1.2.2基本初等函数的导数公式及导数的运算法则教案
- 格式:doc
- 大小:273.00 KB
- 文档页数:4
1.2.2 基本初等函数的导数公式及导数的运算法则课标要求1.能利用导数的四则运算法则求解导函数.2.能运用复合函数的求导法则进行复合函数的求导.核心扫描1.对导数四则运算法则的考查.(重点)2.复合函数的考查常在解答题中出现.(重点)课前探究学习自学导引1.导数运算法则的定义域、值域满足什么关系?提示在复合函数中,内层函数u=g(x)的值域必须是外层函数y=f(u)的定义域的子集.名师点睛1.运用导数运算法则的注意事项(1)对于教材中给出的导数的运算法则,不要求根据导数定义进行推导,只要能熟练运用运算法则求简单函数的导数即可.(2)①对于和差的导数运算法则,可推广到任意有限可导函数的和或差, 即[f 1(x )±f 2(x )±…±f n (x )]′=f 1′(x )±f 2′(x )±…±f ′n (x ).②[ af (x )±bg (x )]′=af ′(x )±bg ′(x ); ③当f (x )=1时,有⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).(3)对于积与商的导数运算法则,首先要注意在两个函数积与商的导数运算中,不能出现[f (x )·g (x )]′=f ′(x )·g ′(x )以及⎣⎡⎦⎤f (x )g (x )′=f ′(x )g ′(x )这样想当然的错误;其次还要特别注意两个函数积与商的求导公式中符号的异同,积的导数法则中是“+”,商的导数法则中分子上是“-”. 2.复合函数求导对于复合函数的求导法则,需注意以下几点:(1)分清复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量换成自变量的函数.如求y =sin ⎝⎛⎭⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos u =2cos ⎝⎛⎭⎫2x +π3. (4)复合函数的求导运用熟练后,中间步骤可省略不写. 课堂讲练互动题型一 利用导数的运算法则求函数的导数例1:求下列函数的导数:(1)y =x ·tan x ; (2)y =(x +1)(x +2)(x +3); (3)y =x +3x 2+3;(4)y =x sin x -2cos x; (5)y =x 5+x 7+x 9x ;(6)y =x -sin x 2cos x2.规律方法:解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,一般综合了和、差、积、商几种运算,在求导之前一般应先将函数化简,然后求导,以减少运算量. 变式1:求下列函数的导数:(1)y =5-4x 3; (2)y =3x 2+x cos x ; (3)y =e x ·ln x ; (4)y =lg x -1x2.题型二 求复合函数的导数例2:求下列函数的导数:(1)y =11-2x 2; (2)y =e 2x +1; (3)y =(x -2)2; (4)y =5log 2(2x +1).规律方法:应用复合函数的求导法则求导,应注意以下几个方面: (1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导. (3)一般是从最外层开始,由外及里,一层层地求导. (4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤. 变式2:求下列函数的导数:(1)y =ln(x +2); (2)y =sin 4x 4+cos 4x4;(3)y =1+x 1-x +1-x1+x.题型三 求导法则的应用例3:求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程.题后反思:点(1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解.变式3:若将本例改为求曲线y =x 3-2x 在点A (1,-1)处的切线方程,结果会怎样?方法技巧 数形结合思想在导数中的应用数形结合的原则:(1)等价性原则:在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.(2)双向性原则:在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析或仅对几何问题进行代数分析,在许多时候是很难完成的.(3)简单性原则:找到解题思路之后,至于用几何方法还是采用代数方法,则取决于哪种方法更为简单有效,“数”与“形”的结合往往能起到事半功倍的效果.示例:讨论关于x 的方程ln x =kx 解的个数.方法点评:函数y =f (x )在点x 0处的导数的几何意义 ,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.导数的这一几何意义为导数与解析几何的沟通搭建了一个平台.因此从某 种意义上说,导数也就是数形结合的桥梁.参考答案题型一 利用导数的运算法则求函数的导数例1:解:(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +x cos 2x.(2)法一 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+x 2+3x +2 =3x 2+12x +11.(3)y ′=(x +3)′(x 2+3)-(x +3)(x 2+3)′(x 2+3)2=-x 2-6x +3(x 2+3)2.(4)y ′=(x sin x )′-⎝⎛⎭⎫2cos x ′=sin x +x cos x -2sin xcos 2x . (5)∵y =x 5+x 7+x 9x =x 2+x 3+x 4,∴y ′=(x 2+x 3+x 4)′=2x +3x 2+4x 3. (6)先使用三角公式进行化简,得 y =x -sin x 2cos x 2=x -12sin x ,∴y ′=⎝⎛⎭⎫x -12sin x ′=x ′-12(sin x )′=1-12cos x . 变式1:解:(1)y ′=-12x 2;(2)y ′=(3x 2+x cos x )′=6x +cos x -x sin x ; (3)y ′=e x x +e x·ln x ;(4)y ′=1x ln 10+2x3. 题型二 求复合函数的导数例2:解:(1)设y =u -12,u =1-2x 2,则y ′=⎝⎛⎭⎫u -12′(1-2x 2)′=⎝⎛⎭⎫-12u -32·(-4x ) =-12(1-2x 2)-32(-4x )=2x (1-2x 2)-32.(2)y =e u ,u =2x +1,∴y ′x =y ′u ·u ′x =(e u )′·(2x +1)′=2e u =2e 2x +1. (3)法一 ∵y =(x -2)2=x -4x +4, ∴y ′=x ′-(4x )′+4′ =1-4×12x -12=1-2x.法二 令u =x -2,则y ′x =y ′u ·u ′x =2(x -2)·(x -2)′ =2(x -2)⎝⎛⎭⎫12·1x -0=1-2x . (4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2. 变式2:解:(1)y =ln u ,u =x +2∴y ′x =y ′u ·u ′x =(ln u )′·(x +2)′=1u ·1=1x +2.(2)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(3)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2,∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.题型三 求导法则的应用例3:解:设P (x 0,y 0)为切点,则切线斜率为k =0x x y ='=3x 20-2,故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ② 又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0). 解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1).即x -y -2=0或5x +4y -1=0.变式3:解:∵点A (1,-1)在曲线上,点A 是切点,∴在A 处的切线方程为x -y -2=0.方法技巧 数形结合思想在导数中的应用示例:解:如图,方程ln x =kx 的解的个数就是直线y =kx 与曲线y =ln x 交点的个数. 设直线y =kx 与y =ln x 切于P (x 0,ln x 0) ,则kx 0=ln x 0. ∵(ln x )′=1x,∴k =1x 0,kx 0=1=ln x 0.∴x 0=e ,k =1e.结合图象知:当k ≤0或k =1e 时,方程ln x =kx 有一解.当0<k <1e 时,方程ln x =kx 有两解.当k >1e 时,方程ln x =kx 无解.。
人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思一、教学目标通过本节课的学习,让学生: 1. 熟练掌握基本初等函数的导数公式; 2. 掌握导数的常数因子、和差、积、商的运算法则; 3. 能够应用所学知识求出初等函数的导数; 4. 培养学生的逻辑思维能力和应用能力。
二、教学内容2.1 基本初等函数的导数公式(1)常数函数的导数公式:[C]′=0(2)幂函数的导数公式:[x n]′=nx n−1(3)指数函数的导数公式:[e x]′=e x(4)对数函数的导数公式:$[\\ln{x}]'=\\dfrac{1}{x}(x>0)$ (5)三角函数的导数公式:$$\\begin{aligned} [\\sin{x}]'&=\\cos{x}\\\\[\\cos{x}]'&=-\\sin{x}\\\\ [\\tan{x}]'&=\\sec^2{x} (x\ eq n\\pi+\\frac{\\pi}{2})\\\\ [\\cot{x}]'&=-\\csc^2{x} (x\ eq n\\pi) \\end{aligned}$$2.2 导数的运算法则(1)常数因子法则:设C为常数,则[Cf(x)]′=Cf′(x)(2)和差法则:$[f(x)\\pm g(x)]'=f'(x)\\pm g'(x)$ (3)积法则:[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)(4)商法则:$[\\dfrac{f(x)}{g(x)}]'=\\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)\ eq0)$三、教学过程3.1 导入教师通过数字游戏,引导学生探讨“导数”的概念,并由此引出本节课的教学内容。
3.2 讲授教师对基本初等函数的导数公式以及导数的运算法则进行一一讲解,强调注意事项和易错点。
基本初等函数的导数公式及导数的运算法则(2)【教学目标】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.了解复合函数的概念,掌握复合函数的求导法则.4.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax +b)的导数).【教法指导】本节学习重点:函数的和、差、积、商的求导法则.本节学习难点:复合函数的求导法则.【教学过程】☆复习引入☆前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.对于由四则运算符号连接的两个或两个以上基本初等函数的导数如何求?正是本节要研究的问题.解析:请同学思考并回顾以前所学知识并积极回答之.☆探索新知☆探究点一导数的运算法则思考1 我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.思考2 应用导数的运算法则求导数有哪些注意点?“+”,而商的导数公式中分子上是“-”;(5)要注意区分参数与变量,例如[a·g(x)]′=a·g′(x),运用公式时要注意a′=0.例1 求下列函数的导数:(1)y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lg x.解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x-lg x 是函数f (x )=3x与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10, 利用函数差的求导法则可得(3x-lg x )′=f ′(x )-g ′(x )=3xln 3-1x ln 10. 反思与感悟 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪训练1 求下列函数的导数:(1)y =x 5+x 7+x 9x;(2)f (x )=2-2sin 2x2.例2 求下列函数的导数: (1)f (x )=x ·tan x ; (2)f (x )=x -1x +1. 解 (1)f ′(x )=(x ·tan x )′=(x sin xcos x)′ =x sin x ′cos x -x sin x cos x ′cos 2x=sin x +x cos x cos x +x sin 2x cos 2x =sin x cos x +xcos 2x. (2)∵f (x )=x -1x +1=x +1-2x +1=1-2x +1, ∴f ′(x )=(1-2x +1)′=(-2x +1)′=-2′x +1-2x +1′x +12=2x +12.跟踪训练2 求f (x )=sin x1+sin x 的导数.解 ∵f (x )=sin x1+sin x,∴f ′(x )=cos x 1+sin x -sin x ·cos x 1+sin x 2=cos x1+sin x 2.探究点二 导数的应用例2 (1)曲线y =x e x+2x +1在点(0,1)处的切线方程为________________. 答案 3x -y +1=0解析 y ′=e x +x e x +2,则曲线在点(0,1)处的切线的斜率为k =e 0+0+2=3,所以所求切线方程为y -1=3x ,即3x -y +1=0.(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________. 答案 (-2,15)(3)已知某运动着的物体的运动方程为s (t )=t -1t2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t2+2·1t3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327m/s.反思与感悟 本题应用导数的运算法则进一步强化导数的物理意义及几何意义:函数y =f (x )在点x 0处的导数就是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率,即k =y ′|x =x 0=f ′(x 0);瞬时速度是位移函数s (t )对时间t 的导数,即v =s ′|t =t 0.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B.12C .-22D.22答案 B解析 y ′=cos x sin x +cos x -sin x cos x -sin x sin x +cos x 2=1sin x +cos x 2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12. (2)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c 的值.解 由题意得,f ′(x )=x 2-ax +b , ∴f ′(0)=b =0.由切点P (0,f (0))既在曲线f (x )=13x 3-a 2x 2+bx +c 上又在切线y =1上知⎩⎪⎨⎪⎧f 0=c ,y |x =0=1,即c =1.综上所述,b =0,c =1. 探究点三 复合函数的定义思考1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 答 y =2x cos x 是由u =2x 及v =cos x 相乘得到的;而y =ln(x +2)是由u =x +2与y =ln u (x >-2)经过“复合”得到的,即y 可以通过中间变量u 表示为自变量x 的函数.所以它们称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系?思考3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 答 A ⊆B .小结 要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法.例3 指出下列函数是怎样复合而成的: (1)y =(3+5x )2;(2)y =log 3(x 2-2x +5); (3)y =cos 3x .解 (1)y =(3+5x )2是由函数y =u 2,u =3+5x 复合而成的;(2)y =log 3(x 2-2x +5)是由函数y =log 3u ,u =x 2-2x +5复合而成的;(3)y =cos 3x 是由函数y =cos u ,u =3x 复合而成的.小结 分析函数的复合过程主要是设出中间变量u ,分别找出y 和u 的函数关系,u 和x 的函数关系. 跟踪训练3 指出下列函数由哪些函数复合而成: (1)y =ln x ;(2)y =esin x;(3)y =c os (3x +1).解 (1)y =ln u ,u =x ; (2)y =e u,u =sin x ; (3)y =cos u ,u =3x +1. 探究点四 复合函数的导数 思考 如何求复合函数的导数?例4 求下列函数的导数: (1)y =(2x -1)4;(2)y =11-2x; (3)y =sin(-2x +π3);(4)y =102x +3.解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3. (2)y =11-2x=(1-2x )-12可看作y =u -12,u =1-2x 的复合函数,则y x ′=y u ′·u x ′=(-12)u -32·(-2)=(1-2x )-32=11-2x1-2x;(3)原函数可看作y =sin u ,u =-2x +π3的复合函数,则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3)=-2cos(2x -π3).(4)原函数可看作y =10u,u =2x +3的复合函数, 则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.反思与感悟 分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数.复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.跟踪训练4 求下列函数的导数. (1)y =(2x +3)3;(2)y =e-0.05x +1;(3)y =sin(πx +φ).解 (1)函数y =(2x +3)2可以看成函数y =u 2,u =2x +3的复合函数. ∴y x ′=y u ′·u x ′=(u 2)′·(2x +3)′=2u ·2=4(2x +3)=8x +12. (2)函数y =e-0.05x +1可以看成函数y =e u和函数u =-0.05x +1的复合函数.∴y x ′=y u ′·u x ′=(e u)′·(-0.05x +1)′=-0.05e u=-0.05 e -0.05x +1.(3)函数y =sin(πx +φ)可以看成函数y =sin u ,u =πx +φ的复合函数. ∴y x ′=y u ′·u x ′=(sin u )′·(πx +φ)′=cos u ·π=π cos(πx +φ). 探究点五 导数的应用 例5 求曲线y =e2x +1在点(-12,1)处的切线方程.反思与感悟 求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法. 跟踪训练5 曲线y =esin x在(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程.解 设u =sin x ,则y ′=(e sin x)′=(e u )′(sin x )′.=cos x esin x.y ′|x =0=1.则切线方程为y -1=x -0, 即x -y +1=0.若直线l 与切线平行可设直线l 的方程为x -y +c =0. 两平行线间的距离d =|c -1|2=2⇒c =3或c =-1.故直线l 的方程为x -y +3=0或x -y -1=0. ☆课堂提高☆1.函数y =cos x1-x 的导数是( ).A.-sin x +x sin x1-x 2B.x sin x -sin x -cos x1-x2C.cos x -sin x +x sin x1-x2D.cos x -sin x +x sin x1-x【答案】 C【解析】 y ′=⎝⎛⎭⎪⎫cos x 1-x ′=-sin x1-x -cos x ·-11-x 2=cos x -sin x +x sin x1-x2. 2.已知直线y =x +b 是曲线y =f (x )=ln x 的切线,则b 的值等于( ) A .-1 B .0 C .1 D .e 【答案】 A3.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1 C.nn -1D.n +1n【答案】 A【解析】 ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , 即f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1, 故选A.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0【答案】 B【解析】 本题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2 要善于观察,故选B.5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值. 【解析】 因为y =ax 2+bx +c 过点(1,1),所以a +b +c =1. 因为y ′=2ax +b ,所以曲线在点(2,-1)处的切线的斜率为4a +b =1. 又曲线过点(2,-1),所以4a +2b +c =-1.由⎩⎪⎨⎪⎧a +b +c =1,4a +b =1,4a +2b +c =-1,解得⎩⎪⎨⎪⎧a =3,b =-11,c =9.所以a 、b 、c 的值分别为3、-11、9.6.曲线y =e 2x·cos 3x 在(0,1)处的切线与直线l 的距离为5,求直线l 的方程.根据题意,得5=|b -1|5,∴b =6或-4.∴适合题意的直线方程为y =2x +6或y =2x -4.。
高中数学人教A版选修2-2第一章《1.2.2基本初等函数的导数公式及导数的运算法则》省级名师优质课教案比赛获奖
教案示范课教案公开课教案
【省级名师教案】
1教学目标
(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.
(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.
(3)情感、态度与价值观目标:
①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.
②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观. 2学情分析
1. 有利因素:学生已经学过导数的概念及几何意义,本节课是复习课,学生对函数极限掌握较好;另外,学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.
2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.
3重点难点
重点:导数的定义和用定义求导数的方法,求曲线的切线方程.
难点:对导数概念的理解、求过点的切线方程.
【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具体到抽象利用类比归纳的思想学习导数概念.
4教学过程。
基本初等函数的导数公式及导数的运算法则一、学习目标 掌握用函数的导数定义,推出函数的和,差,积,商的导数的方法.二、重点难点本节的重点是:熟练掌握和、差、积、商的导数运算法则,即 (u ±v )′=u ′±v ′ (uv )′=uv ′+u ′v (vu )′=2v v u v u '-'. 本节的难点是:积的导数和商的导数的正确求法. 三、典型例题例1求下列导数(1)y =xx --+1111; (2)y =x · sin x · ln x ;(3)y =x x 4; (4)y =x x ln 1ln 1+-. 【点评】如遇求多个积的导数,可以逐层分组进行;求导数前的变形,目的在于简化运算;求导数后应对结果进行整理化简.例2求函数的导数① y =(2 x 2-5 x +1)e x② y =xx x x x x sin cos cos sin +- 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3已知曲线C :y =3 x 4-2 x 3-9 x 2+4(1)求曲线C 上横坐标为1的点的切线方程;(2)第(1)小题中切线与曲线C 是否还有其他公共点?【解】(1)把x =1代入C 的方程,求得y =-4.∴ 切点为(1,-4).y ′=12 x 3-6 x 2-18 x ,∴ 切线斜率为k =12-6-18=-12.∴ 切线方程为y +4=-12(x -1),即y =-12 x +8.由⎩⎨⎧+-=+--=8124923234x y x x x y 得 3 x 4-2 x 3 -9 x 2+12 x -4=0(x -1) 2 (x +2) (3 x -2)=0x =1,-2,32. 代入y =3 x 4-2 x 3 -9 x 2 +4,求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(32,0). 除切点外,还有两个交点(-2,32)、(32,0). 【点评】直线和圆,直线和椭圆相切,可以用只有一个公共点来判定.一般曲线却要用割线的极限位置来定义切线.因此,曲线的切线可以和曲线有非切点的公共点.例4曲线S :y =x 3-6 x 2-x +6哪一点切线的斜率最小?设此点为P (x 0,y 0).证明:曲线S 关于P 中心对称.【解】y ′=3 x 2-12 x -1当x =3212 =2时,y ′有最小值,故x 0=2, 由P ∈S 知:y 0=23-6 · 22-2+6=-12即在P (2,-12)处切线斜率最小.设Q (x ,y )∈S ,即y =x 3-6 x 2-x +6则与Q 关与P 对称的点为R (4-x ,-24-y ),只需证R 的坐标满足S 的方程即可. (4-x )3-6(4-x )2-(4-x )+6=64-48 x +12 x 2 -x 3-6(16-8 x +x 2)+x +2=-x 3 +6 x 2 +x -30=-x 3 +6 x 2 +x -6-24=-y -24故R ∈S ,由Q 点的任意性,S 关于点P 中心对称.。
§1.2.2基本初等函数的导数公式及导数的运算法则
教学目标:
1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
四种常见函数y c =、y x =、2y x =、1y x =
的导数公式及应用
二.新课讲授
(一)基本初等函数的导数公式表
函数 导数
y c = '0y = y x = '1y = 2y x = '2y x = 1y x = '21y x =- *()()n y f x x n Q ==∈ '1n y nx -= 函数 导数
y c =
'0y = *()()n y f x x n Q ==∈ '1n y nx -=
sin y x = 'cos y x =
cos y x = 'sin y x =-
()x y f x a ==
'ln (0)x y a a a =⋅> ()x y f x e == 'x y e =
导数运算法则
1.[]'
''()()()()f x g x f x g x ±=± 2.[]'
''()()()()()()f x g x f x g x f x g x ⋅=± 3.[]
'
''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦
(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:
年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,
那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有'() 1.05ln1.05t
p t = ()log a f x x = '1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x = '1()f x x =
所以'10(10) 1.05ln1.050.08p =≈(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)323y x x =-+
(2)y =x
x --+1111; (3)y =x · sin x · ln x ;
(4)y =
x x 4
; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x
(7) y =x
x x x x x sin cos cos sin +- 【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为
5284()(80100)100c x x x
=<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%
解:净化费用的瞬时变化率就是净化费用函数的导数.
''
'
'252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-2
5284(100)x =- (1) 因为'
25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.
(2) 因为'2
5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.
函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越
多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y=3 x4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y=-12 x+8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
六.布置作业。