6.3 数列实际应用举例
- 格式:pdf
- 大小:107.77 KB
- 文档页数:4
数列在日常生活中的应用储蓄与人们的日常生活密切相关,它对支援国家建设、安排好个人与家庭生活具有积极意义。
数列的知识在解决活期储蓄、分期存款及分期付款等问题时,充分体现了数列在生活中的广泛应用。
一、关于数列的理论数列是按一定的次序排成的一列数,数列中的每一个数都叫做数列的项。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就是等差数列。
德国著名数学家高斯在十岁时就已经用等差数列的思想解答了1+2+3+…+99+100=5050这个问题。
假设等差数列的首项为a1,第n项为an,那么数列前n项的和为Sn=n(a1+an)/2或者Sn=na1+n(n-1)d/2(其中d是等差数列的公差)。
二、数列在日常生活中的应用我们的生活离不开储蓄,计算储蓄所得利息的基本公式是:利息=本金×存期×利率。
根据国家的规定,个人取得储蓄存款利息应依法纳税,计算公式为:应纳税额=利息全额×税率。
其中的税率为20%。
1、差数列在分期存款中的应用分期存款是分期存入后一次取出的一种储蓄方式。
一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在孩子每年生日那天到银行储蓄5000元一年定期,若年利率为0.2%保持不变,当孩子十八岁上大学时,将所有存款(含利息)全部取回,那么取回的钱的总数是多少?第一期存款利息:a1=5000×0.2%×18;第二期存款利息:a2=5000×0.2%×17;……第十七期存款利息:a17=5000×0.2%×2;第十八期存款利息:a18=5000×0.2%×1。
于是,应该得的全部利息就是上面各期利息的和,因为a1至a18构成一个等差数列,所以把各期利息加起来就是:S18=a1+a2+……+a17+a18。
根据等差数列前n项和的公式Sn=n(a1+an)/2可知:S18=18×(5000×0.2%×18+5000×0.2%×1)×1/2=1710(元)。
【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前项和公式.n 能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.n 【教学重点】等比数列的前项和的公式.n 【教学难点】等比数列前项和公式的推导.n 【教学设计】本节的主要内容是等比数列的前项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前项和公式的推导、求等比数列的项数的问题及知识的简单实际n n n 应用.等比数列前项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解n 并学会应用.等比数列的通项公式与前项和公式中共涉及五个量:n ,只要知道其中的三个量,就可以求出另外的两个量.n n S a n q a 、、、、1教材中例6是已知求的例子.将等号两边化成同底数幂的形式,利n n S a a 、、1n q 、用指数相等来求解的方法是研究等比数列问题的常用方法.n 【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】教学 过程教师行为学生行为教学意图时间*揭示课题6.3 等比数列.*创设情境 兴趣导入【趣味数学问题】从趣过 程行为行为意图间传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.质疑引导分析思考参与分析味小故事出发使得学生自然的走向知识点10*动脑思考 探索新知下面来研究求等比数列前n 项和的方法.等比数列的前n 项和为{}n a (1).321n n a a a a S ++++= 由于故将(1)式的两边同时乘以q ,得1,n n a q a +⋅= (2) 2341+=+++++ n n n qS a a a a a .用(1)式的两边分别减去(2)式的两边,得 (3)()()1111111+-=-=-⋅=-n n n n q S a a a a q a q .当时,由(3)式得等到数列的前项和公式1≠q {}n a n 总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等比数列通项公式过程行为行为意图间 (6.7)1111-=≠-nn a q S q q()().知道了等比数列中的、n 和,利用公式{}n a 1a ),1(≠q q (6.7)可以直接计算.n S 由于,11q a a q a n n n ==+因此公式(6.7)还可以写成(6.8)111-=≠-n n a a q S q q ().当时,等比数列的各项都相等,此时它的前项和1=q n 为.(6.9) 1na S n =【想一想】在等比数列中,知道了、q 、n 、、五个量{}n a 1a n a n S 中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?【注意】在求等比数列的前n 项和时,一定要判断公比q 是否为1.引导分析参与分析引导启发学生思考求解35*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为,所以等比数列的前n 项313,11-=-==q a 说明强调引领观察思考通过例题进一过程行为行为意图间和公式为,1[1(3)]1(3)1(3)4n nn S ⨯----==--故 .881(3)16404S --==-*例6 一个等比数列的首项为,末项为,各项的和4994为,求数列的公比并判断数列是由几项组成.36211解 设该数列由n 项组成,其公比为q ,则,194a =,.49n a =21136n S =于是 9421149361q q-⋅=-,即,⎪⎭⎫ ⎝⎛-=-q q 944936)1(211解得 .23q =所以数列的通项公式为 192,43n n a -⎛⎫=⋅ ⎪⎝⎭于是 ,1492943n -⎛⎫= ⎪⎝⎭即,323241⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-n 解得 .5n =故数列的公比为,该数列共有5项.23【注意】讲解说明引领分析强调含义主动求解观察思考求解领会步领会注意观察学生是否理解知识点45过 程行为行为意图间例6中求项数n 时,将等号两边化成同底数幂的形式,利用指数相等来求解.这种方法是研究等比数列问题的常用方法.现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,646419641(12)21 1.841012S -==-≈⨯-据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×g ,约合7360多亿吨.我国2000年小麦1710的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!说明思考反复强调50*运用知识 强化练习练习6.3.31.求等比数列,,,,…的前10项的和.919294982.已知等比数列{}的公比为2,=1,求.n a 4S 8S 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*巩固知识 典型例题【趣味问题】设报纸的厚度为0.07毫米,你将一张报纸对折5次后的厚度是多少?能否对折50次,为什么?【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行贷款20万元,贷款期限为5年,年利率为5.76%, 说明强调引领讲解说明观察思考主动求解通过例题进一步领会注意观察学生是否过 程行为行为意图间如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到0.000001万元)解 货款第一年后的本利和为2020 5.76%20(10.0576) 1.057620,+⨯=+=⨯第二年后的本利和为21.057620 1.057620 5.76% 1.057620,⨯+⨯⨯=⨯依次下去,从第一年后起,每年后的本利和组成的数列为等比数列…231.057620,1.057620,1.057620,⨯⨯⨯其通项公式为11.057620 1.0576 1.057620-=⨯⨯=⨯n n n a 故.55 1.05762026.462886=⨯=a 答 小王应偿还银行26.462886万元.引领分析强调含义说明观察思考求解领会思考求解理解知识点反复强调4550*运用知识 强化练习张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%,5年后应偿还银行多少钱?质疑求解强化60*理论升华 整体建构思考并回答下面的问题:等比数列的前n 项和公式是什么?结论:).1(1)1(1≠--=q qq a S n n 质疑归纳回答理解及时了解学生知识掌握情况70过程行为行为意图间).1(11≠--=q qq a a S n n 强调强化*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知等比数列{}中,求n a 13226==a S ,,3q a 与.2.等比数列{}的首项是6,第6项是,这个数列n a 316-的前多少项之和是?25564提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题6.3A 组(必做);教材习题6.3B 组(选做)(3)实践调查:运用等比数列求和公式解决现实生活中的实际问题.说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;−辈子时光在匆忙中流逝,谁都无法挽留。
数列实际应用
数列是按照一定规律排列的数的集合,它在数学中有广泛的应用,同时也在现实生活中有许多实际应用。
以下是一些数列在实际中的应用:
1.金融和经济学:在金融和经济学中,数列可以用于建模和分析投资回报、股票价格的变化、经济增长等。
例如,等差数列可以用来描述定期投资的增长,而等比数列可以用来建模复利效应。
2.工程:在工程领域,数列可以用于描述周期性变化。
例如,振动和波动的频率可以通过正弦或余弦函数的数列来表示。
这在机械工程、电子工程和声学等领域都有应用。
3.计算机科学:在计算机科学中,数列被广泛用于算法和数据结构。
例如,斐波那契数列常用于递归算法和动态规划,而等差数列和等比数列可以用于表示计算机内存中的数据结构。
4.统计学:在统计学中,数列可以用于建模和分析随机过程。
例如,随机游走模型中的数列描述了随机变量的变化。
这在风险管理、市场分析等方面有应用。
5.物理学:在物理学中,数列可以用于描述时间和空间中的变化。
例如,牛顿的运动定律中的等差数列描述了运动物体的位移随时间的变化。
6.生物学:在生物学中,数列可以用于描述生物体的生长、衰老和其他变化。
例如,菲波那契数列可以用于描述植物的分枝结构。
7.电信和通信:在通信领域,数列可以用于描述信号的变化。
例如,正弦数列可用于表示模拟信号,而二进制数列可用于表示数字信号。
8.交通规划:数列可以用于模拟交通流量的变化。
例如,等差数列可以用于描述车辆在道路上的运动,有助于交通规划和优化。
这些都只是数列在实际中的一些例子,数列的应用领域非常广泛,涵盖了几乎所有科学和工程领域。
云南会泽县第一中学 郭兴甫 唐孝敬 邮编:654200 数列是特殊的函数,其与方程、不等式联系紧密,在现实生活中应用广泛,在利用数列解决现实中的问题时,首先要认真审题,深刻理解问题的实际背景,弄清蕴含在问题中的数学关系,把应用问题转化为数学中的等差数列、等比数列问题,然后求解。
本文举例说明数列在现实生活中的应用及其求解策略,以期对同学们的学习有所帮助!一、方案设计型例1.某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加%30的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两次方案的使用期都是10年,到期一次性归还本息。
若银行两种形式的贷款都按年息%5的复利计算,试比较两种方案中,那种获利更多?(参考数据6.555.1,7.133.1,6.105.1101010≈≈≈)分析:这是一道比较常见的数列应用问题,方案选择,由于本息与利润是熟知的概念,对甲方案,每年的获利满足等比数列;对乙方案,每年获利构成等差数列,因此只需建立通项公式,求和公式,并运用所学过的公式求解即可.解:对甲种方案获利为:92%)301(%)301(%)301(1+++++++Λ 3.423.013.110≈-=(万元)银行贷款本息和:16%)51(1010≈+⋅(万元)故甲种方案纯利:3.26163.42=-(万元)对乙种方案获利:)5.091()5.021()5.01(1⨯+++⨯++++Λ万元)(5.325.02910110=⨯⨯+⨯= 银行贷款本息和:]%)51(%)51(%)51(1[05.192+++++++⨯Λ6.1205.0105.105.110≈-⨯=(万元)故乙种方案纯利:(万元)32=-5.129.196.综上由9.26>可得,甲方案更好。
193.二、汽车保有量问题例2.为综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2012年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用,同时每年投放10万辆的机动车牌号,只有摇号获得指标的机动车才能上牌.经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.(1)问:到2016年初,该城市的机动车保有量为多少万辆;(2)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解.问:至少需要多少年可以实现这一目标.(参考数据:,,,)分析:(1)首先将实际问题分析,得到关于各年年初机动车保有量的递推关系,然后结合数列的性质,构造得到等比数列,进而得到其通项公式(2)在第一问的基础上,解关于n的不等式,进而估算法得到结论(1)设2012年年初机动车保有量为万辆,以后各年年初机动车保有量依次为万辆,万辆,……,每年新增机动车10万辆,则,.又,且所以数列是以为首项,为公比的等比数列.所以,即.所以2016年初机动车保有量为万辆.(2)由(1)题结论可知,,即,所以,故至少需要8年时间才能实现目标评注:本试题主要是考查了数列在实际生活中的运用,借助于等比数列的概念,和等比数列的通项公式来表示机动车保有量,然后借助于不等式的相关知识,求解对数不等式,得到结论。
浅析数列在日常生活中的应用在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.一、在生产生活中在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?方案分几次付清付款方法每期所付款额方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款分析:思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:二、细胞分裂中的数列自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?该细胞分裂数是公比为2 的等比数列方式增加.显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)三、爬楼梯小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.。
数列在实际问题中的应用在我们的日常生活和众多领域中,数列的身影无处不在。
从金融投资到生物繁殖,从工程建设到资源分配,数列都发挥着重要的作用。
它不仅是数学中的一个重要概念,更是解决实际问题的有力工具。
先来说说银行存款中的复利计算。
假设你在银行存入一笔本金 P,年利率为 r,存款期限为 n 年。
如果每年复利一次,那么 n 年后你的存款总额 A 就可以用等比数列的通项公式来计算:A = P(1 + r)^n 。
比如说,你存入 10000 元,年利率为 5%,存 5 年,那么 5 年后你的存款总额就是 10000×(1 + 005)^5 ≈ 1276282 元。
这里的每年的存款金额就构成了一个等比数列,通过这个数列的计算,我们可以清晰地了解到资金的增长情况,从而更好地规划自己的财务。
在房屋贷款的计算中,数列也同样有着重要的应用。
假设你向银行贷款 P 元,月利率为 r,还款期限为 n 个月。
等额本息还款方式下,每月还款额 M 可以通过等差数列和等比数列的知识来推导得出。
通过这样的计算,你可以清楚地知道每个月需要还款的金额,以及在还款过程中本金和利息的比例变化。
这有助于你合理安排每月的收支,避免出现逾期还款等问题。
数列在资源分配问题中也大显身手。
比如,一家公司有一定数量的资源要分配给不同的项目。
假设公司共有资源 R,有 n 个项目需要分配资源,每个项目的资源需求按照一定的比例增长或减少。
通过构建等差数列或等比数列,可以找到最优的资源分配方案,使得资源得到最有效的利用,从而实现公司的最大效益。
再看人口增长问题。
在理想情况下,人口的增长可以看作是一个等比数列。
假设初始人口为 P₀,年增长率为 r,经过 n 年后,人口数量P = P₀(1 + r)^n 。
通过对这个数列的分析,可以预测未来人口的变化趋势,为政府制定相关的政策,如教育、医疗、就业等方面的规划,提供重要的参考依据。
在工程建设中,数列也有着广泛的应用。
数列在实际生活中的应用《数列在实际生活中的应用》我有个朋友叫小李,他呀,是个特别有规划的人。
就像一只勤劳的小蜜蜂,每天都忙忙碌碌地为自己的小日子精打细算。
有一次,我去他家做客。
一进门,就看到他坐在那张有些破旧但特别温馨的小书桌前,皱着眉头在本子上写写画画。
我好奇地凑过去,发现他本子上列着一些数字,像神秘的密码一样。
我打趣道:“哟,你这是在研究什么高深的数学题呢,还是在算你的小金库呀?”小李抬起头,无奈地笑了笑说:“我这不是想换个手机嘛,但是我得好好规划一下我的储蓄计划。
”他接着跟我解释起来。
他每个月的工资是固定的,就像一个稳定的数列中的每一项。
他打算每个月都存一部分钱,这部分钱数他想按照一个等差数列来安排。
他说:“你看啊,我第一个月打算存500元,以后每个月比上个月多存100元。
这就像搭楼梯一样,一步一步稳稳地往上走,最后就能存够买手机的钱啦。
”我听了,眼睛一亮,说:“嘿,你这还真有一套呢。
”这时候,他的手机响了,是他妈妈打来的。
小李跟他妈妈聊得可开心了,脸上洋溢着幸福的笑容。
挂了电话后,他跟我说,他还得考虑给家里寄钱的事儿呢。
他说他想按照等比数列的方式来增加给家里寄的钱数。
我有点疑惑了,问道:“这等比数列是啥玩意儿呀?听起来好复杂。
”小李耐心地解释道:“就是说,我一开始每个月给家里寄200元,以后每个月寄的钱是上个月的1.2倍。
这样的话,随着我收入慢慢增加,我也能给家里更多的帮助啦。
就像滚雪球一样,越滚越大。
”从他家出来后,我走在大街上,发现数列的应用还真是无处不在。
我路过一个建筑工地,看到工人们在一层一层地盖房子。
那楼层数不就是一个数列吗?从第一层开始,按照自然数的顺序不断往上增加。
这就像人生一样,一步一个脚印,层层递进。
我又看到路边有个小贩在卖水果,他把水果堆成了金字塔的形状。
最下面一层水果的数量最多,然后往上一层比下一层少几个,这难道不也是一个数列吗?再说说银行的利息吧。
假如你把钱存进银行,按照复利计算利息的话,那钱数的增长就是一个等比数列。
高一数学中的数列在实际问题中的应用有哪些在高一数学的学习中,数列作为一个重要的知识板块,不仅在数学理论中具有重要地位,还在实际生活中有着广泛的应用。
通过数列,我们可以更好地理解和解决许多现实世界中的问题,从经济领域的投资和贷款计算,到自然科学中的生物繁殖和放射性物质衰变,再到日常生活中的排队和资源分配等。
接下来,让我们深入探讨一下高一数学中数列在实际问题中的具体应用。
一、经济领域1、储蓄与利息计算在银行储蓄中,常常会涉及到利息的计算。
假设我们将一笔本金 P存入银行,年利率为 r,存期为 n 年。
如果按照单利计算,到期后的本息和 A 可以用数列公式表示为:A = P(1 + nr) ;而如果按照复利计算,到期后的本息和 A 则为:A = P(1 + r)^n 。
通过这样的数列公式,我们可以清楚地计算出不同储蓄方式下的最终收益,帮助我们做出更明智的理财决策。
2、分期付款在购买一些价格较高的商品时,如汽车、房屋等,我们可能会选择分期付款。
假设购买一件价格为 P 的商品,分 n 期付款,每期利率为 r。
每期的还款金额可以通过数列计算得出,从而帮助我们规划好每月的财务支出,避免逾期还款和额外的利息费用。
3、投资回报在投资领域,数列也发挥着重要作用。
例如,我们投资一项每年回报率为 r 的项目,初始投资为 P,经过 n 年后的投资总额可以用数列公式计算。
通过对不同投资项目的回报进行数列分析,我们可以评估其风险和收益,选择最适合自己的投资组合。
二、科学研究1、生物繁殖在生物学中,许多生物的繁殖现象可以用数列来描述。
比如,某种细菌每小时繁殖的数量是前一小时的 2 倍,如果初始时有 x 个细菌,经过 n 小时后的细菌数量就是一个等比数列。
通过数列的计算,我们可以预测生物种群的增长趋势,为生态保护和资源管理提供重要依据。
2、放射性物质衰变放射性物质的衰变过程也符合数列规律。
假设某种放射性物质的半衰期为 T,初始质量为 M,经过 n 个半衰期后的剩余质量可以用数列公式表示为:M(1/2)^(n/T) 。
【课题】 6.3 等比数列
【教学目标】
知识目标:
理解等比数列前n 项和公式. 能力目标:
通过学习等比数列前n 项和公式,培养学生处理数据的能力.
【教学重点】
等比数列的前n 项和的公式.
【教学难点】
等比数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等比数列的前n 项和公式,等比数列应用举例.重点是等比数列的前
n 项和公式;难点是前n 项和公式的推导、求等比数列的项数n 的问题及知识的简单实际
应用.
等比数列前n 项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解并学会应用.等比数列的通项公式与前n 项和公式中共涉及五个量:n n S a n q a 、、、、1,只要知道其中的三个量,就可以求出另外的两个量.
教材中例6是已知n n S a a 、、1求n q 、的例子.将等号两边化成同底数幂的形式,利用指数相等来求解n 的方法是研究等比数列问题的常用方法.
【教学备品】
教学课件.
【课时安排】
3课时.(135分钟)
【教学过程】
式的两边分别减去(2)式的两边,得
【教师教学后记】
−。
专题 等比数列及其前n 项和一、题型全归纳题型一 等比数列基本量的运算【题型要点】1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n =q (q ≠0,n ∈N *).(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab . “a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.解决等比数列有关问题的2种常用思想4.等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行. (2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a 1,n ,q ,a n ,S n 的“知三求二”问题.例1】记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .【答案】58.【解析】通解:设等比数列{a n }的公比为q ,由a 1=1及S 3=34,易知q ≠1.把a 1=1代入S 3=a 1(1-q 3)1-q=34,得1+q +q 2=34,解得q =-12,所以S 4=a 1(1-q 4)1-q =⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯21--121--114=58.优解一:设等比数列{a n }的公比为q ,因为S 3=a 1+a 2+a 3=a 1(1+q +q 2)=34,a 1=1,所以1+q +q 2=34,解得q =-12,所以a 4=a 1·q 3=321-⎪⎭⎫⎝⎛=-18,所以S 4=S 3+a 4=34+⎪⎭⎫ ⎝⎛81-=58.优解二:设等比数列{a n }的公比为q ,由题意易知q ≠1.设数列{a n }的前n 项和S n =A (1-q n )(其中A 为常数),则a 1=S 1=A (1-q )=1 ①,S 3=A (1-q 3)=34 ②,由①②可得A =23,q =-12.所以S 4=23×⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯421--11=58.【例2】(2020·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63【解析】:通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1, 所以S 5=31,故选B.题型二 等比数列的判定与证明【题型要点】等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. (4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列. 【易错提醒】:(1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.【例1】已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解析】 (1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4.将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.【例2】设数列{a n }的前n 项和为S n ,满足:S n +a n =n -1n (n +1),n =1,2,…,n .(1)求证:数列⎭⎬⎫⎩⎨⎧+-11n S n 是等比数列;(2)求S n . 【解析】 (1)证明:由题意,n =1时,S 1+a 1=0,即a 1=0,n ≥2时,S n +S n -S n -1=2S n -S n -1=n -1n (n +1)=2n +1-1n,所以S n -1n +1=12⎭⎬⎫⎩⎨⎧-n S n 11-,S 1-12=-12,所以数列⎭⎬⎫⎩⎨⎧+-11n S n 是以-12为首项,12为公比的等比数列. (2)由(1)知,S n -1n +1=121-⎪⎭⎫⎝⎛n ⎪⎭⎫ ⎝⎛21-=n ⎪⎭⎫ ⎝⎛21-,所以S n =1n +1-n⎪⎭⎫⎝⎛21. 【例3】已知数列{a n }是等比数列,则下列命题不正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列 C .数列⎭⎬⎫⎩⎨⎧n a 1是等比数列 D .数列{lg a 2n }是等比数列 【解析】.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n=a n a n +1=1q ,所以数列⎭⎬⎫⎩⎨⎧n a 1是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误. 【例4】已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由. 【解析】:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, 所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. 所以a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).题型三 等比数列性质的应用【题型要点】1.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 常用结论2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎭⎬⎫⎩⎨⎧n a 1,{a 2n },{a n ·b n },⎭⎬⎫⎩⎨⎧n n b a 仍是等比数列.(2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂. (4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n (k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.类型一 等比数列项的性质的应用【例1】已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18【解析】:法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1),所以a 24=4(a 4-1),所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C. 法二:因为a 3a 5=4(a 4-1),所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.【例2】(2020·洛阳市第一次联考)等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的两根,则a 2a 16a 9的值为( )A .-2+22B .-2 C. 2D .-2或2【解析】设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的两根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=- 2.类型二 等差数列前n 项和性质的应用【例3】等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. 【解析】法一:设数列{a n }的前n 项和为S n .因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,①a 1(1-q 2n )1-q=60,②②÷①,得1+q n =54,所以q n =14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎪⎭⎫⎝⎛341-1=63.法二:设数列{a n }的前n 项和为S n ,因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n ,因为S 2n =S n +q n S n ,所以q n =S 2n -S n S n =14,所以S 3n =S 2n +q 2n S n =60+241⎪⎭⎫⎝⎛×48=63.【例4】(2020·池州高三上学期期末)已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项 a 2+a 4+…+a 100为( ) A .15 B .30 C .45D .60【解析】设S =a 1+a 3+…+a 99,则a 2+a 4+…+a 100=(a 1+a 3+…+a 99)q =2S ,又因为S 100=a 1+a 2+a 3+…+a 100=90,所以3S =90,S =30,所以a 2+a 4+…+a 100=2S =60.【例5】已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q = .【解析】由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.【总结提升】1.掌握运用等比数列性质解题的两个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件. (2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列. ②若公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 2.牢记与等比数列前n 项和S n 相关的几个结论 (1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q .(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m(q 为公比).题型四 数列与数学文化及实际应用类型一.等差数列与数学文化【例1】(2020·广东潮州二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( ) A .6斤 B .7斤 C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【题后升华】以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.类型二.等比数列与数学文化【例2】(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( ) A.253 B .503 C.507 D .1007【解析】5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【题后升华】以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.类型三.递推数列与数学文化【例3】(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n=⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( ) A .7 B .10 C .12D .22【解析】因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.【题后升华】以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.类型四.周期数列与数学文化【例4】(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( ) A .672 B .673 C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列, 且一个周期中的三项之和为1+1+0=2.因为2 019=673×3, 所以数列{a n }的前2 019项的和为673×2=1 346.故选C.【题后反思】以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.类型五.数列在实际问题中的应用【例5】私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n 2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n+1.65=4.65,当且仅当0.15n =15n ,即n =10时,年平均费用S nn 取得最小值.所以这辆汽车报废的最佳年限是10年.【题后反思】数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.二、高效训练突破 一、选择题1.(2020·湖南衡阳一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( ) A .{6} B .{-8,8} C .{-8}D .{8}【解析】:因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A .16 B .8 C .4D .2【解析】:设等比数列{a n }的公比为q (q >0),由a 5=3a 3+4a 1,得a 1q 4=3a 1q 2+4a 1,得q 4-3q 2-4=0,令q 2=t ,则t 2-3t -4=0,解得t =4或t =-1(舍去),所以q 2=4,即q =2或q =-2(舍去).又 S 4=a 1(1-q 4)1-q =15,所以a 1=1,所以a 3=a 1q 2=4.故选C.3.设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B .数列{a n }的公比为8 C.S 6S 3=8 D .S 6S 3=4【解析】:因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q 61-q 3=1+q 3=9.4.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2【解析】:设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q =2(舍负),故选D. 4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( ) A .6里 B .12里 C .24里D .96里【解析】:由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( ) A .13 B .12 C .11D .10【解析】:设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n ,即7292=3n ,所以n =12.6.(2020·青岛模拟)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( ) A .3 B .9 C .10D .13【解析】设等比数列{a n }的公比为q ,因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,所以6a 4=a 4(q 2-q ).由题意得a 4>0,q >0.所以q 2-q -6=0,解得q =3,所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10.7.(2020届福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】: 解法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A.解法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.8.(2020·新乡调研)已知各项均不为0的等差数列{a n }满足a 3-a 272+a 11=0,数列{b n }为等比数列,且b 7=a 7,则b 1·b 13=( )A .25B .16C .8D .4【解析】由a 3-a 272+a 11=0,得2a 7-a 272=0,a 7=4,所以b 7=4,b 1·b 13=b 27=16. 9.(2020·福建厦门模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2【解析】:法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n+λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.10.(2020·辽宁部分重点高中联考)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,则{a n }的通项公式a n =( ) A .2n -1 B .2n -1 C .2n -1D .2n +1【解析】:当n =1时,S 1=2a 1-1=a 1,所以a 1=1,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1, 因此a n =2n -1,故选B.11.(2020·长春市质量监测(一))已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( )A.13B.17C.23D .37【解析】:法一:由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A. 法二:由题意知S 6=a 1+a 2+a 3+a 4+a 5+a 6=a 1+a 3+a 5+(a 2+a 4+a 6)=a 1+a 3+a 5+2(a 1+a 3+a 5)=3(a 1+a 3+a 5),故a 1+a 3+a 5S 6=13,故选A.12.(2020·河南郑州三测)已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( )A.12×(310-1)B.18×(910-1)C.126×(279-1) D .126×(2710-1)【解析】:因为a n +1-a n =b n +1b n =3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3,所以a n=1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列,所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1),故选D.二、填空题1.(2020·陕西第二次质量检测)公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则log 2a 15= .【解析】:等比数列{a n }的各项都是正数,且公比为2,a 2a 12=16,所以a 1qa 1q 11=16,即a 21q 12=16,所以a 1q 6=22,所以a 15=a 1q 14=a 1q 6(q 2)4=26,则log 2a 15=log 226=6.2.(2020·陕西榆林二模)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2(n 2+n ),若b n =22a n ,则{b n }的前n 项和S n = .【解析】:由na n +1-(n +1)a n =2(n 2+n ),得a n +1n +1-a n n =2,又a 1=2,所以数列⎭⎬⎫⎩⎨⎧n a n 是首项为2,公差为2的等差数列,所以a nn =2+2(n -1)=2n ,即a n =2n 2,所以b n =22a n =4n ,所以数列{b n }是首项为4,公比为4的等比数列,所以S n =4-4n +11-4=4n +1-43.3.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.【解析】:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎪⎭⎫ ⎝⎛-λ2n a .由于数列{a n-1}是等比数列,所以2λ=1, 得λ=2.4.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________. 【解析】:因为{a n }为等比数列,所以a 3·a n -2=a 1·a n =64.又a 1+a n =34, 所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32. 由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1q n -1=2×4n -1=32,解得n =3.5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m =a n ,则数列{a n }的前n 项和S n =________.【解析】:因为a n +m a m =a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n )1-2=2n +1-2.6.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=________.【解析】因为S 10∶S 5=1∶2,所以设S 5=2a ,S 10=a (a ≠0),因为S 5,S 10-S 5,S 15-S 10成等比数列,即2a ,-a ,S 15-a 成等比数列,所以(-a )2=2a (S 15-a ), 解得S 15=3a2,所以S 15∶S 5=3∶4.三 解答题1.(2020·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.【解析】:(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2.(舍去)所以a n =4·121-⎪⎭⎫ ⎝⎛n =321-⎪⎭⎫ ⎝⎛n .(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝⎛⎭⎫1-12n 1-12=8⎪⎭⎫⎝⎛n 21-1<8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8).又S n <m 恒成立,m ∈Z ,所以m 的最小值为8. 2.(2020·山西长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0. (1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明现由.【解析】:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q=13,q >0,解得a 1=1,q =3,所以a n=3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列,因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, 所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3,故存在常数λ=12,使得数列⎭⎬⎫⎩⎨⎧+21n S 是等比数列.3.(2020届长春市高三质量监测)已知数列{a n }中,a 1=2,a n +1=2a n +2n +1,设b n =a n 2n .(1)求证:数列{b n }是等差数列;(2)求数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和S n .【解析】:(1)证明:当n ≥2时,b n -b n -1=a n 2n -a n -12n -1=a n -2a n -12n =1,又b 1=1,所以{b n }是以1为首项,1为公差的等差数列.(2)由(1)可知,b n =n ,所以1b n b n +1=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.4.(2020届南昌市第一次模拟)已知等比数列{a n }的前n 项和为S n ,且满足S 4=2a 4-1,S 3=2a 3-1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n (n ∈N *),求数列{b n }的前n 项和T n .【解析】:(1)设等比数列{a n }的公比为q ,由S 4-S 3=a 4,得2a 4-2a 3=a 4,所以a 4a 3=2,所以q =2.又因为S 3=2a 3-1,所以a 1+2a 1+4a 1=8a 1-1,所以a 1=1,所以a n =2n -1. (2)由(1)知a 1=1,q =2,则S n =1-2n 1-2=2n-1,所以b n =2n-1,则T n =b 1+b 2+…+b n =2+22+…+2n -n =2(1-2n )1-2-n =2n +1-2-n .。