函数的单调性 (1)
- 格式:doc
- 大小:91.00 KB
- 文档页数:4
函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数2x y =的图像.图像在y 轴的右侧部分是上升的,当在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有1y <2y .这时就说函数y =2()f x x =在[0,+ ∞)上是增函数.图像在y 轴的左侧部分是下降的,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值反而随着减小,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有12y y <。
这时就说函数y =2()f x x =在[0,+ ∞)上是减函数.1.函数的单调性(1)单调函数的定义(2)单调区间的定义若函数f (x )在区间D 上是增函数或减函数,那么称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x 1,x 2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。
(4)若函数()f x 在其定义的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B U 上是增(减)函数. 例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞U 上是减函数.(3)用定义法判断函数的单调性:①定义域取值;任取x 1,x 2∈D ,且x 1<x 2; ②作差;作差f (x 1)-f (x 2); ③变形;通常是因式分解和配方; ④定符号;即判断差f (x 1)-f (x 2)的正负⑤下结论.指出函数f (x )在给定的区间D 上的单调性例1 证明函数xx f 1)(=在(0,+∞)上是减函数. 证明:设1x ,2x 是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即)(1x f > )(2x f ∴xx f 1)(=在(0,+ ∞)上是减函数.练习:讨论函数21)(x x f -=在[-1,0]的单调性.在[-1,0]上任取x 1,x 2且x 1<x 2则2111)(x x f -=,2221)(x x f -= 从而)(1x f -2221211)(x x x f ---== 2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x∵-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f ∴ 在[-1,0]上f (x )为增函数2.基本函数的单调性例:讨论函数322+-=ax x f(x)在(-2,2)的单调性.解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x = ∴若2-≤a ,则322+-=ax x f(x)在(-2,2)是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)是减函数,在[a,2]是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)是减函数.3.判断函数的单调性的常见结论①设任意x 1,x 2∈[a ,b ],且x 1<x 2,那么()()210f x f x ->⇔f (x )在[a ,b ]上是增函数;()()210f x f x -<⇔f (x )在[a ,b ]上是减函数.②设任意x 1,x 2∈[a ,b ],那么()()21210f x f x x x ->-⇔f (x )在[a ,b ]上是增函数; ()()21210f x f x x x -<-⇔f (x )在[a ,b ]上是减函数.③ (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.例:求函数y =x 2+x -6的单调区间.4. 关于分段函数的单调性(1)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是增函数, ()h x 在区间[],c d 上是增函数,则()f x 在区间[][],,a b c d U 上不一定是增函数,若使得()f x 在区间[][],,a b c d U 上一定是增函数,需补充条件: ()()g b h c ≤(2)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是减函数, ()h x 在区间[],c d 上是减函数,则()f x 在区间[][],,a b c d U 上不一定是减函数,若使得()f x 在区间[][],,a b c d U 上一定是减函数,需补充条件: ()()g b h c ≥例:已知函数()(0)(3)4(0)x a x f x a x a x ⎧<⎨-+≥⎩=若对任意x 1,x 2,都有()()21210f x f x x x -<-成立,则实数a 的取值围是( )A .(0,14] B .(0,1) C .[14,1) D .(0,3)5.函数的最值例:f(x)=x 2-2x (x ∈[-2,4])的单调增区间为__________;f(x)max =________.6.利用函数的单调性求最值例题:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.(1)证明:令0x y ==,则(0)0f =;再令y x =-,则应有()()f x f x -=-,从而在R 上任取12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-.1212,0.x x x x >∴->Q 又0x >Q 时,()0f x <,从而12()0f x x -<,即12()()f x f x <,由定义可知函数()f x 在R 上的减函数.(2)Q 函数()f x 是R 上的减函数,()f x ∴在区间[3,3]-上也是减函数.从而可知在区间[3,3]-上,(3)f -最大,(3)f 最小.2(3)(2)(1)(1)(1)(1)3(1)3()2,3f f f f f f f =+=++==⨯-=-Q (3)(3) 2.f f ∴-=-=即()f x 在[3,3]-上的最大值为2,最小值为-2.练习:已知定义在区间(0,+∞)上的函数f(x)满足f (yx)=f (x )-f (y ).,且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.(1)f(1) = f(1/1) = f(1) - f(1) = 0。
第二讲 函数的单调性1.函数的单调性 (1)单调函数的定义增函数 减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数 当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值 M 为最小值考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________.【举一反三】1.下列函数中,在上单调递减的是A .B .C .D .2.函数的单调递减区间是( )A .B .C .D .3.函数()| g x x =的单调递增区间是 ( )【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞,考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a )2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c3.设,,,则A. B. C. D.4.已知,,,则x,y,z的大小关系是A. B. C. D.考向三单调性的运用二---解不等式【例3】(1)f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x -8)≤2时,x的取值范围是( )A.(8,+∞) B.(8,9] C.[8,9] D.(0,8)(2)已知函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【举一反三】1.若,则实数的取值范围是( )A. B. C. D.2.设函数,则满足的x的取值范围是()A. B. C. D.3.定义在R 上的偶函数在上单调递增,且,则满足的x 的集合为______.4.设函数,若,则实数a 的取值范围是 _______。
函数的单调性一【学习目标】⒈ 理解并掌握函数单调性及其几何意义;⒉ 掌握用定义证明函数单调性的步骤。
【课前预习】(1)单调函数的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆. 增函数 减函数定义一般地,设函数f (x )的定义域为I .假如对于定义域I 内某个区间A 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有 ,那么就说函数f (x )在区间A 上是增函数 当x 1<x 2时,都有 ,那么就说函数f (x )在区间A 上是减函数图象描绘自左向右图象是 的自左向右图象是 的(2)单调区间的定义若函数f (x )在区间A 上是增函数或减函数,则称函数f (x )在这个区间上具有(严格的)单调性,区间A 叫做f (x )的 .注意:①函数的单调性也叫函数的增减性.②函数的单调性是对某个区间来说的,它是一个部分概念.(3)函数单调性证明的步骤:(1) ___________________ ;(2) __________________ ;(3) __________________ .(4)单调区间是函数定义域的子集,单调性仅仅函数的部分性质,所以,求函数的单调性,必须写出函数的单调区间。
【学习过程】题型一 函数的单调性的判断例⒈ 画出以下函数的草图,并写出单调区间.(1)22y x =-+; (2)1y x =(0≠x ); (3)⎩⎨⎧+-≤+=0,220,13)(x >x x x x f例⒉ 求证:函数1()1f x x=--在区间(,0)-∞上是单调增函数练一练 (1)求证:函数3x y -=在),0(+∞上是单调减函数。
(2)求证:函数3x y -=在实数集R 上是单调减函数。
题型二 利用已知函数的单调区间求参数的值(或范围)例3.若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,在(,2]-∞-上是减函数,则实数m 的值为 _______ 。
课 题:2.3.1 函数的单调性1教学目的:(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性教学重点:函数的单调性的概念;教学难点:利用函数单调的定义证明具体函数的单调性授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学在本节课中的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂教学过程;利用函数的单调性的定义证明具体函数的单调性是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中须加强根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主;同时,本节课在教学过程中对教材中的函数3x y =的图象进行了删除,教学中始终以23+=x y 、2x y =、xy 1=等函数为例子进行讨论研究 教学过程:一、复习引入: ⒈ 复习:我们在初中已经学习了函数图象的画法.为了研究函数的性质,我们按照列表、描点、连线等步骤先分别画函数的图象. 2x y =的图象如图1,3x y =2.⒉ 引入:从函数2x y =的图象(图1)图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y <2y .这时我们就说函数y =)(x f =2x 在[0,+ ∞)上是增函数.图象在y 轴的左侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0)1y =)(1x f ,2y =)(2x f ,那么当1x <2x 时,有1y >2y .这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数.函数的这两个性质,就是今天我们要学习讨论的.二、讲解新课:⒈ 增函数与减函数 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x ,⑴若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是增函数(如图3);⑵若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4).说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数2x y =(图1),当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数.⒉ 单调性与单调区间若函数y=f(x)在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间.此时也说函数是这一区间上的单调函数.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.说明:⑴函数的单调区间是其定义域的子集;⑵应是该区间内任意的两个实数,个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f ,显然此图象表示的函数不是一个单调函数;⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f , ”改为“)(1x f ≤)(2x f 或)(1x f ≥)(2x f ,”即可;⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减.②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数.三、讲解例题:例1 如图6是定义在闭区间[-5,5]上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及在每一单调区间上,函数)(x f y =是增函数还是减函数.解:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中)(x f y =在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.说明:函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题;另外,中学阶段研究的主要是连续函数或分段连续函数,对于闭区间上的连续函数来说,只要在开区间上单调,它在闭区间上也就单调,因此,在考虑它的单调区间时,包括不包括端点都可以;还要注意,对于在某些点上不连续的函数,单调区间不包括不连续点.例2 证明函数23)(+=x x f 在R 上是增函数.证明:设21,x x 是R 上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =(31x +2)-(32x +2)=3(1x -2x ),由1x <2x x,得1x -2x <0 ,于是)(1x f -)(2x f <0,即 )(1x f <)(2x f .∴23)(+=x x f 在R 上是增函数.例3 证明函数xx f 1)(=在(0,+∞)上是减函数. 证明:设1x ,2x 是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即)(1x f > )(2x f∴xx f 1)(=在(0,+ ∞)上是减函数. 例4.讨论函数322+-=ax x f(x)在(-2,2)内的单调性.解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x =∴若2-≤a ,则322+-=ax x f(x)在(-2,2)内是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)内是减函数,在[a,2]内是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)内是减函数.四、练习:1:课本P59练习:1,2答案:)(x f 的单调区间有[-2,-1],[-1,0],[0,1],[1,2];)(x f 在区间[-2,-1],[0,1]上是增函数,在区间[-1,0],[1,2]上是减函数.)(x g 的单调区间有[-π,-2π],[-2π,2π],[2π, π];)(x g 在区间[-π,-2π],[2π,π]上是减函数,在区间[-2π,2π]上是增函数. 说明:要了解函数在某一区间是否具有单调性,从图象上进行观察是一种常用而又较为粗略的方法,严格地说,它需要根据增(减)函数的定义进行证明,下面举例说明.2判断函数23)(+-=x x f 在R 上是增函数还是减函数?并证明你的结论. 解:设1x ,2x ∈R ,且1x <2x ,∵)(1x f -)(2x f =(-31x +2)-(-32x +2)=3(2x -1x ),又1x <2x ,∴)(1x f -)(2x f >0,即 )(1x f > )(2x f .∴23)(+-=x x f 在R 上是减函数.3判断函数)(x f =x1在(-∞,0)上是增函数还是减函数并证明你的结论. 解:设1x ,2x ∈(-∞,0),且1x <2x ,∵)(1x f -)(2x f =11x -21x =2112x x x x -=2112x x x x -, 由1x ,2x ∈(-∞,0),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即 )(1x f > )(2x f . ∴)(x f = x1在(0,+ ∞)上是减函数. 能否说函数)(x f = x1在(-∞,+∞)上是减函数? 答:不能. 因为x =0不属于)(x f =x 1的定义域. 说明:通过观察图象,对函数是否具有某种性质,作出猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法.4 ⑴ 判断函数b kx x f +=)(在R 上的单调性,并说明理由.⑵ 课本P60练习:4.解:⑴设1x ,2x ∈R ,且1x <2x ,则)(1x f -)(2x f =(k 1x +b)-(k 2x +b)=k(1x -2x ).若k>0,又1x <2x ,∴)(1x f -)(2x f <0,即 )(1x f <)(2x f.∴b kx x f +=)(在R 上是增函数.若k<0,又1x <2x ,∴)(1x f -)(2x f >0,即 )(1x f > )(2x f .∴b kx x f +=)(在R 上是减函数.⑵设1x ,2x ∈(0,+∞),且1x <2x ,∵)(1x f -)(2x f =(21x +1)-(22x +1)= 21x -22x =(1x +2x ) (1x -2x )∵0<1x <2x ,∴1x +2x >0,1x -2x <0,∴)(1x f -)(2x f <0,即)(1x f <)(2x f ,∴)(x f =2x +1在(0,+∞)上是增函数.五、小结 ⒈讨论函数的单调性必须在定义域内进行,即函数的单调区间是其定义域的子集,因此讨论函数的单调性,必须先确定函数的定义域;⒉根据定义证明函数单调性的一般步骤是:⑴设1x ,2x 是给定区间内的任意两个值,且1x <2x ;⑵作差)(1x f -)(2x f ,并将此差式变形(要注意变形的程度);⑶判断)(1x f -)(2x f 的正负(要注意说理的充分性);⑷根据)(1x f -)(2x f 的符号确定其增减性. 六、课后作业:课本第60习题2.3:1,2,3 补充:⑴)(x f =41252-⎪⎭⎫ ⎝⎛-x 是以(25,41-)为顶点、对称轴平行于y 轴、开口向上的抛物线(如图);它的单调区间是(-∞,25]与[25,+ ∞);它在(-∞,25]上是减函数,在[25,+ ∞)上是增函数. 证明:设1x <2x ≤25,则 )(1x f -)(2x f =21x -22x -5(1x -2x )=(1x +2x -5) (1x -2x )∵1x <2x 25≤,∴1x +2x <5,1x -2x <0,∴)(1x f -)(2x f >0,即 )(1x f > )(2x f ..∴)(x f =2x -5x +6在(-∞,25]上是减函数. 类似地,可以证明)(x f 在[25,+∞)上是增函数. ⑵)(x f =-2x +9的图象是以(0,9)为顶点、y 轴为对称轴、开口向下的一条抛物线(如图);它的单调区间是(-∞,0]与[0,+∞),它在(-∞,0]上是增函数,在[0,+∞)上是减函数.证明:设1x <2x ≤0,则)(1x f -)(2x f =-21x +22x =(1x +2x ) (2x -1x )∵1x <2x ≤0,∴1x +2x <0,2x -1x >0,∴)(1x f -)(2x f <0,即)(1x f <)(2x f.∴)(x f =9-2x 在(-∞,0]上是增函数.类似地,可以证明)(x f 在[0,+∞)上是减函数.七、板书设计(略)八、课后记:。
课题:函数的单调性(一)目标:1.理解函数单调性概念;2.掌握判断函数单调性的方法,会证明一些简单函数在某个区间上的单调性;3.提高观察、抽象的能力.重点:掌握判断函数单调性的方法,会证明一些简单函数在某个区间上的单调性。
难点:定义的理解,证明一些简单函数在某个区间上的单调性.过程:(一)准备知识分解因式:1.22a b -=_____________2.=-33b a _____________3.=+33b a _____________(二)概念探究阅读课本37页,完成下列问题1从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是______,若图象是下降的,则此函数是_____________-2不看课本,能否写出函数单调性的定义?______________________________________________________________________________________________________________________________________________________________ 3对区间的开闭有何要求?4如何理解定义中任意两个字?5一个函数不存在单调性,如何说明?(三)知识建构1.单调增函数的定义:一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的任意两个值1x ,2x ,当12x x <时,都有 ,那么就说()y f x =在区间I 上是单调 函数,I 称为()y f x =的单调 区间.注意:⑴“任意”、“都有”等关键词;⑵. 单调性、单调区间是有区别的;2.单调减函数的定义:一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的任意两个值1x ,2x ,当12x x <时,都有 ,那么就说()y f x =在区间I 上是单调 函数,I 称为()y f x =的单调 区间.3.函数图像与单调性:函数在单调增区间上的图像是 图像;而函数在其单调减区间上的图像是 的图像。
数学教学设计方案
课题:函数单调性数学1202 张家慧
一学习类型
(一)学习结果
(1)函数是描述事物运动变化规律的数学模型,了解函数的变化规律,也就把握了相应事物的变化规律。
(2)增函数、减函数是数学概念。
(3)利用函数图像来分析函数的单调性是数学技能。
(二)学习形式
由于函数的单调性是函数的下位观念,因此本课时是下位学习。
二学习任务分析
(1)建立增、减函数的概念,通过观察一些函数的图像的升降,形成增、减函数的直观认识。
(2)通过具体函数值的大小比较,认识函数值随自变量的增大而增大(减小)的规律,得出增(减)函数的定义。
(3)掌握用函数定义证明函数单调性的基本方法与步骤。
三学生的起点能力
(1)函数的概念。
(2)会画函数图像
四教学目标
(1)掌握增、减函数的概念,会求函数的单调区间,掌握用定义证明函数单调性的基本步骤与方法。
(2)掌握从图像升降的直观认识过渡到函数的增减的数学符号语言表述的能力。
(3)形成良好的用数学符号表述数学概念的习惯,形成良好的数学思维能力。
五教学重点与难点
重点:形成增、减函数的形式化定义,求函数的单调区间,用函数的定义证明函数的单调性。
难点:形成增、减函数的概念的过程中,如何从图像升降的直观认识过渡到函数增减的数学符号语言表述,用定义证明函数的单调性。
六 教学过程
教学步骤
教师活动
学生活动
教学形式和工具
(一)创设情景问题 1.观察函数图像,你能说出函数图像有什么特点?
画出三个函数图像,引导学生们观察图像的升降变化,导入新课。
观察图像,并且回答观
察的结果
板书教学 尺子 彩色粉笔 (二)增、减函数的概念的引出
1.函数y x = 的图象是如何变化的
2.你能描述一下
2y x = 的图像的升
降规律吗?
3.从上面两个例子观察分析,你能得出什么结论
画出y x =的图像,引导学生从左到右看 的图像如何变化。
画出2y x = 的图像,启发学生获取 的图像的特点,并将其与函数 的特点进行比较。
学生回答后教师归纳:从上面的观察与分析可以看出:不同的函数,其图像的变化趋势不同,同一函数在不同区间的变化趋势也不同,函数图像的这种变化规律就是函数性质的反映,这就是我们今天要研究的函数的一个重要的性质——单调性(引出课题)
观察图像并回答问题
观察图像,并与上面一个图像比较
观察比较两个函数图像,口答老师提出的问题
板书教学 尺子 彩色粉笔
(三)对增(减)函数做出具体的定义
1.2
y x = 的图像在右侧是上升的,如何用数学符号语言来描述这种上升呢? a.通过观察2
y x =
的对应值表中自变量 的值从0到5变化
a.指导学生从定性分析到定量分析,从直观认识过渡到数学符号表述。
b.找同学演板完成2
y x = 的对应值表。
c.巡回检查学生完成值表
的情况。
d.引导学生得出:函数
a.完成值表并回答问题
b.随意给出一些
(0,)∞ 上的12,x x 的
值,当12x x < 时是否都有2212x x < (可以
板书教学 尺子 彩色粉笔
和教具
时,函数值y 如何变化。
b.在(0,)∞上,任意改变12,x x 的值,当
12x x <时,都有
2212x x <吗?
2.如何定义增函数?对于一般的函数
()y f x =我们应当
如何如何给增函数下定义?
3.类比增函数的定义,你能得出减函数的定义吗?
2y x = 在(0,)∞ 图像是
上升的,用函数解析式来表示就是:对于(0,)∞上任意
的12,x x ,当12x x <时,都
有2212x x <。
即函数值随着
自变量的增大而增大。
具有这种性质的函数叫增函数。
从具体到一般引出增函数的定义。
分析评价学生的答案,补充完善给出增函数的定义。
引导学生观察2
y x =的图像和在区间(,0)-∞上
对应的值表,并思考如何用数学语言描述“函数图像在区间 上下降”.
分析评价学生的答案,补充完善给出减函数的定义,并由此培养学生类比的能力。
借助计算器)
c.讨论交流如何用数
学符号来表示这种上
升。
讨论交流 说出各自的想法
学生通过观察、验证、
讨论、交流都表述各自的结论。
板书教学 尺子 彩色粉笔
(四) 自学例题
巩固概念
自学书上例1,巩固增、减函数的慨念,培养自学能力
(五) 例题示范
讲解书上的例2,使学生熟悉用定义证明函数为增、减函数的基本步骤和过程
指导学生阅书上的例1,巡回检查学生的自学情况。
分析例2并板书证明
启发学生概括用定义证明函数为增、减函数的一般步骤
自学书上的例1 听讲 思考
交流自己总结的步骤
板书教学 尺子 彩色粉笔
和教具
(六) 课堂练习
通过练习检查学生的掌握情况
七补充总结找同学演板
巡回指导
演板完毕检查点评
补充讲课过程中遗漏的一
些需要注意的细节再次强
调重难点
被点名的在黑板做题
其余自己完成黑板的
题目
记笔记把老师补充
的、强调的内容记下来
板书教学
尺子
彩色粉笔。