多边形与平行四边形
- 格式:doc
- 大小:642.55 KB
- 文档页数:8
多边形与平行四边形知识点总结
多边形与平行四边形
一、多边形
1.多边形的定义:平面内由若干条线段首尾相接而成的封闭图形。
2.多边形的对角线:n边形的一个顶点可以引出(n-3)条对角线,将多边形分成(n-2)个三角形。
3.多边形的内角和和外角和:n边形的内角和公式为(n-2)×180°,外角和为360°。
4.正多边形:各边相等,各角也相等的多边形。
二、平行四边形的性质
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的性质:
边:两组对边分别平行且相等。
角:对角相等,邻角互补。
对角线:互相平分。
对称性:中心对称但不是轴对称。
3.平行四边形解题模型:
利用平行四边形相邻两边之和等于周长的一半。
利用平行四边形中有相等的边、角和平行关系,结合三角形全等来解题。
过平行四边形对称中心的任一直线等分平行四边形的面积及周长。
三、平行四边形的判定
注意:平行四边形的解题方法有很多种,需要根据具体情况进行选择。
专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
组成多边形的各条线段叫做多边形的边。
边数为n的多边形叫n边形(n为正整数,且n≥3)。
2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。
3.四边形的内角和等于360o。
n边形的内角和为(n-2)×180o(n≥3)。
任何多边形的外角和为360o。
【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。
3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。
4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。
【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
基础知识知识点一:四边形 1、四边形 内角和:360° 外角和:360° 2、多边形内角和公式:() 1802⨯-n 外角和等于360°知识点二:平面图形的密铺:1、定义:用 形状、 大小 完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙 、不重叠 地铺成一起,这就是平面图形的密铺,又称作平面图形的 镶嵌 。
2、密铺的方法:⑴用同一种正多边形密铺,可以用正三角形、正四边形或正六边形。
⑵用两种正多边形密铺,组合方式有: 正三角形 和正四边形 、正三角形 和正六边形、 正四边形 和 正八边形 等几种。
知识点三:平行四边形定义:两组对边分别平行的四边形称为平行四边形 1、平行四边形的性质2、平行四边形的判定重点例题分析例1:七边形外角和为()A.180°B.360°C.900°D.1260°例2:一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7例3:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.例4:如图19-1,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.16例5:在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()答案:D同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.例6:如图19-2,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.答案:证明:(1)∵四边形ABCD是平行四边形,例7:如图19-3,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO 方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.∵MF∥PD,∴EMF∽△EDP,巩固练习1.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直2.如图19-4,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.如图19-5,在平行四边形ABCD中,下列结论中错误的是(),A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD4.如图19-6,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:55.若一个多边形外角和与内角和相等,则这个多边形是边形.6.已知一个多边形的内角和是1080°,这个多边形的边数是.7.已知如图19-7,菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为.8.如图19-8,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.9.如图19-9,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.图19-810.如图19-10,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.中考预测1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD;从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A.3种B.4种C.5种D.6种6.如图19-11,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.正十二边形每个内角的度数为.8.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.9.如图19-12,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.10.如图19-13,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11.如图19-14,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1) 求证:OE=OF(2)若CE=12,CF=5,求OC的长;(3) 当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.12.如图19-15,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案:巩固练习1.C2.D3.D4.A7.58.证明:∵BE∥DF,(2)设AP=x,则PD=4﹣x,中考预测6.D7.150°。
平行四边形和多边形知识点一、平行四边形知识点。
1. 平行四边形的定义。
- 两组对边分别平行的四边形叫做平行四边形。
用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。
2. 平行四边形的性质。
- 边的性质。
- 平行四边形的对边平行且相等。
即AB = CD,AD = BC;AB∥CD,AD∥BC。
- 角的性质。
- 平行四边形的对角相等,邻角互补。
即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即AO = CO,BO = DO(设AC、BD相交于点O)。
3. 平行四边形的判定。
- 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
4. 平行四边形的面积。
- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。
二、多边形知识点。
1. 多边形的定义。
- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
2. 多边形的内角和。
- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。
- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。
3. 多边形的外角和。
- 多边形的外角和等于360°,与边数无关。
4. 正多边形。
- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。
- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。
第十八讲多边形和平行四边形考点综述:本部分内容是中考热点和重点之一。
它包括:多边形的内角和与外角和的相关知识,平行四边形的性质和判定,以及会利用三角形、四边形或正六边形进行简单的镶嵌设计。
解决此类问题时要注重观察、操作、猜想、探究等活动过程,注重知识的理解和运用。
考点精析考点1 图形的旋转(1)旋转的概念:平面内将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动成为旋转,这个定点称为旋转中心;旋转的角度叫做旋转角。
注意:①旋转只改变图形的位置,不改变图形的大小和形状;②旋转中心只有一个,它可以在图形的内部,也可以在图形的外部,转动的方向有两个,可以顺时针方向,也可以逆时针方向。
③在一个旋转中,图形的每一点(除旋转中心)均沿着相同的方向转动相同的角度。
④在任意一对对应点与旋转中心的连线所成的角都是旋转角。
(2)旋转的基本性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③每一对对应点与旋转中心的连线所成的角彼此相等。
考点2 中心对称(1)中心对称①概念:两个平面图形,把一个图形绕着某点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称。
这个点叫做对称中心,两个图形关于点对称也称中心对称。
这两个图形的对应点叫做关于中心的对称点。
②性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(2)中心呢对称图形概念:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
考点3 平行四边形(1)概念:两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。
(3)平行四边形的判定①一组对边平行且相等的四边形是平行四边形;②两条对角线互相平分的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形。
多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。
多边形与平行四边形考点扫描1、多边形与正多边形的概念、内角和、外角和、性质。
2、平面图形的镶嵌及镶嵌设计。
3、平行四边形的概念与性质,平行四边形判定。
一、选择题1、下列正多边形中,能够铺满地面的正多边形有 ( ) ①正六边形;②正方形;③正五边形;④正三角形; A 1种 B 2种 C 3种 D 4种2、小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是 ( )A 矩形B 正方形C 等腰梯形D 无法确定3、若四边形四角度数之比为1:2:2:3,则此四边形为 ( ) A . 梯形 B 正方形 C 直角梯形 D 平行四边形4、(2007乐山)如图,在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =o∠,则BCE =∠( )B A.55oB.35oC.25oD.30o5、(2005年天津市)如图,在ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数共有( )A .7个B .8个C .9个D .11个 6、(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( )CA .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 7、(2007山东日照)如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )D(A)4cm (B)6cm (C)8cm (D)10cm8、(2005年山东省)如图,在ABCD 中,对角线AC 、BD 相交于点O ,E 、F•是对角线AC 上的两点,AE B C D4题图 黄蓝 紫橙红 绿 AGEDH C FB 第6题 5题图 A BC D O E 7题图8题图9题图A .OE=OFB .DE=BFC .∠ADE=∠CBFD .∠ABE=∠CDF 9、(2006年怀化市)如图,AB=AC ,AD ⊥BC ,AD=BC ,若用剪刀沿AD 剪开,•则最多能拼出不同形状的四边形个数是( )A .2个 B .3个 C .4个 D .5个 10、如图, ABCD 中,点E 、F 分别是AD 、AB 的中点,EF 交AC 于点G ,那么AG :GC 的值为(• ) A .1:2 B .1:3 C .1:4 D .2:311、如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。
按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是( )。
A 、52° B 、60°C 、72°D 、76°12.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E 、D 分别落在 E ’、 D ’,已知∠CFD ’等于 ( )A 、31°B 、28°C 、24°D 、22° 13、(2006·长春市)如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20cm ,则四边形EFGH 的周长是( B )A .80cmB .40cmC .20cmD .10cm14、(2006·鸡西市)如图,在矩形ABCD 中,EF∥AB,GH∥BC,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( ) C(A)3对 (B)4对 (C)5对 (D)6对15、(2006南京市)在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 ( C )A .(3,7)B .(5,3)C .(7,3)D .(8,2)16、将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( ) A. 2433cm B. 2839cm C. 2439cm D. 28327cm AB C D E 第11题图Oα αE DF D ’E ’A B C 第12题图 10题图13题图14题图15题图二、填空题17.如图,小亮从A 点出发前进10m ,向右转15o,再前进10m ,又向右转15o,…,这样一直走下去,他第一次回到出发点A 时,一共走了 m .18、(2005年西宁市)如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB•的周长为15,AB=6,那么对角线AC+BD=_______. 19、如图(2),在平行四边形ABCD 中,∠ABC 的角平分线BE 交AD 于E 点AB=5,ED=3,则平行四边形ABCD 的周长为 . 20、(2006资阳市)如图4,已知点E 在面积为4的平行四边形ABCD 的边上运动,使△ABE 的面积为1的点E 共有_______个 . 221、(2006日照市)如图,在平行四边形ABCD 中,AE⊥BC 于E ,AF⊥CD 于F ,∠EAF=45,且AE+AF=22,则平行四边形ABCD 的周长是 .8;22、如图,口ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为 。
23.右图是用12个全等的等腰梯形镶嵌(密铺)成的图形,这个图形中等腰梯形的上底长与下底长的比是 。
24、如图,菱形ABCD 的对角线的长分别为3和8,P 是对角线AC 上的任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F 。
则阴影部分的面积是_______。
25、(2004重庆)如图平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是 26、(2007河北) 在□ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,如果AE 过BC 的中点,则□ABCD 的面积为 .三、解答题27. 问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题: 20题图第23题图 21题图17图A 15°15°19题图D A C BE 18题图 D ABCEF22题图24题图25题图ODC MB A①如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON = 60°,则BM = CN.②如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON = 90°,则BM = CN.然后运用类比的思想提出了如下的命题:③如图3,在正五边形ABCDE中,M、N分别是CD、DE上的④点,BM与CN相交于点O,若∠BON = 108°,则BM = CN.任务要求(1)请你从①、②、③三个命题中选择一个进行证明。
(2)请你继续完成下面的探索:①如图4,在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,问当∠BON等于多少度时,结论BM = CN成立?(不要求证明)②如图5,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,当∠BON = 108°时,请问结论BM = CN是否还成立?若成立,请给予证明;若不成立,请说明理由.28、(2006无锡)图l是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120º,该六棱校的高为3cm。
现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为 cm。
(说明:以上裁剪均不计接缝处损耗.)图2NM图1OAB CDONMCBA图4图3NMODEEAB CDONMFCBA图5ODENMCBA29、(2006宿迁市)如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.30、(2007山东青岛)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.31、(2006江阴市)已知平行四边形ABCD 中,点E 、F 分别在边AB 、BC 上.(1)若AB=10,AB 与CD 间距离为8,AE=EB ,BF=FC ,求△DEF 的面积. (2)若△ADE 、△BEF 、△CDF 的面积分别为5、3、4,求△DEF 的面积.32、如图①,小明在研究正方形ABCD 的有关问题时,得出:“在正方形ABCD 中,如果点E 是CD 的中点,点F 是BC 边上的一点,且∠F AE =∠EAD ,那么EF ⊥AE ”。
他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件不变,发现仍然有“EF ⊥AE ”结论。
你同意小明的观点吗?若同意,请结合图④加以证明;若不同意,请说明理由。
(第32题图)A A A AB BC CD DE D D EE EF 图① 图② 图③ 图④ M F E D C B A (第27题)A B C DE F D ′33、课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分DAB∠, ︒=∠60DAB, B∠与D∠互补,求证ACADAB3=+.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“DB∠=∠”, 如图2,可证ACADAB3=+.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)34、(2007佳木斯市)已知四边形ABCD中,AB AD⊥,BC CD⊥,AB BC=,120ABC=o∠,60MBN=o∠,MBN∠绕B点旋转,它的两边分别交AD DC,(或它们的延长线)于E F,.当MBN∠绕B点旋转到AE CF=时(如图1),易证AE CF EF+=.当MBN∠绕B点旋转到AE CF≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF,,EF又有怎样的数量关系?请写出你的猜想,不需证明.ABC DEFMNABC DEFMNABC DEFN35、如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形。