5A_三节锂电池充电管理集成电路CN3703
- 格式:pdf
- 大小:386.88 KB
- 文档页数:11
DW07D 二合一锂电池保护IC一、 概述DW07D 产品是单节锂离子/锂聚合物高压可充电电池组保护的高集成度解决方案。
DW07D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。
DW07D 具有非常小的SOT23-6的封装,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。
DW07D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。
该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。
二、 特点¾ 内部集成等效50m Ω左右的先进的功率MOSFET ;¾ 3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; ¾ 充电器检测功能; ¾ 允许0V 充电功能¾ 延时时间内部设定; ¾ 高精度电压检测;¾ 低静态耗电流:正常工作电流3.8uA ¾ 兼容ROHS 和无铅标准。
¾采用SOT23-6封装形式塑封。
三、 应用¾ 单芯锂离子电池组;¾ 锂聚合物电池组。
四、 订货信息型号封装过充检测电压 [V CU ](V ) 过充解除电压[V CL ](V )过放检测电压[V DL ](V )过放解除电压 [V DR ](V )过流 (A )打印标记DW07D SOT23-6 4.4 4.2 2.8 3.0 3A DW07D五、 引脚图及说明DW07D二合一锂电池保护IC六、 极限参数参数符号参数范围单位电源电压VDD VSS-0.3~VSS+12 V CSI输入管脚电压VCSI VDD+15~VDD+0.3 V 工作温度Topr -40~+85 ℃存储温度Tstg -40~+125 ℃七、 电气特性参数参数符号测试条件最小值典型值最大值单位工作电压工作电压VDD -- 1.5--10V 电流消耗工作电流IDD VDD= 3.9V --3.06.0 uA检测电压过充电检测电压A档VOCP --4.350 4.375V B档 4.375 4.400 4.425C档 4.425 4.450过充电释放电压VOCR -- 4.15 4.20 4.25 V 过放电检测电压VODP -- 2.72 2.80 2.88 V 过放电释放电压VODR -- 2.92 3.00 3.08 V 过电流1检测电压VOI1 -- 0.12 0.15 0.18 V 过电流2(短路电流)检测电压VOI2 VDD= 3.6V 0.80 1.00 1.20 V 过电流复位电阻Rshort VDD= 3.6V 50100150 KΩ过电器检测电压VCHA -- -0.8 -0.5 -0.2 V 向0V电池充电的功能充电器起始电压V0CH 允许向0V电池充电功能1.2 -- -- V迟延时间过充电检测迟延时间TOC VDD= 3.6V~4.4V -- 110 200 ms过放电检测迟延时间TOD VDD= 3.6V~2.0V -- 80 140 ms过电流1检测迟延时间TOI1 VDD= 3.6V 51320 ms过电流2(短路电流)检测迟延时间TOI2 VDD= 3.6V --550 usMOS参数单个MOS管漏极到源极的导通阻抗R DS(on) V GS = 2.5V, I D =0.5A-- 22.0 30.0 mΩR DS(on) V GS = 4.5V, I D = 1.0A-- 16.0 25.0过流I ODC VDD= 3.6V 2.0 3.0 4.0 A 漏-源击穿电压V(BR)DSS V GS = 0V, I D= 250μA19 20 -- V连续的漏极电流I D(DeviceRef.)T J= 25°C 5 ADW07D二合一锂电池保护IC 栅极阈值电压V GS(th)V DS=VGS, I D=250μA0.55 0.65 0.95 V漏-源极电流I DSS V DS=20V, V GS= 0V,T J= 25°C1 uA栅-源极电流I GSS V GS= ±10V 100 nA 八、功能描述DW07D监控电池的电压和电流,并通过断开充电器或负载,保护单节可充电锂电池不会因为过充电压,过放电压,过放电流以及短路等情况而损坏。
三节锂电池充电管理可用于汽车应急启动电源方案
CN3703 是PWM 降压模式三节锂电池充电管理集成电路,独立对三节锂
电池充电进行自动管理,具有封装外形小,外围元器件少和使用简单等优点。
CN3703 具有恒流和恒压充电模式,非常适合锂电池的充电。
在恒压充电模式,
CN3703 将电池电压调制在12.6V,精度为±1%;在恒流充电模式,充
电电流通过一个外部电阻设置。
对于深度放电的锂电池,当电池电压低于8.4V
时,CN3703 用所设置的恒流充电电流的15%对电池进行涓流充电。
在恒压充
电阶段,充电电流逐渐减小,当充电电流降低到外部电阻所设置的值时,充电
结束。
特点宽输入电压范围:7.5V 到对三节锂电池完整的充电管
理充电电流达PWM 开关频率:恒压充电电压精度:
恒流充电电流由外部电阻设置对深度放电的电池进行涓流充
电充电结束电流可由外部电阻设置电池温度监测功能自动再充电功能充电状态和充电结束状态指示软启动功能电池端过压保护应用笔记
本电脑,上网本航模,车模和船模等备用电池应用便携式工业和医疗
仪器电动工具独立电池充电器tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
概述DH03AEFS14/R5是一款专用于3串锂电池或聚合物电池的保护芯片。
它具有高精度的电压检测和电流检测电路,实现过压(OV)保护、欠压(UV)保护、放电过流(DOC)保护、短路(SC)保护、高温(OT)保护和低温(UT)保护。
DH03AEFS14/R5集成了场效应管的驱动电路,DH03AEFS14/R5能够直接驱动N型的充电管和N型的放电管。
DH03AEFS14/R5处于正常状态时消耗的电流低于35uA,断电状态时低于3uA。
DH03AEFS14/R5封装为14引脚的SOP封装。
特点各节电池的高精度电压检测过充电检测电压:4.20V过充电迟滞电压:0.15V过放电检测电压:2.7V过放电迟滞电压: 0.3V3段放电时的过电流检测保护功能过电流检测电压1:100mV过电流检测电压2:200mV短路检测电压:400mV放电过流和短路解除条件:充电器连接或者负载断开。
内建的断线保护。
内建的充电和放电高温保护。
内建的充电和放电低温保护。
低功耗的工作状态:正常状态:<35uA断电状态:<3uA应用电动工具典型应用电路103RTC1K 1K1K 510R 1N4148CHC DHCDH03VMON VCS CUVT COVTCOCT VSS VCCVC3VC2VC1TSVTH1234567891011121314电池3电池2电池10.1u0.1u4.7u0.1u0.1u0.1uR 100R5.1K放电管P-P+2M充电管510K0.1u10K10M1uB=3435R (20K)0.1uR S 1M图1 3串电池包的N 型充电管和N 型放电管的同口典型应用电路图103RTC1K1K 1K51R 1N4148CHC DHCDH03VMON VCS CUVT COVTCOCT VSS VCC VC3VC2VC1TSVTH1234567891011121314电池3电池2电池10.1u0.1u 4.7u0.1u0.1u0.1uR 100R 5.1K放电管P-P+充电管510K0.1u10K10MC-2M1u 0.1u200R 4.7uR S 1MSS34B=3435R (20K)图2 3串电池包的N 型充电管和N 型放电管的分口典型应用电路图产品说明产品名称过充电保护阈值 V OVP 过充电保护解除阈值 V OVR 过放电保护阈值 V UVP 过放电保护解除阈值 V UVR 第一级放电过流保护阈值 V DOCP1 DH03AEFS14/R5AAFS14/R54.20 (±0.028V )4.05 (±0.028V )2.70 (±0.09v )3.00 (±0.09v )0.1 ±0.01V订货信息型号 封装 包装数量 丝印 DH03AEFS14/R5SOP-14卷盘,2500 PCSDH03AE xxxx管脚分布VCS DHC VMON CHC VC2VC3VCC SOP-14123414131211CUVT 5VC110COCTCOVT 67VTH98TS VSS图3 管脚分布管脚描述引脚号 符 号 描 述1CHC 充电控制MOS 栅极连接引脚 2 VMON 负载开路和充电器接入检测引脚 3 DHC 放电控制MOS 栅极连接引脚 4 VCS 充放电过电流检测引脚5 CUVT 接电容,设置放电过流2检测延时6 COVT 接电容,设置过充电检测延时7 COCT 接电容,设置放电过流1检测延时、过放电检测延时8VTH 外部电阻偏置输出引脚,设定和调节保护温度点9 TS 接负温度系数热敏电阻,温度检测 10 VSS 接地引脚11 VC1 第一节电池正极、第二节电池负极连接引脚12 VC2 第二节电池正极、第三节电池负极连接引脚13 VC3 第三节电池正极连接引脚14VCC芯片电源,第三节电池正极连接引脚电气参数(环境温度为25℃)符号项目说明最小值典型值最大值单位过充电和过放电保护阈值V OVP过充电保护阈值 4.20VV OVP- 0.028V OVPV OVP+ 0.028VV OVP_HYS过充电解除迟滞电压0.15 VV OVR过充电解除阈值V OVR = V OVP– V OVP_HYSV OVR- 0.028V OVRV OVR+ 0.028VV UVP过放电保护阈值 2.7VV UVP- 0.090V UVPV UVP+ 0.090VV UVP_HYS过放电解除迟滞电压0.3V V UVP_HYS VV UVR过放电解除阈值V UVR = V UVP + V UVP_HYSV UVR- 0.090V UVRV UVR+ 0.090V放电过流和短路保护V DOCP11级放电过流保护阈值90 100 110 mV V DOCP22级放电过流保护阈值V DOCP2=2*V DOCP1180 200 220 mV V SCP短路保护阈值V SCP=4*V DOCP1360 400 440 mV 放电高温保护和充电高温保护T DOTP放电高温保护阈值根据R VTH设定T DOTP-5 T DOTP T DOTP+5°CT DOTP_HYS放电高温解除迟滞值15 °CT DOTR放电高温解除阈值T DOTR = T DOTP– T DOTP_HYS T DOTR-5 T DOTR T DOTR+5°CT COTP充电高温保护阈值根据R VTH设定T COTP-5 T COTP T COTP+5°CT COTP_HYS充电高温解除迟滞值 5 °CT COTR充电高温解除阈值T COTR = T COTP– T COTP_HYS T COTR-5 T COTR T COTR+5°CT DUTP放电低温保护阈值根据R VTH设定T DUTR-5 T DUTR T DUTR+5°CT DUTP_HYS放电低温解除迟滞值10 °CT DUTR放电低温解除阈值T DUTR = T DUTP + T DUTP_HYS T DUTR-5 T DUTR T DUTR+5°CT CUTP充电低温保护阈值根据R VTH设定T CUTR-5 T CUTR T CUTR+5°CT CUTP_HYS充电低温解除迟滞值 5 °CT CUTR充电低温解除阈值T CUTR = T CUTP + T CUTP_HYS T CUTR-5 T CUTR T CUTR+5°CV IN_DSG放电状态检测电压V VCS>V IN_DSG时电池包被认为是放电状态;否则,电池包被认为是充电状态2 4 6 mV符号项目说明最小值典型值最大值单位外部可编程的保护和解除延迟时间t OVP过压保护延迟时间C COVT=0.1uF 0.7 1.0 1.3 S t UVP欠压保护延迟时间C COCT=0.1uF 0.7 1.0 1.3 S t UV_PD欠压断电延迟时间C COCT=0.1uF 4.3 6.2 8.1 St DOCP11级放电过流保护延迟时间C COCT=0.1uF 0.7 1.0 1.3 St DOCP22级放电过流保护延迟时间C CUVT=0.1uF 0.07 0.1 0.13 St SCP短路保护延迟时间内部固定100 250 500 μS t TDET温度检测周期C COVT=0.1uF 0.7 1.0 1.3 S 电源(VCC)V CC输入电压 4.0 25 V I VCC_NOR电源电流正常状态,V CELL=3.5V 30 35 μAI VCC_PD 断电状态,V CELL=1.8VCTL引脚连接V SS2 3 μAV POR芯片复位电压 4.8 6.0 V V VCC_CHGINI起始充电的VCC电压 1.8 2.2 2.8 V V VREGH放电管的驱动电压V CC>V VREGH+1V 9.0 10.5 12 VV CC<V VREGH+1V V CC-1.5 V CC-1 V CC-0.5 V 电池输入(VC3,VC2,VC1)I VC3V C3正常状态电流3节电池, V CELL=3.5V 1.5 2.5 μAI VCX V C(n)正常状态电流,n=1to2V CELL=3.5V -0.5 +0.5 μA驱动电路(CHC,DHC)I CHC CHC引脚流出电流V CELL=3.5V,V CHC=V CC–3V 3 6 9 μA V CELL=V OVP+0.2V,V CHC=V CC–3VHi-Z μAV DHCHDHC引脚输出电压V VCS=0V V VREGH V V DHCL V VCS>=V DOCP10.4 V功能描述1、过充电状态当任何一节电池电压高于V OVP且时间持续t OVP或更长,DH03AEFS14/R5的CHC引脚将变成高阻态。
CN3051A/CN3052A/CN3051B/CN3052B演示板使用指南1. 概述:本演示板是使用CN3051A/CN3052A/CN3051B/CN3052B构成的锂离子电池或锂聚合物电池充电器电路。
CN3051A/CN3052A/CN3051B/CN3052B可以通过墙上适配器或者USB接口对单节锂离子电池或锂聚合物电池充电。
该系列器件内部包括功率晶体管,应用时不需要外部的电流检测电阻和阻流二极管,只需要极少的外围元器件,并且符合USB总线技术规范,非常适用于便携式应用的领域。
热调制电路可以在器件的功耗比较大或者环境温度比较高的时候将芯片温度控制在安全范围内。
调制输出电压为4.1V(CN3051A/CN3051B)或者4.2V(CN3052A/CN3052B),精度达1%。
充电电流的大小可以通过一个外部电阻调整。
当输入电压(交流适配器或者USB电源)掉电时,CN3051A/CN3052A/CN3051B/CN3052B自动进入低功耗的睡眠模式,此时电池的电流消耗小于3微安。
其它功能包括输入电压过低检测,自动再充电,芯片使能输入端,电池温度监控以及状态指示等功能。
CN3051A/CN3052A采用8管脚小外形封装(SOP8);CN3051B/CN3052B采用更小尺寸的MSOP8封装。
2. 评估板电路图3. 元器件列表及注意事项序号 名称 描述1 JP1 输入电源接入插头。
在VCC 和GND 之间施加4.35V 到6V 的电压。
2 JH1 CN3051A/B/CN3052A/B 第2管脚ISET 电压监测点。
通过此点监测可以避免测试仪器的分布电容对CN3051A/B/CN3052A/B 第2管脚电压的影响。
3 JH2 CN3051A/B/CN3052A/B 第5管脚BAT 引出点。
电池接入端,充电电流和充电电压也从此点输出。
4 JH3 MOS 晶体管Q1栅极输入端。
输入高电平将扩流电阻R6接入电路,充电电流增大。
如韵电子CONSONANCE500毫安USB接口兼容的磷酸铁锂电池充电集成电路CN3058概述:CN3058是可以对单节磷酸铁锂可充电电池进行恒流/恒压充电的充电器电路。
该器件内部包括功率晶体管,应用时不需要外部的电流检测电阻和阻流二极管。
CN3058只需要极少的外围元器件,并且符合USB总线技术规范,非常适合于便携式应用的领域。
热调制电路可以在器件的功耗比较大或者环境温度比较高的时候将芯片温度控制在安全范围内。
内部固定的恒压充电电压为3.6V,也可以通过一个外部的电阻调节。
充电电流通过一个外部电阻设置。
当输入电压(交流适配器或者USB电源)掉电时,CN3058自动进入低功耗的睡眠模式,此时电池的电流消耗小于3微安。
其它功能包括输入电压过低锁存,自动再充电,电池温度监控以及充电状态/充电结束状态指示等功能。
CN3058采用散热增强型的8管脚小外形封装(SOP8)。
应用:z矿灯z磷酸铁锂电池应用z铅酸蓄电池z各种充电器特点:z可以用USB口或交流适配器对单节磷酸铁锂可充电电池充电z输入电压范围:4V 到 6Vz片内功率晶体管z不需要外部阻流二极管和电流检测电阻z恒压充电电压3.6V,也可通过一个外部电阻调节z为了激活深度放电的电池和减小功耗,在电池电压较低时采用小电流的预充电模式z可设置的持续恒流充电电流可达500mAz采用恒流/恒压/恒温模式充电,既可以使充电电流最大化,又可以防止芯片过热z电源电压掉电时自动进入低功耗的睡眠模式z充电状态和充电结束状态双指示输出z C/10充电结束检测z自动再充电z电池温度监测功能z封装形式SOP8z无铅产品管脚排列:FBGNDVINCHRGBATDONE应用电路:输入电压4V 到 6V图1 典型应用电路(恒压充电电压3.6V)输入电压4V 到 6V图2 应用电路(利用外接电阻调整恒压充电电压)在图2中,电池正极的恒压充电电压为:Vbat = 3.6+3.04×10-6×Rx其中,Vbat的单位是伏特Rx的单位是欧姆注:当使用外部电阻调整恒压充电电压时,由于芯片内部和外部的温度不一致及芯片生产时的工艺偏差等原因,可能导致输出电压的精度变差和温度系数变大。
CONSONANCERev 1.15A 三节锂电池充电管理集成电路概述:CN3703是PWM 降压模式三节锂电池充电独立对三节锂电池充电进行自动管理,具有封装外形小,外围元器件少和使用简单等优点。
CN3703合锂电池的充电。
在恒压充电模式,CN370312.6V ,精度为±1%;在恒流充电模式,充电电流通过一个外部电阻设置。
对于深度放电的锂电池,当电池电压低于8.4V 时,CN3703用所设置的恒流充电电流的15%对电池进行涓流充电。
在恒压充电阶段,充电电流逐渐减小,当充电电流降低到外部电阻所设置的值时,充电结束。
在充电结束状态,如果电池电压下降到12V 时,自动开始新的充电周期。
当输入电源掉电或者输入电压低于电池电压时,CN3703自动进入低功耗的睡眠模式。
其它功能包括输入低电压锁存,电池温度监测,电池端过压保护和充电状态指示等。
CN3703采用16管脚TSSOP 封装。
应用:●笔记本电脑,上网本 ● 航模,车模和船模等 ● 备用电池应用● 便携式工业和医疗仪器 ● 电动工具● 独立电池充电器特点:● 7.5V 到28V ● 对三节锂电池完整的充电管理 ● 充电电流达5A● PWM 开关频率:300KHz ● 恒压充电电压精度: ±1% ● 恒流充电电流由外部电阻设置 ● 对深度放电的电池进行涓流充电 ● 充电结束电流可由外部电阻设置 ● 电池温度监测功能 ● 自动再充电功能● 充电状态和充电结束状态指示 ● 软启动功能 ● 电池端过压保护 ● 工作环境温度:-40℃ 到 +85℃ ● 采用16管脚TSSOP 封装 ●产品无铅,无卤素元素,满足RoHS管脚排列:BAT VCC DRV COM2COM3NC test CSP:图1 典型应用电路订购信息:管脚描述:极限参数VCC,VG,DRV,CHRG,DONE到GND的电压-0.3V to 30V CSP,BA T到GND的电压-0.3V to 28VCOM3到GND的电压…………………………………...…….6.5V其它管脚到GND的电压………………………..........………-0.3V to V COM3+0.3V 存储温度-65℃---150℃40℃---85℃焊接温度(10 秒℃电气特性: (VCC=15V,T管脚下拉电流管脚漏电流详细描述:CN3703PWM CSP管脚和BAT管脚之间的电流检测电阻R CS设置,在恒压充电模式,电池电压为12.6V,精度为1%。
当VCC压低于8.4V充电器自动进入涓流充电模式,此时充电电流为所设置的恒流充电电流的15%。
当电池电压大于8.4V,充电器进入恒流充电模式,此时充电电流由内部的200mV基准电压和一个外部电阻R CS设置,即充电电流为200mV/R CS。
当电池电压继续上升接近恒压充电电压时,充电器进入恒压充电模式,充电电流逐渐减小。
当充电电流减小到EOC管脚电阻设置的值时,充电结束,DRV管脚输出高电平。
漏极开路输出管脚内部的晶体管关断,输出为高阻态;另一个漏极开路输出管脚内部的晶体管接通,输出低电平,以指示充电结束状态。
在充电结束状态,如果断开输入电源,再重新接入,将开始一个新的充电周期;如果电池电压下降到再充电阈值12V,那么也将自动开始新的充电周期。
当输入电压掉电时,CN3703自动进入睡眠模式,内部电路被关断,这样可以减少电池的电流消耗,延长待机时间。
TEMP管脚和GND管脚之间连接一个10kΩ的负温度系数的热敏电阻。
如果电池温度超出正常范围,充电过程将被暂停,直到电池温度回复到正常温度范围内为止。
CN3703内部还有一个过压比较器,当BAT管脚电压由于负载变化或者突然移走电池等原因而上升时,如果BAT管脚电压上升到恒压充电电压的1.08倍时,过压比较器动作,关断片外的P沟道MOS场效应晶体管,充电器暂时停止,直到BAT管脚电压回复到恒压充电电压或一下。
在在某些情况下,比如在电池没有连接到充电器上,或者电池突然断开,BAT管脚的电压可能会达到过压保护阈值。
此为正常现象。
充电电流和充电电压示意图如图2所示。
电池电压图2 充电过程示意图应用信息低电压锁存(UVLO)芯片内部的低电压锁存电路监测输入电压,当输入电压低于6V(典型值)时,内部电路被关断,充电器不工作。
涓流充电在充电状态,如果电池电压低于8.4V,充电器进入涓流充电模式,此时充电电流为所设置的恒流充电电流的15%。
充电电流的设置恒流充电电流由下式决定:其中:I CH是恒流充电电流R CS是连接于CSP管脚和BAT管脚之间的充电电流检测电阻充电结束电流的设置在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC管脚的电阻所设置的电流时,充电结束。
充电结束电流由下式决定:其中:●I EOC充电结束电流,单位为安培●Rext 是从EOC管脚到地之间连接的电阻,单位为欧姆。
Rext 的电阻值不能大于100KΩ,否则充电将不能正常结束。
●R CS是在CSP管脚和BAT管脚之间的充电电流检测电阻,单位为欧姆。
根据上面的公式可以计算充电结束电流与恒流充电电流的比值:当Rext=0时,I EOC/I CH=9.17%,即用户可设置的最小充电结束电流为所设置的恒流充电电流的9.17%。
当Rext=100KΩ时,I EOC/I CH=73%,即用户可设置的最大充电结束电流为所设置的恒流充电电流的73%。
自动再充电充电结束以后,如果输入电源和电池仍然连接在充电器上,由于电池自放电或者负载的原因,电池电压逐渐下降,当电池电压降低到12V时,将开始新的充电周期,这样可以保证电池的饱满度在80%以上。
电池温度监测为了监测电池的温度,需要一个紧贴电池的负温度系数的热敏电阻。
当电池的温度超出可以接受的范围时,充电将被暂时停止,直到电池温度回复到正常范围内。
负温度系数的热敏电阻应该连接在TEMP管脚和地之间。
在芯片内部,TEMP管脚连接到两个比较器的输入端,其低电压阈值为175毫伏,对应正常温度范围的上限温度点;高电压阈值为1.6伏特,对应正常温度范围的下限温度点。
TEMP管脚的上拉电流为50uA,所以负温度系数的热敏电阻值在25℃时应该为10kΩ,在上限温度点时其电阻值应该大约为3.5kΩ(约对应50℃);在下限温度点时其电阻值应该大约为32kΩ(约对应0℃)。
一些负温度系数热敏电阻,比如TH11-3H103F,MF52(10 kΩ),QWX-103和NCP18XH103F03RB等,都能与CN3703配合使用。
前面所列负温度系数的热敏电阻的型号仅供参考,用户可以根据具体需要选择合适的型号。
如果在上限温度点和下限温度点处负温度系数热敏电阻值比3.5 kΩ和32kΩ稍微大一点,用户可以通过同热敏电阻并联一个普通电阻,将正常工作温度范围向下移动;反之,可以同热敏电阻串联一个普通电阻,将正常工作温度范围向上移动。
如果不用电池温度监测功能,只要在TEMP管脚到地之间接一个10KΩ的电阻即可。
状态指示CN3703有两个漏极开路状态指示输出端:管脚和管脚。
在充电状态,管脚被内部晶体管下拉到低电平,在其它状态管脚为高阻态。
在充电结束状态,管脚被内部晶体管下拉到低电平,在其它状态,管脚为高阻态。
当电池没有接到充电器时,CN3703将输出电容充电到恒压充电电压,并进入充电结束状态,由于BAT管脚的工作电流对输出电容的放电效应,BAT管脚的电压将慢慢下降到再充电阈值,CN3703再次进入充电状态,这样在BAT管脚形成一个锯齿波形,同时输出脉冲信号表示没有安装电池。
当电池连接端BAT 管脚的外接电容为10u F时,脉冲的频率大约为10Hz。
当不用状态指示功能时,将不用的状态指示输出端接到地。
表1列明了两个状态指示端口对应的充电器状态。
这里假设红色LED 连接到管脚,绿色LED连接到管脚表1 状态指示说明片外功率管驱动CN3703的DRV管脚用于驱动片外MOS场效应晶体管的栅极,该管脚能够提供比较大的瞬态电流以快速接通和关断片外MOS场效应晶体管。
在驱动2nF的负载情况下,上升时间和下降时间典型值为40nS。
一般来讲,一个导通电阻为50毫欧的MOS场效应晶体管的等效电容大约为2nF。
CN3703内部有钳位电路,以保证DRV管脚的低电平比VCC管脚的电压低8V(最大值)。
比如,假设VCC的电压为20V,那么DRV管脚的低电平为最小12V。
这样,一些具有极低导通电阻的低压P沟道MOS场效应晶体管可以与CN3703配合使用,从而提高了充电器的工作效率。
回路补偿为了保证电流调制回路和电压调制回路的稳定性,需要下面的回路补偿元件:(1) 从COM1管脚到地之间接一个470pF的电容(2) 从COM2到地之间串联连接一个120Ω的电阻和一个220nF的瓷片电容(3) 从COM3到地之间连接一个100nF的瓷片电容电池连接检查CN3703没有电池连接检查功能。
当电池没有连接到充电器上时,CN3703将输出电容作为电池充电到恒压充电电压后,进入充电结束状态,由于BAT管脚的工作电流对输出电容的放电效应,BAT管脚的电压将慢慢下降到再充电阈值,CN3703再次进入充电状态,充电器将在充电状态和充电结束状态之间循环,这样在BAT管脚形成一个锯齿波形,同时输出脉冲信号表示没有安装电池。
当电池连接端BAT管脚的外接电容为10u F时,脉冲的频率大约为10Hz。
最好不要在充电器运行时将电池接入充电器,否则充电器可能在短时间内向电池灌入较大电流。
输入和输出电容输入电容对输入电源起滤波作用,需要吸收在输入电源上产生的纹波电流,所以输入电容必须有足够的额定纹波电流。
在最坏情况下,输入电容的额定RMS纹波电流需要达到充电电流的二分之一。
对输出电容的选择,为了降低输出端的纹波电压和改善瞬态特性,主要考虑串联等效电阻(ESR)。
一般来讲,10uF的输出电容可以满足要求。
电感的选择在正常工作时,瞬态电感电流是周期性变化的。
在P沟道MOS场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P沟道MOS场效应晶体管关断期间,电感向电池放电,电感电流减小。
电感的纹波电流随着电感值的减小而增大,随着输入电压的增大而增大。
较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。
所以电感的纹波电流应该被限制在一个合理的范围内。
电感的纹波电流可由下式估算:其中:f是开关频率,300KHzL是电感值V BAT电池电压VCC是输入电压在选取电感值时,可将电感纹波电流限制在△I L=0.4×I CH,I CH是充电电流。
请留意最大电感纹波电流△I L出现在输入电压最大值和电感最小值的情况下。
所以充电电流较低时,应该选用较大的电感值。
关于电感值的选择,请参考表2:表2 电感值的选择MOSFET的选择CN3703的应用电路需要使用一个P沟道MOS场效应晶体管。