多边形与平行四边形
- 格式:doc
- 大小:308.50 KB
- 文档页数:4
专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
组成多边形的各条线段叫做多边形的边。
边数为n的多边形叫n边形(n为正整数,且n≥3)。
2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。
3.四边形的内角和等于360o。
n边形的内角和为(n-2)×180o(n≥3)。
任何多边形的外角和为360o。
【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。
3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。
4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。
【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
平行四边形和多边形知识点一、平行四边形知识点。
1. 平行四边形的定义。
- 两组对边分别平行的四边形叫做平行四边形。
用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。
2. 平行四边形的性质。
- 边的性质。
- 平行四边形的对边平行且相等。
即AB = CD,AD = BC;AB∥CD,AD∥BC。
- 角的性质。
- 平行四边形的对角相等,邻角互补。
即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即AO = CO,BO = DO(设AC、BD相交于点O)。
3. 平行四边形的判定。
- 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
4. 平行四边形的面积。
- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。
二、多边形知识点。
1. 多边形的定义。
- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
2. 多边形的内角和。
- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。
- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。
3. 多边形的外角和。
- 多边形的外角和等于360°,与边数无关。
4. 正多边形。
- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。
- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。
第十八讲多边形和平行四边形考点综述:本部分内容是中考热点和重点之一。
它包括:多边形的内角和与外角和的相关知识,平行四边形的性质和判定,以及会利用三角形、四边形或正六边形进行简单的镶嵌设计。
解决此类问题时要注重观察、操作、猜想、探究等活动过程,注重知识的理解和运用。
考点精析考点1 图形的旋转(1)旋转的概念:平面内将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动成为旋转,这个定点称为旋转中心;旋转的角度叫做旋转角。
注意:①旋转只改变图形的位置,不改变图形的大小和形状;②旋转中心只有一个,它可以在图形的内部,也可以在图形的外部,转动的方向有两个,可以顺时针方向,也可以逆时针方向。
③在一个旋转中,图形的每一点(除旋转中心)均沿着相同的方向转动相同的角度。
④在任意一对对应点与旋转中心的连线所成的角都是旋转角。
(2)旋转的基本性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③每一对对应点与旋转中心的连线所成的角彼此相等。
考点2 中心对称(1)中心对称①概念:两个平面图形,把一个图形绕着某点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称。
这个点叫做对称中心,两个图形关于点对称也称中心对称。
这两个图形的对应点叫做关于中心的对称点。
②性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(2)中心呢对称图形概念:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
考点3 平行四边形(1)概念:两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。
(3)平行四边形的判定①一组对边平行且相等的四边形是平行四边形;②两条对角线互相平分的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形。
多边形与平行四边形一、多边形1.多边形的相关概念1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和1)内角和:n边形内角和公式为(n–2)·180°;2)外角和:任意多边形的外角和为360°. 3.正多边形1)定义:各边相等,各角也相等的多边形.2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.3)正n边形有n条对称轴.4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义:.2.平行四边形的性质1)边:两组对边分别平行且相等.2)角:对角相等,邻角互补.3)对角线:互相平分.4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:1)平行四边形相邻两边之和等于周长的一半.2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE. 4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定1)方法一(定义法):两组对边分别平行的四边形是平行四边形.2)方法二:两组对边分别相等的四边形是平行四边形.3)方法三:有一组对边平行且相等的四边形是平行四边形.4)方法四:对角线互相平分的四边形是平行四边形.5)方法五:两组对角分别相等的四边形是平行四边形.四、三角形的中位线1)定义:三角形两边中点的连线叫中位线。
第十七讲多边形与平行四边形教案教学目标:1.掌握多边形和平行四边形的定义、定理、公式;2.能解决有关问题,并对考试问题形成系统. 教学重点:平行四边形性质的应用教学难点:丛书第11题、9题教学过程:一、考题一览:历年考题一览处理方式:教师展示表格,讲解五年考了两次,都是平行四边形性质的应用,所以本节课重点是平行四边形性质的应用。
二、知识梳理:内容:1.多边形的内角和与外角和公式?2.平行四边形的性质?3.平行四边形的判定方法?4.平行四边形的对称性?处理方式:教师展示问题,直接提问,学生回答,教师评价、鼓励。
三、题型总结分析:1•平行四边形的基础定理内容:99页第3题;课件第4页问题:(2016湖南湘西州第11题)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形处理方式:提问第3题、课件问题,学生回答并说明理由;教师画图展示,一组对边平行, 另一组对边相等的四边形可能是等腰梯形。
目标:明确一组对边平行,另一组对边相等的四边形不一定是平行四边形,还可能是等腰梯形。
2•平行线夹角平分线问题内容:丛书100页第7题,学案练习1。
7. (2016济南,13, 3分)如图,在WABCD中,M=12, ZD=8, Z4BC的平分线交CD于点F,交AD的延长线于点E, CG1BE,垂足为G,若EF=2,则线段CG的长为()练习1. (2016-C东深圳)如图,在ciABCD中,AB=3, AD=5,以点B为圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P, Q为圆心,以大于PQ长度的一半的长为半径作弧,两弧在ZABC内交于点M,连接BM并延长交AD于点E,则DE的长为•处理方式:提问并由学生讲解第7题,和练习1,明确尺规作图的方法是做一条角平分线。
目标:体会平行线中间夹一条角平分线,目的是为了得到边相等,而不是角相等,也为下堂课矩形、菱形中使用这一论证做铺垫。
自学资料一、多边形【错题精练】例1.一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为1980°,则原多边形的边数为()A. 11B. 12C. 13D. 11或12【解答】解:设新多边形为n边形,(n-2)•180°=1980°,解得n=13,n-1=12.故选:B.【答案】B第1页共29页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例2.一个多边形的内角和为1620°,则这个多边形的边数是______,这个多边形共可连______条对角线.【解答】解:设所求正n边形边数为n,则1620°=(n-2)•180°,解得n=11;=44条.11边形的对角线共有11×(11−3)2故答案为:11;44.【答案】1144【举一反三】1.多边形的内角和与外角和多边形的内角和是______;多边形的外角和是______.(1)若一个多边形的内角和是1440°,则这个多边形的边数是______.(2)如图:∠A+∠B+∠C+∠D+∠E+∠F=______.【解答】解:多边形的内角和是(n-2)•180°;多边形的外角和是360°.(1)1440÷180+2=10.故这个多边形的边数是10.(2)如图:∠A+∠B+∠C+∠D+∠E+∠F=(∠A+∠B)+(∠C+∠D)+(∠E+∠F)=∠1+∠2+∠3=360°.故答案为:(n-2)•180°;360°.(1)10;(2)360°.【答案】(n-2)•180°360°第2页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训360°二、平行四边形(包括矩形、菱形、正方形)【知识探索】年份题量分值考点题型201527平行四边形及多边形性质;选择、填空2016122正方形性质;菱形性质简答2017210正方形性质简答2018319矩形的性质,正方形的性质选择,填空,简答2019214矩形的性质,正方形的性质填空,简答【错题精练】例1.如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM 交于E,则阴影部分面积与平行四边形面积比为______.【答案】7:24例2.如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF:S△ABF=4:25,求DE:DC的值为()A. 4:25B. 2:5C. 2:7D. 4:29【解答】解:∵四边形ABCD为平行四边形,∴DE∥AB,∴△DEF∽△BAF,∴S△DEF:S△ABF=(DE第3页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训)2=4:25,∴DEAB=DECD=25,故选:B.【答案】B例3.如图,在▱ABCD中,DF平分∠ADC交AB于点E,交CB的延长线于点F,AD=5,CD=12,则BF的长为______.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=5,∴∠F=∠ADE,∵∠ADC平分线为DE,∴∠ADE=∠CDF,∴∠F=∠CDF,∴CF=CD=12,∴BF=CF-BC=12-5=7.故答案为:7.【答案】7第4页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训例4.如图,▱ABCD中,AB=4,AD=6,∠ABC=60°,点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E.设AP=x,当x=______时,△ABP与△EBC相似.【答案】8例5.如图,在平行四边形ABCD中,以对角线AC为直径的圆O分别交BC,CD于点E,F.若AB=13,BC=14,CE=9,则线段EF的长为______.18013例6.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A. 6B. 12C. 18D. 24【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,第5页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选:C.【答案】C例7.四边形ABCD的对角线AC、BD相交于点O,给出下列4个条件:①AB∥CD;②OB=OD;③AD=BC;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是()A. 12B. 13C. 23D. 56【解答】解:有①与②,①与③,①与④,②与③,②与④,③与④六种情况,①与④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;③与④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与④通过证明全等得到四边形的对角线互相平分,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有4组,所以能推出四边形ABCD是平行四边形的概率是46=2 3.故选:C.【答案】C例8.如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE 折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=______;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是______【解答】解:(1)点B′恰好落在AD边上时,四边形ABEB′是边长为4的菱形,∴EC=BC-BE=6-4=2.(2)作AH⊥DE于H.第6页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训在Rt△AHB′中,∵∠AB′H=60°,AB′=4,AB′=2,AH=√3HB′=2√3,∴HB′=12在Rt△ADH中,DH=√62−(2√3)2=2√6,∵AD∥BC,∴∠DAE=∠AEB=∠AED,∴DA=DE=6,∴EB′=BE=6-(2√6-2)=8-2√6,∴EC=BC-BE=6-(8-2√6)=2√6-2.∴若点B′落在△ADE内(包括边界),则x的取值范围是2≤x≤2√6-2.故答案为:2,2≤x≤2√6-2.【答案】22≤x≤2√6-2【举一反三】1.如图,点A、B、C、D都在⊙O上,且四边形OABC是平行四边形,则∠D的度数为()A. 45°B. 60°C. 75°D. 不能确定∠AOC,【解答】解:∠D=12∵四边形OABC是平行四边形,∴∠B=∠AOC,∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,3∠D=180°,∴∠D=60°,故选:B.【答案】B第7页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训2.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为______.【答案】123.如图在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于______【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,AD∥BC,AB=CD=6,BC=AD=8∴∠F=∠ECD,∠DEC=∠ECB∵CE平分∠BCD∴∠ECD=∠BCE∴∠F=∠BCE=∠ECD=∠DEC=∠AEF∴DE=DC=6,AE=AF∴AE=AD-DE=2∴AE+AF=4故答案为:4【答案】44.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A. 1组B. 2组C. 3组D. 4组第8页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C.【答案】C5.已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF 与对角线BD相交于点O.求证:O是BD的中点.【答案】证明:连接FB、DE,∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.∴FD∥BE.又∵AD=BC,AF=CE,∴FD=BE.∴四边形FBED是平行四边形.∴BO=OD.即O是BD的中点.6.如图,在▱ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,写出求BE的长的思路.第9页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵BE,CF分别是∠ABC,∠BCD的平分线,∴∠EBC=12∠ABC,∠FCB=12∠BCD,∴∠EBC+∠FCB=90°,∴∠BGC=90°.即BE⊥CF.(2)求解思路如下:a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=b2;d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.7.如图,在平行四边形ABCD中,点E为边BC上一点,联结AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F,DFFC =3 2.(1)若BD=20,求BG的长;(2)求CMCD的值.【答案】解:(1)∵GF∥BC,∴DFFC =DG BG,第10页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∵BD=20,DFFC =32∴BG=8.(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DMAB =DG GB,∴DMAB =3 2,∴DMCD =3 2,∴CMCD =1 2.三、三角形、梯形中位线【知识探索】1.联结三角形两边的中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.【说明】三角形有三条中位线,这三条中位线将原三角形分为4个全等的三角形.【错题精练】例1.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE:EC=1:2,BE交AD于P,则AP:PD等于()A. 1:1B. 1:2C. 2:3D. 4:3【解答】解:过点D作DF∥BE,交AC于F,∴AD是BC边上的中线,即BD=CD,∴EF=CF,∵AE:EC=1:2,∴AE=EF=FC,∴AE:EF=1:1,∴AP:PD=AE:EF=1:1.故选:A.【答案】A例2.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为18cm2,则S△DGF的值为()A. 4cm2B. 5cm2C. 6cm2D. 7cm2【解答】解:作GH⊥BC于H交DE于M,∵DE是△ABC的中位线,∴DE∥BC,DE=12BC,∵F是DE的中点,∴DF=14BC,∵DF∥BC,∴△GDF∽△GBC,∴GMGH=DFBC=14,∴GMMH=13,∵DF=FE,∴S△DGF=13×△CEF的面积=6cm2,故选:C.【答案】C例3.如图,在△ABC中,点D,E分别是边AC,AB的中点.BD与CE交于点O,连接DE.下列结论:①OE•OB=OD•OC;②DEBC =12;③S△DOES△BOC =1 4;④S△DOES△DBE =1 3.其中正确的个数有()A. 4个B. 3个C. 2个D. 1个【解答】解:∵点D,E分别是边AC,AB的中点.∴DE=12BC,DE∥BC∴△DEO∽△BCO∴DEBC =EOCO=DOBO=12∴OE•OB=OD•OC,BO=2DO,CO=2EO 故①②正确∵△DEO∽△BCO∴S△DOES△BOC =(DEBC)2=14故③正确∵BO=2DO ∴BD=3OD∴S△DOES△DBE =1 3故④正确故选:A.【答案】A例4.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为10,则GE+FH的最大值为()A. 5B. 10C. 15D. 20【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为10,∴AB=OA=OB=10,∵点E,F分别是AC、BC的中点,∴EF=12AB=5,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:10×2=20,∴GE+FH的最大值为:20-5=15.故选:C.【答案】C例5.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P 在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A. 线段EF的长逐渐增长B. 线段EF的长逐渐减小C. 线段EF的长始终不变D. 线段EF的长与点P的位置有关【解答】解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:AR=√AD2+DR2,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=1AR,2即线段EF的长始终不变,故选:C.【答案】C例6.如图,半径为5的⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°.求点A到弦BC的距离.【答案】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,̂=BF̂,∴DE∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,BF=3.∴AH=12∴点A到弦BC的距离为:3.例7.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?(提示:分别作BO,CO的中点M,N,连接ED,EM,MN,ND)【答案】解:BO=2OD ,理由如下:分别作BO ,CO 的中点M ,N ,连接ED ,EM ,MN ,ND ,∵点D ,E 分别是边AC ,AB 上的中点,∴DE=12BC ,DE ∥BC ,∵点M ,N 分别是BO ,CO 的中点,∴MN=12BC ,MN ∥BC ,∴DE=MN ,DE ∥MN ,∴四边形EMND 为平行四边形,∴OM=OD ,∵OM=MB ,∴OB=2OD ;BC 边上的中线一定过点O ,理由如下:作BC 边上的中线AG 交BD 于D′,由以上解答过程可知,O′B=2O′D ,∴点O 与点O′重合,∴BC 边上的中线一定过点O .例8.如图所示,在平行四边形ABCD 中,M ,N 分别在AD ,BC 上,AN 和BM 交于点E ,CM 和DN 交于点F ,连结EF .(1)当M ,N 分别为AD ,BC 的中点时,试判断四边形MENF 的形状,并说明理由;(2)试探求:①当AM ,BN 满足什么条件时,一定有EF =∥12AD ?并说明理由; ②当AM ,BN 满足什么条件时,一定有四边形MENF 为平行四边形?并说明理由.【答案】(1)解:四边形MENF 是平行四边形.理由如下:在平行四边形ABCD 中,AD=BC ,∵M ,N 分别为AD ,BC 的中点,∴AM=12AD ,CN=12BC ,∴AM=CN ,又∵AD ∥BC ,∴四边形ANCM 是平行四边形,∴AN ∥CM ,同理可得BM ∥DN ,∴四边形MENF 是平行四边形;(2)解:①当AM=BN 时,一定有EF =∥12AD . 理由如下:∵AM=BN ,∴DM=NC ,在△AEM 和△NEB 中∵{∠MAE =∠ENBAM =BN ∠AME =∠NBE,∴△AEM ≌△NEB (ASA ),∴ME=BE ,同理可得出:DF=NF ,∴EF 是△AND 的中位线,∴EF =∥12AD ;②当AM+BN=AD 时,四边形MENF 为平行四边形.理由如下:在平行四边形ABCD 中,AD=BC ,∵AM+BN=AD ,BN+CN=BC ,∴AM=CN ,又∵AD ∥BC ,∴四边形ANCM 是平行四边形,∴AN ∥CM ,同理可得BM ∥DN ,∴四边形MENF 是平行四边形.【举一反三】1.如图,已知AB 为圆的直径,C 为半圆上一点,D 为半圆的中点,AH ⊥CD ,垂足为H ,HM 平分∠AHC ,HM 交AB 于M .若AC=3,BC=1,则MH 长为( )A. 1B. 1.5C. 0.5D. 0.7【解答】解:延长HM 交AC 于K .∵AB 是直径,∴∠ACB=90°∵AD̂=BD ̂, ∴∠ACD=∠BCD=45°,∵AH ⊥CD ,∴∠AHC=90°,∴∠HAC=∠HCA=45°,∴HA=HC ,∵HM 平分∠AHC ,∴HK⊥AC,AK=KC ∴点M就是圆心,∵AK=KC,AM=MB,∴KM=12BC=12,在RT△ACH中,∵AC=3,AK=KC,∠AHC=90°,∴HK=12AC=32,∴HM=HK-KM=32-12=1.故选:A.【答案】A2.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AĈ,BĈ的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A. 9√2B. 907C. 13D. 16【解答】解:连接OP,OQ,∵DE,FG,AĈ,BĈ的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=12(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18-14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13,故选:C.3.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC=______.【解答】解:∵AB,AC都是⊙O的弦,OM⊥AB,ON⊥AC,∴N、M分别为AC、AB的中点,即MN为△ABC的中位线,∵MN=2.5,∴BC=2MN=5.故答案为5.【答案】54.如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=______,△ADE与△ABC的周长之比为______,△CFG与△BFD 的面积之比为______.【解答】解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=12BC∴△ADE∽△ABC,△GED≌△GCF∴CF=12BC,∴△ADE与△ABC的周长之比为DE:BC=1:2;∵△ADE与△ABC的面积之比为1:4;∴△ADE与四边形DECB的面积之比为1:3;∵△ADE与△DEG的面积之比为2:1;∴△CFG与△BFD的面积之比为1:6.【答案】21:21:65.如图所示,在三角形ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O.若△ADE的面积为2,则四边形BOGC的面积为______.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC (DEBC)2=14,∵△ADE的面积为S,∴S△ABC=4S,∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴DEBF =OE OB,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴OEOB =DEBF=13,∵AD=BD,∴S△BDE=S△ADE=S,∵AE=CE=2EG,∴S△DEG=12S△ADE=12×2=1,∵OEOB ═1 3,∴S△ODE=14S△BDE=14×2=12,∴S△OEG=S△DEG-S△ODE=14×2=12,∵S四边形DBCE=S△ABC-S△ADE=6,∴S四边形OBCG=S四边形DBCE-S△BDE-S△OEG=6-2-12=7 2,故答案为:72.【答案】726.已知,在四边形ABCD中,AB=CD,E是BC的中点,G是AD的中点,EG交AC于点F,∠ACD=30°,∠CAB=70°,则∠AFG的度数是______.【解答】解:取AC的中点M,连接GM、EM,∵G是AD的中点,E是BC 的中点,∴GM是△ADC的中位线,EM是△ABC的中位线,∴GM=12DC,EM=12AB,GM∥CD,EM∥AB,∵AB=CD,∴GM=EM,∴∠GEM=∠EGM,∵EM∥AB,∴∠EMC=∠BAC=70°,∴∠AME=180°-70°=110°,∵GM∥CD,∴∠AMG=∠ACD=30°,∴∠EMG=110°+30°=140°,∴∠EGM=180°−140°2=20°,∴∠AFG=∠EGM+∠AMG=20°+30°=50°,故答案为50°.【答案】50°7.如图,在△ABC中,E、F、G分别是AB、BC、AC边的中点,连接GE、GF,BD是AC边上的高,连接DE、DF.(1)试判断四边形BFGE是怎样的特殊四边形?证明你的结论;(2)求证:∠EDF=∠EGF.【答案】解:(1)四边形BFGE是平行四边形,∵E、F、G分别是AB、BC、AC边的中点,∴EG、GF是△ABC的中位线,∴EG∥BC、GF∥AB,∴四边形BFGE是平行四边形;(2)∵四边形BFGE是平行四边形,∴∠ABC=∠EGF(6分)∵BD是AC边上的高,∴∠ADB=∠BDC=90°又∵E、F分别是AB、BC边的中点,∴DE=BE=12AB,DF=BF=12BC(直角三角形斜边上的中线等于斜边的一半),∴∠EDB=∠EBD,∠DBF=∠BDF(8分)∴∠EDB+∠BDF=∠EBD+∠DBF,∴∠EDF=∠ABC,∴∠EDF=∠EGF(10分).8.在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.(1)如图1,求证:四边形CEDG是平行四边形;(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于√2GH的线段.【答案】(1)证明:如图1中,∵∠ACB=90°,AE=EB,∴EC=EA=EB,∵EF⊥BC,∴CF=FB,∵AD=DC,AE=EB,∴DE∥BC,DE=12BC=BF,∵CG=BF,∴DE=CG,DE∥CG,∴四边形四边形CEDG是平行四边形;(2)解:如图2中,∵四边形四边形CEDG是平行四边形,∴DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,∵∠A=∠A,∠AEH=∠ADE=90°,∴△ADE∽△AEH,∴AE2=AD•AH=2a•3a=6a2,∴AE=√6a,在Rt△AEH中,HE=√AH2−AE2=√(3a)2−(√6a)2=√3a,∴AE=√2HE,∵GH=HE,AE=EB=CE=GD,∴线段AE、EB、EC、GD都是线段GH的√2倍.1.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A. 24B. 36C. 40D. 48【解答】解:∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,CD②,整理得,BC=32联立①②解得,CD=8,∴▱ABCD的面积=AF•CD=6CD=6×8=48.故选:D.【答案】D2.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE的长为()A. 2cmB. 3cmC. 6cmD. 8cm【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC-EC=8-6=2cm.故选:A.【答案】A3.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A. 10B. 12C. 14D. 16【解答】解:如图,∵∠AFC=90°,AE=CE,∴EF=1AC=5,2∴DE=1+5=6;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=12,故选:B.【答案】B4.已知,如图,四边形ABCD是菱形,过AB的中点E作EF⊥AC于点M,交AD于点F,求证:AF=DF.【答案】证明:如图,连接BD,∵四边形ABCD是菱形,∴AC⊥BD.又∵EF⊥AC,∴EF∥BD.又∵点E是AB的中点,∴EF是△ABD的中位线,∴点F是AD的中点,∴AF=DF.。