基本初等函数的导数公式及导数的四则运算法则一2013222
- 格式:ppt
- 大小:711.50 KB
- 文档页数:10
基本初等函数导数公式基本初等函数导数公式还有同学记得吗?不记得的话,快来小编这里瞧瞧。
下面是由小编为大家整理的“基本初等函数导数公式”,仅供参考,欢迎大家阅读。
基本初等函数导数公式C'=0、(x^n)'=nx^(n-1)、(a^x)'=a^x*lna、(e^x)'=e^x、(loga(x))'=1/(xlna)、(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。
初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。
基本初等函数和初等函数在其定义区间内均为连续函数。
不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。
拓展阅读:高一数学必修一知识点总结高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}高一数学集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
基本初等函数的导数公式及导数的运算法则导数是微积分中的一个重要概念,用来描述函数在其中一点上的变化率。
基本初等函数是指由常数、幂函数、指数函数、对数函数、三角函数和反三角函数等经过有限次的加、减、乘、除和复合运算所得到的函数。
在这里,我们将介绍基本初等函数的导数公式及导数的运算法则。
一、基本初等函数的导数公式1.常数函数的导数:常数函数f(x)=C的导数为f’(x)=0,其中C为常数。
2.幂函数的导数:幂函数f(x)=x^n的导数为f’(x)=n*x^(n-1),其中n为常数。
3.指数函数的导数:指数函数 f(x) = a^x 的导数为f’(x) = a^x * ln(a),其中 a 为常数且 a > 0。
4.对数函数的导数:对数函数 f(x) = log_a(x) 的导数为f’(x) = 1 / (x * ln(a)),其中 a 为常数且 a > 0。
5.三角函数的导数:正弦函数 f(x) = sin(x) 的导数为f’(x) = cos(x)。
余弦函数 f(x) = cos(x) 的导数为f’(x) = -sin(x)。
正切函数 f(x) = tan(x) 的导数为f’(x) = sec^2(x)。
余切函数 f(x) = cot(x) 的导数为f’(x) = -csc^2(x)。
其中 sin(x)、cos(x)、tan(x) 和 cot(x) 都是周期函数。
6.反三角函数的导数:反正弦函数 f(x) = arcsin(x) 的导数为f’(x) = 1 / √(1-x^2)。
反余弦函数 f(x) = arccos(x) 的导数为f’(x) = -1 / √(1-x^2)。
反正切函数 f(x) = arctan(x) 的导数为f’(x) = 1 / (1+x^2)。
反余切函数 f(x) = arccot(x) 的导数为f’(x) = -1 / (1+x^2)。
1.常数倍法则:如果f(x)是可导函数,c是常数,则(c*f(x))'=c*f'(x)。
基本初等函数的导数公式和导数的四则运算法则及应用1.常见基本初等函数的导数公式和导数的四则运算'0C =(C 为常数);1()',*;n n x nx n Q -=∈ (sin )'cos ;x x = (cos )'sin ;x x =- ()';x x e e = ()'ln (0,1);x x a a a a a =>≠ 1(ln )';x x= 1(log )'(0,1)ln a x a a x a=>≠. 法则1:[()()]''()'();u x v x u x v x ±=±法则2:[()()]'()()()'();u x v x u x v x u x v x =+法则3:2()'()()()'()'(()0)()()u x u x v x u x v x v x v x v x ⎡⎤-=≠⎢⎥⎣⎦. 2.导数的几何意义:是曲线)(x f y =上点()(,00x f x )处的切线的斜率. 因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 ))(()(00/0x x x f x f y -=-.3.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导.4.可导与连续的关系:如果函数y =f (x )在点x 0处可导,那么函数y =f (x )在点x 0处连续,反之不成立.函数具有连续性是函数具有可导性的必要条件,而不是充分条件.单调性及其应用1.利用导数研究多项式函数单调性的一般步骤.(1)求f '(x )(2)确定f '(x )在(a ,b )内符号.(3)若f '(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是增函数; 若f '(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是减函数.2.用导数求多项式函数单调区间的一般步骤.(1)求f '(x ).(2)f '(x )>0的解集与定义域的交集的对应区间为增区间;f '(x )<0的解集与定义域的交集的对应区间为减区间.函数的极值、最值及应用3.极大值与极小值统称为极值(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4.判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值5.求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x )(2)求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值6.函数的最大值和最小值:在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. ⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个7.利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.。