理论迁移 例1 在0°~360°范围内,找出
与-950°12′角终边相同的角,并判 定它是第几象限角.
-950°12′=129°48′-360°× 3 第二象限角.
小结
1、角的定义
正角:射线按逆时针方向旋转形成的角
2、任意角的概念 负角:射线按顺时针方向旋转形成的角
零角:射线不作旋转形成的角
1)置角的顶点于原点
思考2:为了区分形成角的两种不同的旋 转方向,可以作怎样的规定?如果一条 射线没有作任何旋转,它还形成一个角 吗?
我们规定: 按逆时针方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做负角. 如果一条射线没有作任何旋转,则称它 形成了一个零角。 即零角的始边和终边重合。
思考3:度量一个角的大小,既要考虑旋转方向,
o
x
思考2:如果角的终边在第几象限,我们 就说这个角是第几象限的角;如果角的 终边在坐标轴上,就认为这个角不属于 任何象限,或称这个角为轴线角.那么下 列各角:-50°,405°,210°, -200°, -450°分别是第几象限的角?
y
y
y
y
210°
x
x
o
-50° o 405°
x o
x o
-200°
4×-3176700°o+=3300°o+(--54)××33660°0o+30o
……,
……,
相差360o的整数倍
思考3:所有与30°角终边相同的角,连同- 30°角在内,可构成一个集合S,
你能用描述法表示集合S吗?
S={β|β= 30° +k·360°, k∈Z}
思考4:一般地,所有与角α终边相同的角, 连同角α在内所构成的集合S可以怎样表示?