湖南省冷水江市第一中学高中数学第二章等比数列同步练习(无答案)新人教A版必修5
- 格式:doc
- 大小:103.04 KB
- 文档页数:2
2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。
新人教A 版高中数学必修5:等比数列的概念与通项公式A 级 基础巩固一、选择题1.下列数列为等比数列的是( ) A .0,0,0,0,… B .22,42,62,82,…C .q -1,(q -1)2,(q -1)3,(q -1)4,… D .1a ,1a 2,1a 3,1a4,…解析:A 选项中,由于等比数列中的各项都不为0,所以该数列不是等比数列;B 选项中,4222≠6242,所以该数列不是等比数列;C 选项中,当q =1时,数列为0,0,0,…,不是等比数列;D 选项中的数列是首项为1a ,公比为1a的等比数列,故选D.答案:D2.(多选)已知等比数列{a n }中,满足a 1=1,公比q =-2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1-a n }是等比数列 C .数列{a n a n +1}是等比数列 D .数列{log 2|a n |}是递减数列解析:因为{a n }是等比数列,所以a n +1=-2a n ,2a n +a n +1=0,故A 项错.a n =a 1·q n -1=(-1)n -1·2n -1,a n +1=(-1)n ·2n ,于是a n +1-a n =(-1)n·2n-(-1)n -1·2n -1=3(-2)n -1,故{a n +1-a n }是等比数列,故B 项正确.a n a n +1=(-1)n -1·2n -1·(-1)n ·2n =(-2)2n -1,故C 项正确.log 2|a n |=log 22n -1=n -1,是递增数列,故D 项错.答案:BC3.已知等比数列{a n }的前三项依次为a -1,a +1,a +4, 则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫32n -1C .4×⎝ ⎛⎭⎪⎫23nD .4×⎝ ⎛⎭⎪⎫23n -1解析:由题意得(a +1)2=(a -1)(a +4),解得a =5, 故a 1=4,a 2=6,所以q =32,a n =4×⎝ ⎛⎭⎪⎫32n -1.答案:B4.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D.1解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1, 所以2a 1+a 22a 3+a 4=4a 116a 1=14.答案:A5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:因为log 3a n +1=log 3a n +1,所以a n +1=3a n , 又a n ≠0.所以数列{a n }是以3为公比的等比数列. 所以a 2+a 4+a 6=a 2(1+q 2+q 4)=9.所以a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3·(1+q 2+q 4)=35. 所以log 1335=-5.答案:A 二、填空题6.等比数列{a n }中,a 4=2,a 5=4,则数列{lg a n }的通项公式为____________.解析:因为a 5=a 4q ,所以q =2,所以a 1=a 4q 3=14,所以a n =14·2n -1=2n -3,所以lg a n =(n -3)lg 2.答案:lg a n =(n -3)lg 27.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________. 解析:因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),所以a 6=a 2q 4=1×22=4.答案:48.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值为________.解析:因为-1,a 1,a 2,-4成等差数列,设公差为d , 则a 2-a 1=d =13[(-4)-(-1)]=-1,因为-1,b 1,b 2,b 3,-4成等比数列, 所以b 22=(-1)×(-4)=4, 所以b 2=±2.若设公比为q ,则b 2=(-1)q 2, 所以b 2<0,所以b 2=-2, 所以a 2-a 1b 2=-1-2=12. 答案:12三、解答题9.在等比数列{a n }中. (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n . 解:(1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1qn -1=5×2n -1.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827.(1)求证:{a n }是等比数列,并求出其通项. (2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.(1)证明:因为2a n =3a n +1, 所以a n +1a n =23. 又因为数列{a n }的各项均为负数, 所以a 1≠0,所以数列{a n }是以23为公比的等比数列.所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1.所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1,又因为a 2·a 5=23a 1·1681a 1=827,所以a 21=94.又因为a 1<0,所以a 1=-32.所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *).(2)解:令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681,则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项.B 级 能力提升1.(多选)已知数列{a n }是公比为q (q ≠1)的等比数列,则以下一定是等比数列的是( )A .{2a n }B .{a 2n } C .{a n +1·a n }D .{a n +1+a n }解析:因为数列{a n }是公比为q (q ≠1)的等比数列,则a n +1a n=q , 对于A 项,2a n +12a n=2a n +1-a n ,因为a n +1-a n 不是常数,故A 项错误.对于B 项,a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,因为q 2为常数,故B 项正确.对于C 项,a n +2·a n +1a n +1·a n =a n +2a n +1·a n +1a n=q 2,因为q 2为常数,故C 项正确.对于D 项,若a n +1+a n =0,即q =-1时,该数列不是等比数列,故D 项错误. 答案:BC2.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)= 10a n +1,则公比q =________.解析:因为等比数列{a n }为递增数列,且a 1=-2<0, 所以0<q <1,又因为3(a n +a n +2)=10a n +1,两边同除a n , 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13.而0<q <1,所以q =13.答案:133.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最大值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n,αβ=1an.代入题设条件6(α+β)-2αβ=3, 得6a n +1a n -2a n=3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0, 所以a n ≠23,即a n -23≠0.所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列.(3)解:当a 1=76时,a 1-23=12,所以数列⎩⎨⎧⎭⎬⎫a n -23是以首项为12,公比为12的等比数列.所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n, 所以a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,…,即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n,n =1,2,3,….由函数y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。
学习资料等比数列的性质[A组学业达标]1.在等比数列{a n}中,若a4a5a6=27,则a1a9=()A.3B.6C.27 D.9解析:在等比数列{a n}中,由a4a5a6=27,得a错误!=27,得a5=3,所以a1a9=a错误!=9,故选D.答案:D2.在各项均为正数的等比数列{a n}中,若a n a n+1=22n+1,则a5=()A.4 B.8C.16 D.32解析:由题意可得,a4a5=29,a5a6=211,则a4a错误!a6=220,结合等比数列的性质得,a4,5=220,数列的各项均为正数,则a5=25=32。
答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于()A.16 B.32C.64 D.256解析:由已知,得a1a19=16.∵a1·a19=a8·a12=a错误!,∴a8·a12=a错误!=16.a n>0,∴a10=4,∴a8·a10·a12=a错误!=64。
答案:C4.已知{a n},{b n}都是等比数列,那么()A.{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列解析:{a n +b n }不一定是等比数列,如a n =1,b n =-1,因为a n +b n =0,所以{a n +b n }不是等比数列.设{a n },{b n }的公比分别为p ,q ,则a n +1b n +1a n b n=a n +1a n·错误!=pq ≠0,所以{a n ·b n }一定是等比数列.故选C. 答案:C5.在等比数列{a n }中,已知a 7·a 12=5,则a 8·a 9·a 10·a 11等于( ) A .10 B .25 C .50D .75解析:利用等比数列的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q ,可得a 8·a 11=a 9·a 10=a 7·a 12=5,∴a 8·a 9·a 10·a 11=25。
第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。
第二章 数列 综合练习题一、选择题1.等差数列{a n }中,a 6+a 9=16,a 4=1,则a 11=( ) A .64 B .30 C .31 D .152.设等比数列{a n }的前n 项和S n ,已知a 1=2,a 2=4,那么S 10等于( ) A .210+2 B .29-2 C .210-2 D .211-2 3.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ) A .14 B .21 C .28 D .35 4.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2D .125.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24D .426.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .11B .99C .120D .1217.设数列{a n }是等比数列,其前n 项和为S n ,且S 3=3a 3,则公比q 的值为( ) A .-12B .12C .1或-12D .-1或128.数列{a n }的通项公式是a n =2sin(n π2+π4),设其前n 项和为S n ,则S 12的值为( ) A .0 B . 2 C .- 2D .19.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n )D .323(1-2-n )10. 若数列}{n a 的前n 项的和32n n S =-,那么这个数列的通项公式为( ) A.13()2n n a -=B.113()2n n a -=⨯C.32n a n =-D.11,123,2n n n a n -=⎧=⎨⋅≥⎩二、填空题11.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于________.12.求和1+(1+3)+(1+3+32)+(1+3+32+32)+…+(1+3+…+3n -1)=________.13.已知数列{}n a 中,11a =-,11n n n n a a a a ++⋅=-,则数列通项n a =___________14.[2014·江西卷] 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.15.设f (x )=12x +2,利用课本中推导等差数列前n 项和的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.三.解答题16.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.17..[2014·安徽卷] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n .16 [解析] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1,从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1.所以,数列{b n }的前n 项和为32n (n +1)+2n-1.17.解: (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n ,所以a n =n 2, 从而可得b n =n ·3n.S n =1×31+2×32+…+(n -1)×3n -1+n ×3n ,①3S n =1×32+2×33+…+(n -1)3n +n ×3n +1.② ①-②得-2S n =31+32+…+3n -n ·3n +1=3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.。
等差数列及n 前项的和练习题1、在等差数列{}n a 中,若210,a a 是方程21280x x +-=的两个根,那么6a 的值为( )A 、-12B 、-6C 、12D 、62、若在,a b 两数()a b ≠之间插入三个数,使它们成等差数列,其公差为1d ;若在,a b 两数之间插入四个数,使它们也成等差数列,其公差为2d ,则21d d 的值为 ( ) A 、54 B 、45 C 、56 D 、65 3、已知等差数列{}n a 的通项为902n a n =-,则这个数列共有正数项 ( ) A 、44项 B 、45项C 、90项D 、无穷多项 4、已知等差数列}{n a 中,79416,1a a a +==,则12a 的值是( ) A 、15 B 、30 C 、31D 、64 5、若数列的通项公式是*()n a kn b n N =+∈,其中,k b 为实常数,则下列说法中正确的是( )A 、数列{}n a 一定不是等差数列B 、数列{}n a 是公差为k 的等差数列C 、数列{}n a 是公差为b 的等差数列D 、数列{}n a 不一定是等差数列6、若等差数列{}n a 中,1020100,110S S ==,则40S 的值为 ( )A 、130B 、30C 、-140D 、-1707、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a8、在等差数列{}n a 中,已知1254=+a a ,那么它的前8项之和8S 等于 ( )A. 12B. 24C. 36D. 489、设{}n a 是公差为2的等差数列,若5097741=++++a a a a , 则99963a a a a ++++ 的值为 ( )A. 78B. 82C. 148D. 18210、在等差数列{}n a 中,35,2,11===n n S d a ,则1a 等于 ( )A. 5或7B. 3或5C. 7或1-D. 3或1-11、等差数列{}n a 中,162,16,1041===n S a a ,则n 等于 ( )A. 11B. 9C. 9或18D. 1812、数列{}n a 是等差数列,它的前n 项和可以表示为 ( )A. C Bn An S n ++=2B. Bn An S n +=2C. C Bn An S n ++=2()0≠aD. Bn An S n +=2()0≠a13、等差数列{}n a 中,1011=a ,则=21S 。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
等差数列前n 项和公式1.等差数列的前n 项和的公式:=n S _________________________;或 =n S _________________________.2.等差数列的前n 项和的有关公式:(1)等差数列{}n a 中,232,,,.............m m m m m s s s s s --仍然为等差数列.(2)由=n S d n n na 2)1(1-+可知:在数列{}n a 的前n 项和=n S C Bn An ++2中, 若0=C ,则{}n a 为等差数列.(3)等差数列{}n a 中,n s n ⎧⎫⎨⎬⎩⎭仍然为等差数列. 【课堂检测】1.等差数列{}n a 的前n 项和为n S ,且164=a ,810=a ,则13S 等于( ) A.168 B.156 C.78 D.1522.设等差数列的通项公式n a n 420-=.则该数列的前多少项和最大 ( )A.前三项 B.前四项或前五项 C.前五项 D.前六项3.等差数列{}n a 中,405=S ,1952=+a a ,则=1a _____.4. 设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A 1 B 1- C 2 D 21 5.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4C .-2D .2 6.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .237.在数列{}n a 中,542n a n =-,212n a a a an bn ++⋅⋅⋅+=+,*n N ∈,其中a 、b 为常数,则ab =( )A . -1 B. 0 C. -2 D. 18. 记等差数列{}n a 的前n 项和为n S ,若24S =,420S =,则该数列的公差d =( )A .2B .3C .6D .79. 设数列{}n a 中,112,1n n a a a n +==++,则通项n a = __________。
等比数列测试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.在等比数列{a 」中,+a 2 =29a 3+a 4 =50,则公比g 的值为等比数列{%}中,a n > 0, a 3a 4 = 4,则 log 2 Oj 4- log 2 a 2 + • + log 2 a 6 值为5.等比数列{咳}中勺=9,侏=243,则{色}的前4项和为1.A. 25B. 5C. -5D. 土52.3.4. C. 7 =10,為+兔=则数列{a n }的通项公式为 ~=2心 C.讣2 已知等差数列{①}的公差为2,若%,成等比数列,则色=A. 5B. D. 8 A. a fl = 24~nB. D. 3, A. -4 B. -6C. -8D. -10A. 81B. 120C. 140D. 192 6.设等比数列{色}的前料项和为若 S 6:53=l:2,则 S 9:S 3 = C. 3:4 D. A. 1:2 B. 2:3 7.已知等比数列{ %}的首项为8, S “是其前〃项的和,某同学经计算得52=20, 后来该同学发现了其中一个数算错了,则该数为 A. $ B. S 2 C. S3 1:353=36, ( 54=65,)D. S4 8.已知/(Q 二加+ 1为兀的一次函数,b 为不等于1 的常量,且g (n )= <(心0),设 a n =^(n)-g(n-l)(«e N )则数列他}为A.等差数列B.等比数列C.递增数列 9.某人为了观看2008年奥运会,从2001年起,每年5月10 H 到银行存入。
元定期储蓄, 若年利率为"且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将D.递减数列所有的存款及利息全部取冋,则可取冋的钱的总数(元)为 ( )A ・a(\ + p)1 B. «(1 + /?)8c. —[(1+卩)7 -(1+P )] D . —r (1+p )8 -(1+p )~|P 」10.在如图的表格中,每格填上一个数字后,使每一横行成等 差数列,每一纵列成等比数列,则a + b + c 的值为( ) A. 1 B. 2 C. 3 D. 4 11.已知等比数列{aj,a 2>a 3=l,则使不等式 (山--) + (d ・ ---- ) + •• ・ + (a 〃 -—) n 0A. 4B. 5C. 6D. 712.在等比数列{陽}中,公比gHl,设前〃项和为S”,则x = S; + Sj, y = S2(54 + S6)的大小关系是()A. x> yB. x= yC. x< yD.不确定第II卷(共90分)二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上.13.等比数列仏”}的前斤项和S〃二a・2"+d — 2,则色二 ______ :14.已知数列前斤项和必=2"—1,则此数列的奇数项的前刃项的和是____________15.已知等比数列{%}及等差数列{$},其中/,.=(),公差〃工().将这两个数列的对应项相加,得一新数列1, 1, 2,…,则这个新数列的前10项之和为____________________ .16.如果b是a与C的等差中项,y是兀与Z的等比中项,月?,x,z都是正数,则0 一c) log w:兀 + (c 一a) log,” y + (a一b) log w z 二(m>0,m^L)三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知数歹ij {a…}, {b n}满足a】=2, a2 =4, h n = a n+i - a n, b n+{ = 2b n +2.(12 分)(1)求证:数列{久+2}是公比为2的等比数列;(2)求给.18.已知数列仏}的前n项和为S〃,S” =丄(色一1)(必M). (12分)(1)求(2)求证数列仏}是等比数列.+ 219.数列{禺}的前n项和记为S”己知G = l, a n+i= -----------S n5=1, 2, 3,…)•证明:(12分)nS(1)数列{」}是等比数列;(2)盼1=4如n20.已知数列{a“}满足:a x,且a” - a n_x =厶.(12分)2 2(1)求a2,a3f©;(2)求数列{%}的通项色.21.已知数列{a“}是等差数列,且% =2,%+偽+偽=12・(12分)(1)求数列{色}的通项公式;(2)令b n=a n x n(xe /?)・求数列{仇}前n项和的公式.22.甲、乙、丙3人互相传球,由甲开始传球,并作为第一次传球.(14分)(1)若经过5次传球后,球仍冋到甲手小,则不同的传球方式有多少种?(2)设第n次传球后,球回到甲手小不同的传球方式有如种,求%答案一、 选择题1. B2. D 3・ A 4. B 5. B 6. C 7. C 8. B 9. D 10. A ll.B 12.B二、 填空题三、解答题17. (1)由处=级+2得如出=如兰=2, A {b n + 2)是公比为2的等比数列.久+ 2 b n +2(2)由(1)可知 b“+2 = 4・2”T =2"+1 . :.b n =2n+1-2.则 a fl+l =2,,+1 - 2.令兀二1, 2,・••/?— 1,贝0 ci2 -a\ =22 -2,f73 -«2 =23 -2,«--a n -a n -\ =2n - 2 ,各式相加得=(2 + 22 +23 +... + 2")-2(w-l) = 2,,+l -2-2n + 2 = 2,t+i -2n .18. (l)|l :| S] = —(Q] — 1),得 — — (t?j ~ 1), d x — --- , 乂 S?=—(①一1), 3 3 2 3即务 +a 2 = —(a 2 _ 1),得 a?=—. I(2)当n»时,"—冷⑷-1)*”,得介T ,所%}是首项弓公比为冷的等比数列•19. (1) 由 ai= 1 ,a n+i= - S n (n= 1,2,3, …),a2=^^-Si=3a h ^- = —= 2, — = 1,= 2 .n 12 2 1、 T又 a n+i=S n+rS n (n= 1,2,3» …),则 S n+i-S n =-^i^ S…(n=l,2,3, •••), /.nS n+1=2(n+l)S n n21. (1)设数列[a n ]公差为 d ,则 a x +a 2 +a 3 = 3q + 3d = 12,又q = 2,d = 2.所以= In.(2)令 S” 二也 + 仇 + …+ 仇,则由仇=a n x n = 2nx n ,得 S” = 2x + 4x 2+--(2n-2)x n '] + 2nx n ,① = 2x 2 + 4x 3 4-+ (2n-2)x H + 2/u ,,+l ,② 当 兀幻 时, ①式 减去②13. 2灯1 ° 「(27). 15, 978. 16. 0. ^J- = 2(n=l,2,3,…).n 故数列{警}是首项为1,公比为2的等比数列•(2) 由(I)知,A±L = 4.A Z L (H >2),于是 S n+i=4(n+l) •乩=4^01^2).// +1 W-1 川 一 1又a 2=3S|=3,则S2=ai+a 2=4=4a h 因此对于任意正整数n>l 都有S n+i=4a n ._15 “、 _ 1 _ 1 _ 1 =©•(2)。
2.4 等比数列1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于___________,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.定义也可叙述为:在数列{}n a 中,若1(n na q q a +=为常数且0)q ≠,则{}n a 是等比数列. 2.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么___________叫做a 与b 的等比中项.3.等比数列的通项公式设等比数列{}n a 的首项为1a ,公比为q ,则这个等比数列的通项公式是1______(,0)n a a q =≠.4.等比数列与指数函数 (1)等比数列的图象等比数列{}n a 的通项公式11n n a a q -=还可以改写为1nn a a q q=⋅,当1q ≠且10a ≠时,x y q =是指数函数,1x a y q q =⋅是指数型函数,因此数列{}n a 的图象是函数1xa y q q=⋅的图象上一些孤立的点.例如,教材第50页【探究】(2),12n n a -=的图象如下图所示.(2)等比数列的单调性已知等比数列{}n a 的首项为1a ,公比为q ,则 ①当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 是___________数列;②当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 是___________数列;③当1q =时,{}n a 为常数列(0)n a ≠;④当0q <时,{}n a 为摆动数列,所有的奇数项(偶数项)同号,奇数项与偶数项异号. K 知识参考答案: 1.同一常数2.G3.11n a q- 4.递增 递减等比数列的判定与证明判断数列{}n a 是否为等比数列的方法: (1)定义法:判断1n na a +是否为常数; (2)等比中项法:判断11(,2)n nn n a a n n a a +-=∈≥*N 是否成立; (3)通项公式法:若数列{}n a 的通项公式形如(0)nn a tq tq =≠,则数列{}n a 是等比数列.(1)若{}n a 的通项公式为212n n a -=,试判断数列{}n a 是否为等比数列.(2)若,,,a b c d 成等比数列,,,a b b c c d +++均不为零,求证:,,a b b c c d +++成等比数列.【答案】(1){}n a 是等比数列,证明见解析;(2),,a b b c c d +++成等比数列,证明见等比数列的通项公式及应用(1)在等比数列{}n a中,若474,32,a a==则na=____________;(2)在等比数列{}n a中,已知253636,72,a a a a+=+=若1024na=,则n=____________.与q ,即可写出数列{}n a 的通项公式;(2)当已知等比数列{}n a 中的某项,求出公比q 后,可绕过求1a 而直接写出其通项公式,即(,)n mn m a a qm n -=∈*N .等比数列的性质的应用若数列{}n a 是公比为q 的等比数列,由等比数列的定义可得等比数列具有如下性质:(1)若m n p q +=+,则m n p q a a a a =;若2m n r +=,则2(,)m n r a a a m n,p,q,r =∈*N .推广:1211;n n i n i a a a a a a -+-===L L ①②若m n t p q r++=++,则m n t p q r a a a a a a =.(2)若,,m n p 成等差数列,则,,m n p a a a 成等比数列. (3)数列{}(0)n a ≠λλ仍是公比为q 的等比数列;数列1{}n a 是公比为1q的等比数列; 数列{}||n a 是公比为||q 的等比数列;若数列{}n b 是公比为q'的等比数列,则数列{}n n a b 是公比为qq'的等比数列. (4)23,,,,k k m k m k m a a a a +++L 成等比数列,公比为m q .(5)连续相邻k 项的和(或积)构成公比为(k q 或2)k q 的等比数列.已知等比数列{}n a 满足0,n a >(1)若1237894,9,a a a a a a ==则456a a a =_____________; (2)若25253(3)n n a a n -⋅=≥,则当1n ≥时,3133321log log log n a a a -+++=L _____________.【答案】(1)6;(2)2n .【解析】(1)方法1:因为31231322789798()4,()a a a a a a a a a a a a a ====389,a ==由递推公式构造等比数列求数列的通项公式(1)形如1(1,0)n n a pa q p pq +=+≠≠的递推关系式①利用待定系数法可化为1n a +-()11n q q p a p p =---,当101qa p-≠-时,数列{}1n qa p--是等比数列; ②由1n n a pa q +=+,1(2)n n a pa q n -=+≥,两式相减,得11()n n n n a a p a a +--=-,当210a a -≠时,数列1{}n n a a +-是公比为p 的等比数列.(2)形如+1(,0)nn n a ca d c d cd =+≠≠的递推关系式除利用待定系数法直接化归为等比数列外,也可以两边同时除以1n d +,进而化归为等比数列.(1)在数列{}n a 中,111,36,n n a a a +==+则数列{}n a 的通项公式为n a =_____________;(2)在数列{}n a 中,1111,63,n n n a a a ++==+则数列{}n a 的通项公式为n a =_____________.忽略等比数列中所有项不为零导致错误已知等比数列{}n a 的前三项分别为,22,33a a a ++,则a =_____________.【错解】因为22a +为a 与33a +的等比中项,所以2(22)(33)a a a +=+,解得1a =-或4-.【错因分析】若1a =-,则,22,33a a a ++这三项为1,0,0-,不符合等比数列的定义. 【正解】因为22a +为a 与33a +的等比中项,所以2(22)(33)a a a +=+,解得1a =-或4-.由于1a =-时,220,330a a +=+=,所以1a =-应舍去,故4a =-.【名师点睛】因为等比数列中各项均不为零,所以解题时一定要注意将所求结果代入题中验证,若所求结果使等比数列中的某些项为零,则一定要舍去.忽略等比数列中项的符号导致错误在等比数列{}n a 中,246825a a a a =,则19a a =_____________.【错解】因为{}n a 为等比数列,所以192846a a a a a a ==,由246825a a a a =可得219()25a a =,故195a a =±.【错因分析】错解中忽略了在等比数列中,奇数项或偶数项的符号相同这一隐含条件. 【正解】因为{}n a 为等比数列,所以192846a a a a a a ==,由246825a a a a =可得219()25a a =,故195a a =±.又在等比数列中,所有的奇数项的符号相同,所以190a a >,所以195a a =.【名师点睛】在等比数列中,奇数项或者偶数项的符号相同.因此,在求等比数列的某一项或者某些项时要注意这些项的正负问题,要充分挖掘题目中的隐含条件.1.已知1,,,,5a b c 五个数成等比数列,则b 的值为A .3BC.D .522.在等比数列{}n a 中,112a =,12q =,132n a =,则项数n 为 A .3 B .4 C .5D .63.已知等比数列{}n a 为递增数列,若10a >,且212()3n n n a a a ++-=,则数列{}n a 的公比q =A .2或12B .2C .12D .2-4.已知数列{}n b 是等比数列,9b 是1和3的等差中项,则216b b = A .16 B .8 C .2D .45.已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为A .2B .4C .8D .166.在等比数列{}n a 中,若48,a a 是方程2430x x -+=的两根,则6a 的值是 A.BC.D .3±7.已知三个数成等比数列,它们的积为27,它们的平方和为91,则这三个数的和为 A .13B .-7C .-7或13D .无法求解8.已知0a b c <<<,且,,a b c 是成等比数列的整数,n 为大于1的整数,则下列关于log a n ,log b n ,log c n 的说法正确的是A .成等差数列B .成等比数列C .各项的倒数成等差数列D .以上都不对9.已知数列{}n a 满足13n n a a +=,且2469a a a ++=,则15793log ()a a a ++=____________.10.在等比数列{}n a 中,21a =,公比1q ≠±.若135,4,7a a a 成等差数列,则6a 的值是_____________.11.在等比数列{}n a 中,572a a =,2103a a +=,则124a a =_____________. 12.已知单调递减的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项,则公比q =_____________,通项公式为n a =_____________.13.已知等比数列{}n a 中,2766a a +=,36128a a =,求等比数列{}n a 的通项公式n a .14.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中415a =.(1)求321,,a a a ;(2)求证:数列{1}n a +为等比数列.15.已知数列{}n a 与等比数列{}n b 满足3()n an b n =∈*N .(1)试判断{}n a 是何种数列; (2)若813a a m +=,求1220b b b L .16.已知{}n a 是等比数列,且263a a +=,61012a a +=,则812a a +=A .B .24C .D .4817.已知等差数列{}n a 和等比数列{}n b 的首项都是1,公差和公比都是2,则=++432b b b a a aA .24B .25C .26D .2718.若等比数列{}n a 的各项均为正数,且310119122e a a a a +=(e 为自然对数的底数),则12ln ln a a ++⋅⋅⋅+20ln a =A .50B .40C .30D .2019.各项均为正的等比数列{}n a 中,4a 与14a的等比中项为,则27211log log a a +的值为A .4B .3C .2D .120.已知等差数列{}n a 和等比数列{}n b 的首项都是1,公差和公比都是2,则234a a a b b b ++=A .24B .25C .26D .8421.在等比数列{}n a 中,27a =,公比1q ≠±.若135,4,7a a a 成等差数列,则21n a +=____________.22.已知数列{}n a 满足132(2)n n a a n -=+≥,且12a =,则n a =_____________. 23.已知1,,,4a b --成等差数列,1,,,,4m n t --成等比数列,则b an-=______________. 24.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列,11b =,且2264,b S =33960b S =. (1)求n a 与n b ; (2)求和:12111nS S S +++.25.已知数列{}n a 的前n 项和为n S ,在数列{}n b 中,11b a =,1(2)n n n b a a n -=-≥,且n n a S n +=.(1)设1n n c a =-,求证:{}n c 是等比数列; (2)求数列{}n b 的通项公式.26.(2018北京文)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为 ABC.fD.27.(2016四川理)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年D .2021年28.(2017北京理)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =______________. 29.(2017新课标全国Ⅲ理)设等比数列{}n a 满足a 1+a 2=–1,a 1–a 3=–3,则a 4=______________.30.(2018新课标全国Ⅰ文)已知数列{}n a 满足11a =,12(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.31.(2016新课标全国Ⅲ文)已知各项都为正数的数列{}n a 满足11a =,21(21)n n n a a a +---120n a +=.(1)求23,a a ;(2)求{}n a 的通项公式.1.【答案】B【解析】设等比数列的公比为q .由题意得,215b b =⨯⇒=,又2210b q q =⨯=>,所以b =B .2.【答案】C【解析】根据等比数列通项公式11n n a a q-=⋅有1111()3222n -=⋅,解得5n =,故选C .5.【答案】B【解析】由题意得246516a a a ==,所以54a =±,因为32a =,所以54a =,所以2532a q a ==,所以91141012115768114a a a q a q q a a a q a q--===--,故选B . 6.【答案】B【解析】由48,a a 是方程2430x x -+=的两根有484840,3a a a a +=>=,故48,a a 都为正数,而26483a a a ==,所以6a =,由于2640a a q =>,所以6a =,故选B . 7.【答案】C【解析】由题意,可设这三个数分别为aq,a ,aq ,则22222222739999191aa aq a q q a a a q q q ⎧⋅⋅==⎧⎪⎪⎪⇒⎨⎨++=⎪⎪++=⎩⎪⎩239a q =⎧⇒⎨=⎩或2319a q =⎧⎪⎨=⎪⎩,所以3q =±或13q =±,故这三个数为1,3,9或-1,3,-9或9,3,1或-9,3,-1.故这三个数的和为13或-7.故选C .9.【答案】−5【解析】因为13n n a a +=,所以数列{}n a 是以3为公比的等比数列,335579246()393a a a q a a a ∴++=++=⨯=,∴15793log ()5a a a ++=-.10.【答案】149【解析】由题意得342231511878778107=+⇒=+⇒-+=⇒=a a a q q q q q q 或21=q (舍去),从而461.49a q == 11.【答案】2或21【解析】由等比数列性质知57210=2a a a a =,又2103a a +=,所以21a =,102a =或22a =,101a =,所以1012422a a a a ==或21. 12.【答案】12 61()2n - 【解析】由题意得,3243332(2)2(2)288a a a a a a +=+⇒++=⇒=,所以2481208202a a q q q +=⇒+=⇒=或2(舍去),所以通项公式为3631()2n n n a a q --==.13.【答案】12n n a -=或82nn a -=.【解析】设等比数列的首项为1a ,公比为q , 由题意得272727362766,66,2,64128128a a a a a a a a a a +=+==⎧⎧⎧⇒⇒⎨⎨⎨===⎩⎩⎩或2764,2.a a =⎧⎨=⎩所以55722a q a ==或512,即2q =或12, 所以2122n n n a a q--==或22812n n n a a q --==.故等比数列{}n a 的通项公式为12n n a -=或82nn a -=.14.【答案】(1)11a =,23a =,37a =;(2)见解析.【解析】(1)由121n n a a -=+及415a =知432115,a a =+= 解得,73=a 同理可得.1,312==a a(2)由121+=-n n a a 可得2211+=+-n n a a ,)1(211+=+-n n a a ,{1}n a +是以211=+a 为首项,2为公比的等比数列.(2)因为120813a a a a m +=+=,所以1220a a a +++=L ()120202a a +=10m ,所以2012201210122033333a a a a a am b b b +++===L L L .16.【答案】B【解析】由题意知4446102626261243a a a q a q q a a a a ++====++,则22q =, 所以222812610610()21224a a a q a q q a a +=+=+=⨯=,故选B . 17.【答案】B【解析】等比数列}{n b 首项是1,公比是2,所以2342,4,8b b b ===,等差数列{}n a 的首项是1,公差是2,所以2342481311311225b b b a a a a a a a d ++=++=+=+⨯=,故选B . 18.【答案】C【解析】在等比数列中,q p n m a a a a q p n m =⇒+=+,所以3310119121011101122e e a a a a a a a a +==⇒=,由对数的运算可知1220ln ln ln a a a ++⋅⋅⋅+12201202191011ln()ln[()()()]a a a a a a a a a =⋅⋅⋅=1031011ln()10ln e 30a a ===,故选C .19.【答案】B【解析】由4a 与14a的等比中项为4148a a =,所以27211271124142log log log log log 83a a a a a a +====,故选B . 20.【答案】D【解析】等差数列{}n a 首项是1,公差是2,所以2343,5,7a a a ===,等比数列{}n b 首项是1,公比是2,所以23424635722284a a a b b b b b b ++=++=++=,故选D . 21.【解析】由题意得342231511878778107=+⇒=+⇒-+=⇒=a a a q q q q q q 或21=q (舍去),从而2211117777nn n n a q +-=⨯=⨯=. 22.【答案】31n -【解析】1132(2),2n n a a n a -=+≥=,1113(1),13n n a a a -∴+=++=,即数列{1}n a +是以3为首项、3为公比的等比数列,则nn a 31=+,即13-=nn a . 23.【答案】12【解析】因为1,,,4a b --成等差数列,设公差为d ,所以4(1)141b a d ----===--,因为1,,,,4m n t --成等比数列,所以2(1)(4)4n =-⨯-=, 即2n =±,由于n 与1,4--同号,所以0n <,所以2n =-,所以1122b a n --==-. 24.【答案】(1)21n a n =+,18n n b -=;(2)32342(1)(2)n n n +-++. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则0d>,3(1)n a n d =+-,1n n b q -=,依题意有23322(93)960,(6)64,S b d q S b d q ⎧=+=⎨=+=⎩解得2,8d q =⎧⎨=⎩或6,5403d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去),故32(1)21n a n n =+-=+,18n n b -=.(2)35(21)(2)n S n n n =++++=+,所以121111111132435(2)n S S S n n +++=++++⨯⨯⨯+11111111(1)2324352n n =-+-+-++-+ 1111(1)2212n n =+--++ 323.42(1)(2)n n n +=-++ 25.【答案】(1)见解析;(2)1()2nn b =.【解析】(1)因为n n a S n += ①,所以111n n a S n +++=+ ②,②−①得111n n n a a a ++-+=,所以121n n a a +=+, 所以12(1)1n n a a +-=-,所以11112n n a a +-=-,所以{1}n a -是等比数列.因为首项111c a =-,111a a +=,所以112a =,所以112c =-, 所以{}n c 是以12-为首项,12为公比的等比数列. (2)由(1)可知1111()()()222n n n c -=-⋅=-,所以111()2n n n a c =+=-.故当2n ≥时,111111111()[1()]()()()22222n n n n nn n n b a a ---=-=---=-=.又1112b a ==代入上式也符合,所以1()2n nb =.26.【答案】D【解析】因为每一个单音与前一个单音频率比为,所以*1(2,)n n a n n -=≥∈N , 又1a f =,则7781a a q f ===,故选D .【名师点睛】本题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种: (1)定义法,若1*(0,)n n a q q n a +=≠∈N 或1*(0,2,)n n aq q n a n -≠≥∈=N , 数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且*2123,()n n n a a a n n --≥∈=⋅N ,则数列{}n a 是等比数列.28.【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 29.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.30.【答案】(1)11b =,22b =,34b =;(2)数列{}n b 是等比数列,理由见解析;(3)1·2n n a n -=.【解析】(1)由条件可得12(1)n n n a a n++=, 将1n =代入得214a a =,而11a =,所以24a =. 将2n =代入得323a a =,所以312a =. 从而11b =,22b =,34b =.31.【答案】(1)41,2132==a a ;(2)121-=n n a . 【解析】(1)由题意得41,2132==a a . (2)由02)12(112=---++n n n n a a a a ,得)1()1(21+=++n n n n a a a a . 因为{}n a 的各项都为正数,所以211=+n n a a , 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a .。
等比数列综合练习题
1.已知{a n }是等比数列,a 2=2,a 5=14
,则公比q =( ) A .-12 B .-2 C .2 D.12
2.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,…. 此数列是( )
A .公比为q 的等比数列
B .公比为q 2的等比数列
C .公比为q 3的等比数列
D .不一定是等比数列
3.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于(
) A .2 B .4 C .8 D .16
4.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =( )
A .(-2)n -1
B .-(-2)n -1
C .(-2)n
D .-(-2)n
5.已知等比数列的前n 项和S n =4n
+a ,则a 的值等于( )
A .-4
B .-1
C .0
D .1
6.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4
a 2
等于( )
A .2
B .4
C.152
D.172
7.数列112,314,518,7116,…的前n 项和S n 为( )
A .n 2+1-1
2n B .n 2+1-1
2n -1
C .n 2+2-1
2n D .n 2+2-1
2n -1
8.在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是 ( )
A .14
B .16
C .18
D .20
9.已知等比数列}{n a 的公比为正数,且3a ·9a =22
5a ,2a =1,则1a = ( )
B. D.2 10.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =
A.3
B.4
C.5
D.6
二.填空题
11.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a = .12. 已知1,a 1,a 2, 4成等差数列,1,b 1,b 2,b 3, 4成等比数列,则a 1+a 2b 2
的值为________. 13.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,
则a 6+a 7=________.
14.已知数列{a n }对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2
n =________
三.解答题 15.等比数列{n a }的前n 项和为n S 、公比为q ,若3S 是1S ,2S 的等差中项, 1a -3a =3,求q 与和5S 。
16.已知数列{a n }和{b n }中,数列{a n }的前n 项和为S n .若点(n ,S n )在函数y =-x 2
+4x 的 图象上,点(n ,b n )在函数y =2x 的图象上.
(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n .。