x e =,所以切线方程为()222t t y e e x t -=-,即()2212tty e x t e =+-,由已知()22212tty e x t e =+-和1y kx =+为同一条直线,()222,121t t e k t e ∴=-=,令()()1x h x x e =-,则()'x h x xe =-,当(),0x ∈-∞时,()()'0,h x h x >单调递增,当()0,x ∈+∞时,()()'0,h x h x <单调递减,()()01h x h ∴≤=.当且仅当0x =时等号成立,0,2t k ∴==.(注明:若由函数()2x f x e =与()1g x kx =+相交于点()0,1,直线()1g x kx =+和函数()2x f x e =的图象相切于()0,1,得出022k e ==,得3分)(2) ①当2k >时,由(1)结合函数的图象知,存在00x >,使得对于任意的()00,x x ∈,都有()()f x g x <,则不等式()()2f x g x x ->等价于()()2f x g x x ->,即()2210xk x e -+->,设()()()2221,'2x x t x k x e t x k x e =-+-=--,令()'0t x >得12ln22k x -<,令()'0t x <得12ln 22k x ->.若()()0121224ln 0,0,ln ,,2222k k k x t x --⎛⎫<≤≤⊆+∞∴ ⎪⎝⎭Q 在()00,x 上单调递减,注意到()00t =,所以对任意的()00,x x ∈,都有()0t x <,与题设不符. 若()1212124,ln 0,0,ln ,ln ,222222k k k k t x ---⎛⎫⎛⎫>>⊆-∞∴ ⎪ ⎪⎝⎭⎝⎭在120,ln 22k -⎛⎫⎪⎝⎭上单调递增,()00t =Q ,所以对任意的120,ln 22k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题设.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意()0,x m ∈,都有()()2f x g x x ->.②当02k <≤时,由(1)结合函数的图象知()()22100,xex x -+≥>()()()()()22121220x x f x g x e kx e x k x k x -=--=-++-≥-≥Q ,对任意0x >都成立,()()2f x g x x ∴->等价于()2210x e k x -+->.设()()221x x e k x ϕ=-+-,则()()2'22x x e k ϕ=-+,由()'0x ϕ>,得()12ln 0,'022k x x ϕ+>><得()12ln ,22k x x ϕ+<∴在120,ln 22k +⎛⎫ ⎪⎝⎭上单调递减,注意到()00ϕ=,所以对任意的120,ln22k x +⎛⎫∈ ⎪⎝⎭,都有()0x ϕ<,不符合题设.综上所述,k 的取值范围为()4,+∞. 22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭()cos sin 2ρθρθ-=-)2x y -=-l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l 的距离6d t π⎛⎫===+ ⎪⎝⎭,当26t k ππ+=,即2,6t k k Z ππ=-∈时,max d ==,故点P 到直线l 的距离的最大值为(2)因为曲线C 上的所有点均在直线l 的右下方,t ∴∀∈R ,cos 2sin 40-+>a t t 恒成立,即()4t ϕ+-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a <<a 取值范围为(.23. 解:(1)222x m x x m x m --≤--=Q ,要使24x m x --<恒成立,则2m <,解得22m -<<.又m ∈Q N *,1∴=m .(2)()()()()0,1,0,1,22223f f αβαβαβ∈∈∴+=-+-=Q ,即()141414,22525182βααβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。
2016~2017学年度下学期高三年级二模考试数学(理)试卷(答案)I 卷一、选择题(本题共12个小题,每小题均只有一个正确选项,每小题5分,共60分.)A 卷:DBBABBAACB DB B 卷:BCCDA CBDDD AB二、填空题:本题共4个小题,每小题5分,共20分.13.10082016C 14.)3,3(15.416.3510三、解答题:本大题共6题,,共70分.解答应写出文字说明、证明过程或演算步骤。
17.解:(1)由sin 3cos cos C A B =-可得sin()3cos cos A B A B +=-,即sin cos cos sin 3cos cos A B A B A B +=-,因为tan tan 1A B =-,所以A,B 2π≠,两边同时除以cos cos A B ,得到tan tan 3A B +=-,因为tan()tan()tan ,A B C C π+=-=-tan tan tan()1tan tan A B A B A B ++==-所以tan C =,又0C π<<,所以3C π=。
根据正弦定理得sin sin sin 3a b c A B C ===,故,a A b B ==,sin sin sin sin 2220A B A B a b A B ++==+。
6分(2)由(1)及余弦定理可得222cos 32a b c abπ++=,因为c =,所以2210a b ab +-=,即2()210a b ab ab +--=,又由111a b+=,可得a b ab +=,故2()3100ab ab --=解得52()ab ab ==-或舍去,此时5a b ab +==,所以ABC ∆得周长为5+,ABC ∆的面积为15sin 234π⨯⨯=。
12分18.解:(1)由题意21x x <2221S S >。
2分(2)记选到的城市至多是一个“中国十佳宜居城市”为事件A,由已知既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的城市有4个:深圳,惠州,信阳,烟台。
河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.6. 若实数满足条件,则的最大值为()A. B. C. D.7. 已知,则二项式的展开式中的常数项为()A. B. C. D.8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.10. 执行如图所示的程序框图,输出的值等于()A. B.C. D. ...11. 椭圆的左焦点为,上顶点为,右顶点为,若的外接圆圆心在直线的左下方,则该椭圆离心率的取值范围为()A. B. C. D.12. 已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,若,则__________.14. 在中,分别为角的对边,,若,则__________.15. 已知点分别是双曲线的左、右焦点,为坐标原点,点在双曲线的右支上,且满足,则双曲线的焦点的取值范围为__________.16. 点为正方体的内切球球面上的动点,点为上一点,,若球的体积为,则动点的轨迹的长度为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足.(1)求数列的通项公式;(2)设以为公比的等比数列满足),求数列的前项和.18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设是此人停留期间空气重度污染的天数,求的分布列与数学期望.19. 如图,四棱锥中,平面平面,底面为梯形,,且与均为正三角形,为的重心.(1)求证:平面;(2)求平面与平面所成锐二面角的正切值.20. 已知抛物线的焦点为为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点.(1)若,当点的横坐标为时,为等腰直角三角形,求的方程;(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围. 21. 设函数).(1)若直线和函数的图象相切,求的值;(2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程...在直角坐标系中中,曲线的参数方程为为参数,). 以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;(2)若曲线上所有的点均在直线的右下方,求的取值范围.23. 选修4-5:不等式选讲已知定义在上的函数,且恒成立.(1)求实数的值;(2)若,求证:.。
数学(理)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N |}N ,{|2B x x n ==或3,x n n =∈}N ,则A B =( ) A .{}6,9 B .{}3,6,9 C .{}1,6,9,10 D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( ) A .20 B .24 C .30 D .324.已知命题1:,ln 2xp x e x ⎛⎫∃>> ⎪⎝⎭;命题:1,1,log 2log a b q a b b a ∀>>+≥,则下列命题中为真命题的是 ( )A .()p q ⌝∧B .p q ∧ C. ()p q ∧⌝ D .()p q ∨⌝ 5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .310πB .320π C.3110π- D .3120π-6. 若实数,x y 满足条件21025020x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432x z x y =+的最大值为( )A .1B .6415C.1619 D .127.已知)221sin a x dx π-=⎰,则二项式922x a x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A .158-B .212- C.54- D .1-8. 已知奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的导函数的部分图象如图所示,E 是最高点,且MNE ∆是边长为1的正三角形,那么13f ⎛⎫= ⎪⎝⎭( )A.2π-B .12-C.14 D .34π- 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.28+.36+C. 3642123+.44122+10. 执行如图所示的程序框图,输出S 的值等于( )A.21tan9B.25tan922tan9ππ-C. 22tan9D.25tan 921tan9ππ- 11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( )A.2⎛⎫ ⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭C.0,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭12. 已知()'f x 是函数()f x 的导函数,且对任意的实数x 都有()()()'23(x f x e x f x e =++是自然对数的底数),()01f =,若不等式()0f x k -<的解集中恰有两个整数,则实数k 的取值范围是( )A .1,0e ⎡⎫-⎪⎢⎣⎭B .21,0e ⎡⎤-⎢⎥⎣⎦ C.21,0e ⎛⎤- ⎥⎝⎦ D .21,0e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知4,5,(,a b c a b λμλμ===+∈R),若(),⊥⊥-a b c b a ,则λμ= . 14.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,23B π=,若224a c ac +=,则()s i n s i n s i n A C A C+= .15.已知点12,F F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足12212,tan 4F F OP PF F =∠≥,则双曲线C 的焦点的取值范围为 .16.点M 为正方体1111ABCD A BC D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为92π,则动点M 的轨迹的长度为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 满足11332,n n a a a n +=+=+∈N *. (1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足2214log log 1211(n n n b b a n n +⋅=++∈N *),求数列{}2log n n b b -的前n 项和n S .18. 如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天〉,设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,2AB CD AB DC ACBD F ===,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为3+时,ADF ∆为等腰直角三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥ ⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB 的距离d 的取值范围. 21. 设函数()()2,1(x f x e g x kx k ==+∈R ).(1)若直线()=y g x 和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t=⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立. (1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题参考答案一、选择题1-5:DCBAD 6-10: ABDBA 11-12:AC 二、填空题 13.2516103 15. 217⎛ ⎝⎦330 三、解答题17. 解:(1)由题知数列是以2为首项,2为公差的等差数列,()22212,43n n n a n =+-==-.(2)设等比数列{}n b 的首项为1b ,则112n n b b -=⨯,依题有()()()()1221212121214log log 4log 2log 24log 1log n n n n b b b b b n b n -+⋅=⨯⋅⨯=+-+()()2222121214log 4log 42log 144128b b b n n n n =-+⨯-+=++,即()()212212142log 1124log 4log 8b b b ⨯-=⎧⎪⎨-=⎪⎩,解得211log 2,4b b ==,故()1112422,log 21n n n n n b b b n -++=⨯=-=-+,()()()2221221324222n n n n n n n S +-+++∴=-=--.18. 解:设i A 表示事件“此人于3月i 日到达该市”()1,2,...,14i =.依题意知,()114i P A =,且()ij A A i j =∅≠.(1)设B 为事件“此人停留2天空气质量都是重度污染” ,则12121314B A A A A A =,所以()()()()()()12121314514P B P A P A P A P A P A ==,即此人停留2天空气质量都是重度污染的概率为514. (2) 由题意可知,X 的所有可能取值为0,1,2,3,且()()()()()4894893014P X P A A A P A P A P A ===++=,()()()()()21114211143214P X P A A A P A P A P A ===++=,()()()()()11213112133314P X P A A A P A P A P A ===++=,()()()()333511023114141414P X P X P X P X ==-=-=-==---=,(或()()()()()()()3567103567105114P X P A A A A A P A P A P A P A P A ===++++=),故X 的期望()3100123141414147E X =⨯+⨯+⨯+⨯=.19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG AF GH FC ∴==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC .(2)平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,延长PG 交AD 的中点E ,连接,,,BE PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,以E 为原点建立如图所示的空间直角坐标系,)()()()()2,0,0,3,0,3,0,,0,0,1AB DC A P B D G ==∴, ()()()3,0,1,3,3,0,3,0,3AG AB AP ∴=-=-=-,设()()()00000011,,,,,22C x y z DC AB x y z =∴+=,可得000333,0,,0,,0222222x y z C AC ⎛⎫⎛⎫=-==∴-∴=- ⎪ ⎪⎝⎭⎝⎭,设平面PAB 的一个法向量为()1111,,n x y z =,由111111113030n AB y x n AP z x ⎧⎧⎧⊥+==⎪⎪⎪⇒⇒⎨⎨⎨⊥+==⎪⎪⎪⎩⎩⎩,令11z =,得()13,1,1n =,同理可得平面AGC 的一个法向量()11212123,5,3,cos ,5n n n nn n n ⋅====,所以平面AGC 与平面PAB 所成锐二面角的正切值为811. 20. 解:(1)由题知,0,3,422p pF FA FD FA ⎛⎫=+== ⎪⎝⎭4,0,22p D FD ⎛⎫++ ⎪⎝⎭的中点坐标为(22,024p ⎛⎫++ ⎪⎝⎭,则(3222232224p +++=+2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+>,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-,由题知//PE PA ,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y y x x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1APk =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y y y y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以2d ⎫∈⎪⎪⎣⎭.21. 解:(1)设切点的坐标为()2,t t e ,由()2x f x e =得()2'2x f x e =,所以切线方程为()222t t y e e x t -=-,即()2212t t y e x t e =+-,由已知()22212t t y e x t e =+-和1y kx =+为同一条直线,()222,121t t e k t e ∴=-=,令()()1x h x x e =-,则()'x h x xe =-,当(),0x ∈-∞时,()()'0,h x h x >单调递增,当()0,x ∈+∞时,()()'0,h x h x <单调递减,()()01h x h ∴≤=.当且仅当0x =时等号成立,0,2t k ∴==.(注明:若由函数()2x f x e =与()1g x kx =+相交于点()0,1,直线()1g x kx =+和函数()2x f x e =的图象相切于()0,1,得出022k e ==,得3分)(2) ①当2k >时,由(1)结合函数的图象知,存在00x >,使得对于任意的()00,x x ∈,都有()()f x g x <,则不等式()()2f x g x x ->等价于()()2f x g x x ->,即()2210x k x e -+->,设()()()2221,'2x x t x k x e t x k x e =-+-=--,令()'0t x >得12ln22k x -<,令()'0t x <得12ln 22k x ->.若()()0121224ln0,0,ln ,,2222k k k x t x --⎛⎫<≤≤⊆+∞∴⎪⎝⎭在()00,x 上单调递减,注意到()00t =,所以对任意的()00,x x ∈,都有()0t x <,与题设不符. 若()1212124,ln 0,0,ln ,ln ,222222k k k k t x ---⎛⎫⎛⎫>>⊆-∞∴ ⎪ ⎪⎝⎭⎝⎭在120,ln 22k -⎛⎫⎪⎝⎭上单调递增, ()00t =,所以对任意的120,ln 22k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题设.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意()0,x m ∈,都有()()2f x g x x ->.②当02k <≤时,由(1)结合函数的图象知()()22100,x e x x -+≥>()()()()()22121220x x f x g x e kx e x k x k x -=--=-++-≥-≥,对任意0x >都成立,()()2f x g x x ∴->等价于()2210x e k x -+->.设()()221x x e k x ϕ=-+-,则()()2'22x x e k ϕ=-+,由()'0x ϕ>,得()12ln 0,'022k x x ϕ+>><得()12ln ,22k x x ϕ+<∴在120,ln 22k +⎛⎫⎪⎝⎭上单调递减,注意到()00ϕ=,所以对任意的120,ln 22k x +⎛⎫∈ ⎪⎝⎭,都有()0x ϕ<,不符合题设.综上所述,k 的取值范围为()4,+∞.22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭()cos sin 2ρθρθ-=-)2x y -=-即直线l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l 的距离6d t π⎛⎫===+ ⎪⎝⎭,当26t k ππ+=,即2,6t k k Z ππ=-∈时,max d ==P 到直线l的距离的最大值为(2)因为曲线C 上的所有点均在直线l 的右下方,t ∴∀∈R ,cos 2sin 40-+>a t t恒成立,即()4t ϕ+-(其中2tan a ϕ=)恒成立,4<,又0a >,解得0a <<a 取值范围为(.23. 解:(1)222x m x x m x m --≤--=,要使24x m x --<恒成立,则2m <,解得22m -<<.又m ∈N *,1∴=m .(2)()()()()0,1,0,1,22223f f αβαβαβ∈∈∴+=-+-=,即()1414144,225252182βαβααβαβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+⋅= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。
河北省衡水中学2017届高三下学期第二次摸底考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,或,则()A. B. C. D.【答案】D【解析】因为,所以,应选答案D。
2. 若复数满足为虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】因为,所以该复数在复平面内对于的点位于第三象限,应选答案C。
学科网3. 某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为()A. B. C. D.【答案】B【解析】根据题意抽取比例为故总人数为所以高三被抽取的人数为4. 已知命题;命题,则下列命题中为真命题的是()A. B. C. D.【答案】A5. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】D【解析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为6. 若实数满足条件,则的最大值为()A. B. C. D.【答案】A【解析】根据题意画出可行域:=,所以目标函数最值问题转化为可行域中的点与原点连线斜率的问题,可知取点F,G时目标函数取到最值,F(2,1),G(1,3),所以最大值将点F代入即可得最大值为1 7. 已知,则二项式的展开式中的常数项为()学#科#网...A. B. C. D.【答案】B【解析】=2,所以的展开式中的常数项为:,令r=3得常数项为8. 已知奇函数的导函数的部分图象如图所示,是最高点,且是边长为的正三角形,那么()A. B. C. D.【答案】D【解析】由奇函数,是边长为的正三角形,可得,是最高点且,得A=,所以9. 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A. B.C. D.【答案】B【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是腰长为的等腰直角三角形,高为4的柱体,如图,其全面积,应选答案B。
且MNE∆是边长为1的正三角形,那么13f⎛⎫=⎪⎝⎭()A.32π-B.12-C.14D.34π-9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.2843122++B.3643122++C.3642123++D.44122+10.执行如图所示的程序框图,输出S的值等于()A.2321πtan9--B.25πtan3922πtan9--C.2322πtan9--D.25πtan3921πtan9--11.椭圆()222101yx bb+=<<的左焦点为F,上顶点为A,右顶点为B,若FAB∆的外接圆圆心(),P m n在直线y x=-的左下方,则该椭圆离心率的取值范围为()A.2,12⎛⎫⎪⎪⎝⎭B.1,12⎛⎫⎪⎝⎭C.20,2⎛⎫⎪⎪⎝⎭D.10,2⎛⎫⎪⎝⎭12.已知()'f x是函数()f x的导函数,且对任意的实数x都有()()()('=e23exf x x f x++是自然对数的底数),()01f=,若不等式()0f x k-<的解集中恰有两个整数,则实数k的取值范围是()A.1,0e⎡⎫-⎪⎢⎣⎭B.21,0e⎡⎫-⎪⎢⎣⎭C.21,0e⎛⎤-⎥⎝⎦D.21,0e⎛⎫-⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知4a =r ,5b =r ,(),c a b λμλμ=+∈R r r r ,若a b ⊥r r ,()c b a ⊥-r r r ,则λμ=________.14.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,2π3B =,若22+4a c ac =,则()sin sin sin A C A C+=________.15.已知点1F ,2F 分别是双曲线()222:10y C x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足122F F OP =,21tan 4PF F ∠≥,则双曲线C 的焦点的取值范围为________.16.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112NB NC =,DM BN ⊥,若球O 的体积为92π,则动点M 的轨迹的长度为________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 满足11a =,*1332,n n a a n ++=++∈N . (1)求数列{}n a 的通项公式;(2)设以2为公比的等比数列{}n b 满足()*2214log log 1211n n n b b a n n +⨯=++∈N ,求数列{}2log n n b -的前n项和n S .18.如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.(1)若该人到达后停留2(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;(2)若该人到达后停留3天(到达当日算1天),设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.19.如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,AB CD ∥,223AB DC ==,AC BD F =I ,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证:GF ∥平面PDC ;(2)求平面AGC 与平面PAB 所成锐二面角的正切值.20.已知抛物线()2:20C y px p =>的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C于另一点B ,交x 轴的正半轴于点D .(1)若FA AD =,当点A 的横坐标为322+时,ADF ∆为等腰直角三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥ ⎪⎝⎭,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB 的距离d 的取值范围.21.设函数()2e xf x =,()()1g x kx k =+∈R .(1)若直线()y g x =和函数()y f x =的图象相切,求k 的值;(2)当0k >时,若存在正实数m ,使对任意()0,x m ∈都有()()2f x g x x ->恒成立,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos 2sin x a ty t =⎧⎨=⎩(t 为参数,0a >).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为πcos 224ρθ⎛⎫+=- ⎪⎝⎭.(1)设P 是曲线C 上的一个动点,当23a =时,求点P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,*f x x m x m =--∈N ,且()4f x <恒成立. (1)求实数m 的值;(2)若()0,1α∈,()0,1β∈,()()3f f αβ+=,求证:4118αβ+≥.。
2016-2017学年河北省衡水中学高三(下)二调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x<2},B={y|y=2x﹣1,x∈A},则A∩B=()A.(﹣∞,3) B.[2,3)C.(﹣∞,2) D.(﹣1,2)2.已知复数z=1﹣i(i为虚数单位),则的共轭复数是()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i3.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.B.C.D.4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2 B.3 C.4 D.55.已知数列{an }的前n项和为Sn,若Sn=1+2an(n≥2),且a1=2,则S20()A.219﹣1 B.221﹣2 C.219+1 D.221+26.已知圆C :x 2+y 2=4,点P 为直线x+2y ﹣9=0上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点( )A .B .C .(2,0)D .(9,0)7.某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .8.设函数,,若不论x 2取何值,f (x 1)>g (x 2)对任意总是恒成立,则a 的取值范围为( )A .B .C .D .9.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B 3C 3上有10个不同的点P 1,P 2,…P 10,记m i =(i=1,2,…,10),则m 1+m 2+…+m 10的值为( )A .180B .C .45D .10.已知函数f (x )是定义在R 上的单调函数,且对任意的x ,y ∈R 都有f (x+y )=f (x )+f (y ),若动点P (x ,y )满足等式f (x 2+2x+2)+f (y 2+8y+3)=0,则x+y 的最大值为( )A.2﹣5 B.﹣5 C.2+5 D.511.数列{an }满足a1=,an+1﹣1=an(an﹣1)(n∈N*)且Sn=++…+,则Sn的整数部分的所有可能值构成的集合是()A.{0,1,2} B.{0,1,2,3} C.{1,2} D.{0,2}12.等腰直角三角形AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,△AOB的面积是16,抛物线的焦点为F,若M是抛物线上的动点,则的最大值为()A. B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招聘教师最多人.14.已知函数的两个零点分别为m、n(m<n),则= .15.已知四面体ABCD的每个顶点都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G为△ABC的重心,且直线DG与底面ABC所成角的正切值为,则球O的表面积为.16.已知是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(﹣1,0)对称;③当x∈(﹣4,0)时,,若y=f (x)在x∈[﹣4,4]上有5个零点,则实数m的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知向量,,设函数+b.(1)若函数f(x)的图象关于直线对称,且ω∈[0,3]时,求函数f(x)的单调增区间;(2)在(1)的条件下,当时,函数f(x)有且只有一个零点,求实数b的取值范围.18.如图,已知四棱锥S﹣ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是边SB的中点.(1)求证:CE∥平面SAD;(2)求二面角D﹣EC﹣B的余弦值大小.19.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建(万元)的概率分布列设项目供选择,若投资甲项目一年后可获得的利润为ξ1如表所示:112该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为的关系如p(0<p<1)和1﹣p,乙项目产品价格一年内调整次数X(次)与ξ2表所示:(2)求ξ的分布列;2(3)根据投资回报率的大小请你为公司决策:当p 在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)20.如图,曲线Γ由曲线C 1:和曲线C 2:组成,其中点F 1,F 2为曲线C 1所在圆锥曲线的焦点,点F 3,F 4为曲线C 2所在圆锥曲线的焦点,(1)若F 2(2,0),F 3(﹣6,0),求曲线Γ的方程;(2)如图,作直线l 平行于曲线C 2的渐近线,交曲线C 1于点A 、B ,求证:弦AB 的中点M 必在曲线C 2的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线l 1过点F 4交曲线C 1于点C 、D ,求△CDF 1面积的最大值.21.设f (x )=,曲线y=f (x )在点(1,f (1))处的切线与直线x+y+1=0垂直. (Ⅰ)求a 的值;(Ⅱ)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(Ⅲ)求证:ln (4n+1)≤16(n ∈N *).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点,当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(Ⅰ)分别说明C1,C2是什么曲线,并求a与b的值;(Ⅱ)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C 2的交点分别为A2,B2,求直线A1A2、B1B2的极坐标方程.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|,a<0.(Ⅰ)证明f(x)+f(﹣)≥2;(Ⅱ)若不等式f(x)+f(2x)<的解集非空,求a的取值范围.2016-2017学年河北省衡水中学高三(下)二调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x<2},B={y|y=2x﹣1,x∈A},则A∩B=()A.(﹣∞,3) B.[2,3)C.(﹣∞,2) D.(﹣1,2)【考点】交集及其运算.【分析】由指数函数的值域和单调性,化简集合B,再由交集的定义,即可得到所求.【解答】解:集合A={x|x<2}=(﹣∞,2),B={y|y=2x﹣1,x∈A},由x<2,可得y=2x﹣1∈(﹣1,3),即B={y|﹣1<y<3}=(﹣1,3),则A∩B=(﹣1,2).故选:D.2.已知复数z=1﹣i(i为虚数单位),则的共轭复数是()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i【考点】复数代数形式的乘除运算.【分析】把z代入,然后利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=1﹣i,∴=,∴的共轭复数为1﹣3i.故选:A.3.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.B.C.D.【考点】几何概型.【分析】由题意可知所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,即可求得.【解答】解:当该人在池中心位置时,呼唤工作人员的声音可以传,那么当构成如图所示的三角形时,工作人员才能及时的听到呼唤声,所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,.故选B.4.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2 B.3 C.4 D.5【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.5.已知数列{an }的前n项和为Sn,若Sn=1+2an(n≥2),且a1=2,则S20()A.219﹣1 B.221﹣2 C.219+1 D.221+2【考点】数列的求和.【分析】利用递推关系与等比数列的通项公式求和公式即可得出.【解答】解:∵Sn =1+2an(n≥2),且a1=2,∴n≥2时,an=Sn﹣Sn﹣1=1+2an﹣(1+2an﹣1),化为:an=2an﹣1,∴数列{an}是等比数列,公比与首项都为2.∴S20==221﹣2.故选:B.6.已知圆C:x2+y2=4,点P为直线x+2y﹣9=0上一动点,过点P向圆C引两条切线PA、PB,A、B为切点,则直线AB经过定点()A.B.C.(2,0)D.(9,0)【考点】直线与圆的位置关系.【分析】根据题意设P的坐标为P(9﹣2m,m),由切线的性质得点A、B在以OP 为直径的圆C上,求出圆C的方程,将两个圆的方程相减求出公共弦AB所在的直线方程,再求出直线AB过的定点坐标.【解答】解:因为P是直线x+2y﹣9=0的任一点,所以设P(9﹣2m,m),因为圆x2+y2=4的两条切线PA、PB,切点分别为A、B,所以OA⊥PA,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,则圆心C的坐标是(,),且半径的平方是r2=,所以圆C的方程是(x﹣)2+(y﹣)2=,①又x2+y2=4,②,②﹣①得,(2m﹣9)x﹣my+4=0,即公共弦AB所在的直线方程是:(2m﹣9)x﹣my+4=0,即m(2x﹣y)+(﹣9x+4)=0,由得x=,y=,所以直线AB恒过定点(,),故选A.7.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图,可得该几何体是一个以俯视图左下角的三角形为底面的三棱锥和一个以俯视图右上角的三角形为底面的三棱柱相加的组合体,代入棱锥和棱柱的体积公式,可得答案. 【解答】解:由已知中的三视图,可得:该几何体是一个以俯视图左下角的三角形为底面的三棱锥和一个以俯视图右上角的三角形为底面的三棱柱相加的组合体,棱锥和棱柱的底面面积均为:S==,高均为h=3,故组合体的体积V=Sh+Sh=4,故选:A8.设函数,,若不论x 2取何值,f (x 1)>g (x 2)对任意总是恒成立,则a 的取值范围为( )A .B .C .D .【考点】函数恒成立问题.【分析】利用三角恒等变换化简得g (x )=2sin (x+)≤2,依题意可得f (x 1)min>g (x 2)max =2,即当≤x ≤时,0<ax 2+2x ﹣1<恒成立,通过分类讨论,即可求得a 的取值范围.【解答】解:∵函数,====2sin (x+)≤2,即g (x )max =2,因为不论x 2取何值,f (x 1)>g (x 2)对任意总是恒成立,所以f (x 1)min >g (x 2)max ,即对任意,>2恒成立,即当≤x≤时,0<ax2+2x﹣1<恒成立,1°由ax2+2x﹣1<得:ax2<﹣2x,即a<﹣=(﹣)2﹣,令h(x)=(﹣)2﹣,因为≤≤,所以,当=时,[h(x)]min=﹣,故a<﹣;2°由0<ax2+2x﹣1得:a>﹣,令t(x)=﹣=(﹣1)2﹣1,因为≤≤,所以,当x=即=时,t()=(﹣1)2﹣1=﹣;当x=,即=时,t()=(﹣1)2﹣1=﹣,显然,﹣>﹣,即[t(x)]max=﹣,故a>﹣;综合1°2°知,﹣<a<﹣,故选:D.9.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记mi=(i=1,2,…,10),则m1+m2+…+m10的值为()A.180 B.C.45 D.【考点】平面向量数量积的运算.【分析】由题意可得,然后把mi=转化为求得答案.【解答】解:由图可知,∠B2AC3=30°,又∠AC3B3=60°,∴,即.则,∴m1+m2+…+m10=18×10=180.故选:A.10.已知函数f(x)是定义在R上的单调函数,且对任意的x,y∈R都有f(x+y)=f(x)+f(y),若动点P(x,y)满足等式f(x2+2x+2)+f(y2+8y+3)=0,则x+y的最大值为()A.2﹣5 B.﹣5 C.2+5 D.5【考点】抽象函数及其应用.【分析】由条件可令x=y=0,求得f(0)=0,再由f(x)为单调函数且满足的条件,将f(x2+2x+2)+f(y2+8y+3)=0化为f(x2+y2+2x+8y+5)=0=f(0),可得x2+y2+2x+8y+5=0,配方后,再令x=﹣1+2cosα,y=﹣4+2sinα(α∈(0,2π)),运用两角差的余弦公式和余弦函数的值域,即可得到所求最大值.【解答】解:对任意的x,y∈R都有f(x+y)=f(x)+f(y),令x=0,y=0,都有f(0+0)=f(0)+f(0)⇒f(0)=0,动点P(x,y)满足等式f(x2+2x+2)+f(y2+8y+3)=0,即有f(x2+y2+2x+8y+5)=0=f(0),由函数f(x)是定义在R上的单调函数,可得x2+y2+2x+8y+5=0,化为(x+1)2+(y+4)2=12,可令x=﹣1+2cosα,y=﹣4+2sinα(α∈(0,2π)),则x+y=2(cosα+sinα)﹣5=2cos(α﹣)﹣5,当cos (α﹣)=1即α=时,x+y 取得最大值2﹣5,故选:A .11.数列{a n }满足a 1=,a n+1﹣1=a n (a n ﹣1)(n ∈N *)且S n =++…+,则S n 的整数部分的所有可能值构成的集合是( )A .{0,1,2}B .{0,1,2,3}C .{1,2}D .{0,2} 【考点】数列递推式.【分析】数列{a n }满足a 1=,a n+1﹣1=a n (a n ﹣1)(n ∈N *).可得:a n+1﹣a n =>0,可得:数列{a n }单调递增.可得a 2=,a 3=,a 4=.=>1,=<1.另一方面: =﹣,可得S n =++…+=3﹣,对n=1,2,3,n ≥4,分类讨论即可得出.【解答】解:∵数列{a n }满足a 1=,a n+1﹣1=a n (a n ﹣1)(n ∈N *). 可得:a n+1﹣a n =>0,∴a n+1>a n ,因此数列{a n }单调递增. 则a 2﹣1=,可得a 2=,同理可得:a 3=,a 4=.=>1,=<1,另一方面: =﹣,∴S n =++…+=++…+=﹣=3﹣,当n=1时,S 1==,其整数部分为0; 当n=2时,S 2=+=1+,其整数部分为1;当n=3时,S 3=++=2+,其整数部分为2;当n ≥4时,S n =2+1﹣∈(2,3),其整数部分为2.综上可得:S n 的整数部分的所有可能值构成的集合是{0,1,2}. 故选:A .12.等腰直角三角形AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA⊥OB ,△AOB 的面积是16,抛物线的焦点为F ,若M 是抛物线上的动点,则的最大值为( )A .B .C .D .【考点】抛物线的简单性质.【分析】设等腰直角三角形OAB 的顶点A (x 1,y 1),B (x 2,y 2),利用OA=OB 可求得x 1=x 2,进而可求得AB=4p ,从而可得S △OAB .设过点N 的直线方程为y=k (x+1),代入y 2=4x ,过M 作准线的垂线,垂足为A ,则|MF|=|MA|,考虑直线与抛物线相切及倾斜角为0°,即可得出p .设M 到准线的距离等于d ,由抛物线的定义,化简为==,换元,利用基本不等式求得最大值.【解答】解:设等腰直角三角形OAB 的顶点A (x 1,y 1),B (x 2,y 2),则y 12=2px 1,y 22=2px 2.由OA=OB 得:x 12+y 12=x 22+y 22,∴x 12﹣x 22+2px 1﹣2px 2=0,即(x 1﹣x 2)(x 1+x 2+2p )=0, ∵x 1>0,x 2>0,2p >0, ∴x 1=x 2,即A ,B 关于x 轴对称. ∴直线OA 的方程为:y=xtan45°=x,与抛物线联立,解得或,故AB=4p ,∴S △OAB =×2p ×4p=4p 2. ∵△AOB 的面积为16,∴p=2;焦点F(1,0),设M(m,n),则n2=4m,m>0,设M 到准线x=﹣1的距离等于d,则==.令 m+1=t,t>1,则=≤(当且仅当 t=3时,等号成立).故的最大值为,故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招聘教师最多10 人.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,则目标函数为z=x+y,利用线性规划的知识进行求解即可.【解答】解:设z=x+y,作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.但此时z最大值取不到,由图象当直线经过整点E(5,5)时,z=x+y取得最大值,代入目标函数z=x+y得z=5+5=10.即目标函数z=x+y的最大值为10.故答案为:10.14.已知函数的两个零点分别为m、n(m<n),则= .【考点】定积分;函数零点的判定定理.【分析】先求出m,n,再利用几何意义求出定积分.【解答】解:∵函数的两个零点分别为m、n(m<n),∴m=﹣1,n=1,∴===.故答案为.15.已知四面体ABCD的每个顶点都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G为△ABC的重心,且直线DG与底面ABC所成角的正切值为,则球O的表面积为.【考点】球的体积和表面积.【分析】求出△ABC外接圆的直径,利用勾股定理求出球O的半径,即可求出球O的表面积.【解答】解:由题意,AG=2,AD=1,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,故答案为.16.已知是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(﹣1,0)对称;③当x∈(﹣4,0)时,,若y=f (x)在x∈[﹣4,4]上有5个零点,则实数m的取值范围为[﹣3e﹣4,1)∪{﹣e﹣2} .【考点】函数零点的判定定理.【分析】可判断f(x)在R上是奇函数,从而可化为当x∈(﹣4,0)时,,有1个零点,从而转化为xe x+e x﹣m=0在(﹣4,0)上有1个不同的解,再令g(x)=xe x+e x﹣m,从而求导确定函数的单调性及取值范围,从而解得.【解答】[﹣3e﹣4,1)∪{﹣e﹣2}解:∵曲线y=f(x+1)关于点(﹣1,0)对称;∴曲线y=f(x)关于点(0,0)对称;∴f(x)在R上是奇函数,∴f(0)=0,又∵f(4)=0,∴f(﹣4)=0,而y=f(x)在x∈[﹣4,4]上恰有5个零点,故x∈(﹣4,0)时,有1个零点,x∈(﹣4,0)时f(x)=log(xe x+e x﹣m+1),2故xe x+e x﹣m=0在(﹣4,0)上有1个不同的解,令g(x)=xe x+e x﹣m,g′(x)=e x+xe x+e x=e x(x+2),故g(x)在(﹣4,﹣2)上是减函数,在(﹣2,0)上是增函数;而g(﹣4)=﹣4e﹣4+e﹣4﹣m,g(0)=1﹣m=﹣m,g(﹣2)=﹣2e﹣2+e﹣2﹣m,而g(﹣4)<g(0),故﹣2e﹣2+e﹣2﹣m﹣1<0<﹣4e﹣4+e﹣4﹣m﹣1,故﹣3e﹣4≤m<1或m=﹣e﹣2故答案为:[﹣3e﹣4,1)∪{﹣e﹣2}三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知向量,,设函数+b.(1)若函数f(x)的图象关于直线对称,且ω∈[0,3]时,求函数f(x)的单调增区间;(2)在(1)的条件下,当时,函数f(x)有且只有一个零点,求实数b的取值范围.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)根据平面向量数量积运算求解出函数+b,利用函数f(x)的图象关于直线对称,且ω∈[0,3]时,求解ω,可求函数f(x)的单调增区间.(2)当时,求出函数f(x)的单调性,函数f(x)有且只有一个零点,利用其单调性求解求实数b的取值范围.【解答】解:向量,,函数+b.则==.(1)∵函数f(x)图象关于直线对称,∴(k∈Z),解得:ω=3k+1(k∈Z),∵ω∈[0,3],∴ω=1,∴,由,解得:(k∈Z),所以函数f(x)的单调增区间为(k∈Z).(2)由(1)知,∵,∴,∴,即时,函数f(x)单调递增;,即时,函数f(x)单调递减.又,∴当或时函数f(x)有且只有一个零点.即sin≤﹣b﹣<sin或,所以满足条件的.18.如图,已知四棱锥S﹣ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是边SB的中点.(1)求证:CE∥平面SAD;(2)求二面角D﹣EC﹣B的余弦值大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)取SA中点F,连结EF,FD,推导出四边形EFDC是平行四边形,由此能证明CE∥面SAD.(2)在底面内过点A作直线AM∥BC,则AB⊥AM,以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D﹣EC﹣B的余弦值.【解答】证明:(1)取SA中点F,连结EF,FD,∵E是边SB的中点,∴EF∥AB,且EF=AB,又∵∠ABC=∠BCD=90°,∴AB∥CD,又∵AB=2CD,且EF=CD,∴四边形EFDC是平行四边形,∴FD∥EC,又FD⊂平面SAD,CE⊄平面SAD,∴CE∥面SAD.解:(2)在底面内过点A作直线AM∥BC,则AB⊥AM,又SA⊥平面ABCD,以AB,AM,AS所在直线分别为x,y,z轴,建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(1,2,0),D(1,2,0),E(1,0,1),则=(0,2,0),=(﹣1,0,1),=(﹣1,0,), =(﹣1,﹣2,1),设面BCE的一个法向量为=(x,y,z),则,取x=1,得=(1,0,1),同理求得面DEC的一个法向量为=(0,1,2),cos<>==,由图可知二面角D﹣EC﹣B是钝二面角,∴二面角D﹣EC﹣B的余弦值为﹣.19.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建(万元)的概率分布列设项目供选择,若投资甲项目一年后可获得的利润为ξ1如表所示:112该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为p(0<p<1)和1﹣p,乙项目产品价格一年内调整次数X(次)与ξ的关系如2表所示:(2)求ξ2的分布列;(3)根据投资回报率的大小请你为公司决策:当p 在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(1)利用概率和为1,期望值列出方程组求解即可.(2)ξ2的可能取值为41.2,117.6,204.0,求出概率,得到ξ2的分布列; (3)利用期望关系,通关二次函数求解最值即可.【解答】解:(1)由题意得:,得:m=0.5,n=0.1.(2)ξ2的可能取值为41.2,117.6,204.0,P (ξ2=41.2)=(1﹣p )[1﹣(1﹣p )]=p (1﹣p )P (ξ2=204.0)=p (1﹣p ) 所以ξ2的分布列为(3)由(2)可得:=﹣10p 2+10p+117.6根据投资回报率的计算办法,如果选择投资乙项目,只需E (ξ1)<E (ξ2), 即120<﹣10p 2+10p+117.6,得0.4<p <0.6.因为,所以当时,E (ξ2)取到最大值为120.1,所以预测投资回报率的最大值为12.01%.20.如图,曲线Γ由曲线C 1:和曲线C 2:组成,其中点F 1,F 2为曲线C 1所在圆锥曲线的焦点,点F 3,F 4为曲线C 2所在圆锥曲线的焦点,(1)若F 2(2,0),F 3(﹣6,0),求曲线Γ的方程;(2)如图,作直线l 平行于曲线C 2的渐近线,交曲线C 1于点A 、B ,求证:弦AB 的中点M 必在曲线C 2的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线l 1过点F 4交曲线C 1于点C 、D ,求△CDF 1面积的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由F 2(2,0),F 3(﹣6,0),可得,解出即可;(2)曲线C 2的渐近线为,如图,设点A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),设直线l :y=,与椭圆方程联立化为2x 2﹣2mx+(m 2﹣a 2)=0,利用△>0,根与系数的关系、中点坐标公式,只要证明,即可.(3)由(1)知,曲线C 1:,点F 4(6,0).设直线l 1的方程为x=ny+6(n >0).与椭圆方程联立可得(5+4n 2)y 2+48ny+64=0,利用根与系数的关系、弦长公式、三角形的面积计算公式、基本不等式的性质即可得出. 【解答】(1)解:∵F 2(2,0),F 3(﹣6,0),∴,解得,则曲线Γ的方程为和.(2)证明:曲线C 2的渐近线为,如图,设直线l :y=,则,化为2x 2﹣2mx+(m 2﹣a 2)=0,△=4m 2﹣8(m 2﹣a 2)>0, 解得.又由数形结合知.设点A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=m ,x 1x 2=,∴=,.∴,即点M 在直线y=﹣上.(3)由(1)知,曲线C 1:,点F 4(6,0).设直线l 1的方程为x=ny+6(n >0).,化为(5+4n 2)y 2+48ny+64=0,△=(48n )2﹣4×64×(5+4n 2)>0,化为n 2>1. 设C (x 3,y 3),D (x 4,y 4),∴,.∴|y 3﹣y 4|==,===,令t=>0,∴n2=t2+1,∴===,当且仅当t=,即n=时等号成立.∴n=时, =.21.设f(x)=,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;(Ⅲ)求证:ln(4n+1)≤16(n∈N*).【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出原函数的导函数,结合f'(1)=1列式求得a值;(Ⅱ)把(Ⅰ)中求得的a值代入函数解析式,由f(x)≤m(x﹣1)得到,构造函数,即∀x∈[1,+∞),g(x)≤0.然后对m分类讨论求导求得m的取值范围;(Ⅲ)由(Ⅱ)知,当x>1时,m=1时,成立.令,然后分别取i=1,2,…,n,利用累加法即可证明结论.【解答】(Ⅰ)解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题设f'(1)=1,∴,即a=0;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:,∀x∈[1,+∞),f(x)≤m(x﹣1),即,设,即∀x∈[1,+∞),g(x)≤0.,g'(1)=4﹣4m.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①若m≤0,g'(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m∈(0,1),当,g(x)单调递增,g(x)>g(1)=0,与题设矛盾;③若m≥1,当x∈(1,+∞),g'(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立;综上所述,m≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)证明:由(Ⅱ)知,当x>1时,m=1时,成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣不妨令,∴,即,,,…,.累加可得:ln(4n+1)≤16(n∈N*).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点,当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(Ⅰ)分别说明C 1,C 2是什么曲线,并求a 与b 的值;(Ⅱ)设当α=时,l 与C 1,C 2的交点分别为A 1,B 1,当α=﹣时,l 与C 1,C 2的交点分别为A 2,B 2,求直线A 1 A 2、B 1B 2的极坐标方程. 【考点】简单曲线的极坐标方程.【分析】(Ⅰ) 曲线C 1的直角坐标方程为x 2+y 2=1,C 1是以(0,0)为圆心,以1为半径的圆,曲线C 2的直角坐标方程为=1,C 2是焦点在x 轴上的椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),当时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),由此能求出a ,b .(Ⅱ) C 1,C 2的普通方程分别为x 2+y 2=1和,当时,射线l 与C 1的交点A 1的横坐标为,与C 2的交点B 1的横坐标为,当时,射线l 与C 1,C 2的交点A 2,分别与A 1,B 1关于x 轴对称,由此能求出直线A 1 A 2 和B 1B 2的极坐标方程.【解答】(本题满分10分)【选修4﹣4 坐标系统与参数方程】解:(Ⅰ)∵曲线C 1的参数方程为(φ为参数),∴曲线C 1的直角坐标方程为x 2+y 2=1,∴C 1是以(0,0)为圆心,以1为半径的圆,∵曲线C 2的参数方程为(a >b >0,φ为参数),∴曲线C 2的直角坐标方程为=1,∴C 2是焦点在x 轴上的椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0), ∵这两点间的距离为2,∴a=3…当时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),∵这两点重合,∴b=1…(Ⅱ) C 1,C 2的普通方程分别为x 2+y 2=1和…当时,解方程组,得A 1(,),即射线l 与C 1的交点A 1的横坐标为,解方程组,得B 1(,),与C 2的交点B 1的横坐标为当时,射线l 与C 1,C 2的交点A 2,分别与A 1,B 1关于x 轴对称因此,直线A 1 A 2、B 1B 2垂直于极轴,故直线A 1 A 2 和B 1B 2的极坐标方程分别为,…[选修4-5:不等式选讲]23.设函数f (x )=|x ﹣a|,a <0. (Ⅰ)证明f (x )+f (﹣)≥2;(Ⅱ)若不等式f (x )+f (2x )<的解集非空,求a 的取值范围. 【考点】绝对值不等式的解法;其他不等式的解法.【分析】(Ⅰ)运用绝对值不等式的性质和基本不等式,即可得证;(Ⅱ)通过对x 的范围的分类讨论去掉绝对值符号,转化为一次不等式,求得(f (x )+f (2x ))min 即可.【解答】(Ⅰ)证明:函数f (x )=|x ﹣a|,a <0, 则f (x )+f (﹣)=|x ﹣a|+|﹣﹣a| =|x ﹣a|+|+a|≥|(x ﹣a )+(+a )| =|x+|=|x|+≥2=2.(Ⅱ)解:f (x )+f (2x )=|x ﹣a|+|2x ﹣a|,a <0. 当x ≤a 时,f (x )=a ﹣x+a ﹣2x=2a ﹣3x ,则f (x )≥﹣a ; 当a <x <时,f (x )=x ﹣a+a ﹣2x=﹣x ,则﹣<f (x )<﹣a ;当x时,f(x)=x﹣a+2x﹣a=3x﹣2a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞),不等式f(x)+f(2x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<0,则a的取值范围是(﹣1,0).2017年4月27日。