(课件)1.1任意角和弧度制
- 格式:ppt
- 大小:1.70 MB
- 文档页数:22
1.1 任意角和弧度制1、角的概念:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
如图1-1中,射线的端点O 叫做角的顶点,OA 叫做角的始边,OB 叫做角的终边。
2、在图1-1中,以OA 为始边、OB 为终边的角,记作AOB ∠;以OB 为始边、OA 为终边的角,记作BOA ∠。
3、任意角⎪⎩⎪⎨⎧零角:不旋转负角:顺时针旋转正角:逆时针旋转4、各角和的旋转量等于各角旋转量的和。
5、与任意角α终边相同的角有无数个,这无数个角可以构成一个集合,这个集合可记为 。
6、象限角:终边落在第几象限,这个角就是第几象限角。
象限间的角:终边落在坐标轴上的角,叫做象限间的角。
7、明确概念: (1)锐角是指︒<<︒900α的角。
所以,锐角都是第一象限角,而第一象限角不一定都是锐角。
例如︒390角是第一象限角,但它不是锐角。
(2)锐角肯定小于︒90,而小于︒90的角不一定都是锐角。
例如,︒-30角小于︒90,但它不是锐角。
(3)相等的角终边一定相同,而终边相同的角却不一定相等。
例如,︒30角与︒390角终边相同,但它们不相等。
(4)角α在︒︒360~0范围内是指︒<≤︒3600α。
8、(1)各象限角的集合 第一象限角:},222|{Z k k x k x ∈+⋅<<⋅πππ第二象限角:},222|{Z k k x k x ∈+⋅<<+⋅ππππ第三象限角:},2322|{Z k k x k x ∈+⋅<<+⋅ππππ 第四象限角:},22232|{Z k k x k x ∈+⋅<<+⋅ππππ(2)终边落在轴上的角的集合终边落在x 轴的非负半轴上:},2|{Z k k x x ∈⋅=π图1-1终边落在x 轴的非正半轴上:},2|{Z k k x x ∈+⋅=ππ终边落在x 轴上:},|{Z k k x x ∈⋅=π 终边落在y 轴的非负半轴上:},22|{Z k k x x ∈+⋅=ππ 终边落在y 轴的非正半轴上:},22|{Z k k x x ∈-⋅=ππ终边落在y 轴上:},2|{Z k k x x ∈+⋅=ππ终边落在坐标轴上:},2|{Z k k x x ∈⋅=π9、角度制与弧度制(1)1弧度角的规定:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
1.1.1 任意角角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.表示,用语言可表示为起始位置;表示,用语言可表示为终止位置.图示轴的非负半轴重合时,(1)角的始边、终边是确定的,角的大小是确定的.()(2)第一象限的角一定是锐角.()(3)终边相同的角是相等的角.()2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是() A.1B.2C.3D.4 3.与30°角终边相同的角的集合是()A.{α|α=30°+k·360°,k∈Z} B.{α|α=-30°+k·360°,k∈Z}C.{α|α=30°+k·180°,k∈Z} D.{α|α=-30°+k·180°,k∈Z}4.2019°是第()象限角() A.一B.二C.三D.四类型一任意角的概念及应用例1(1)若角的顶点在原点,角的始边与x轴的非负半轴重合,给出下列四个命题:①0°角是第一象限角;②相等的角的终边一定相同;③终边相同的角有无限多个;④与-30°角终边相同的角都是第四象限角.其中正确的有()A.1个B.2个C.3个D.4个(2)时针走过2小时40分,则分针转过的角度是________.方法归纳与角的概念有关问题的解决方法正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.跟踪训练1在下列说法中:①0°~90°的角是第一象限角;②第二象限角大于第一象限角;③钝角都是第二象限角;④小于90°的角都是锐角.其中错误说法的序号为________.2.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是() A.A=B=C B.A⊆C C.A∩C=B D.B∪C⊆C3.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有()A.1个B.2个C.3个D.4个类型二终边相同的角例2写出与75°角终边相同的角的集合,并求在360°~1 080°范围内与75°角终边相同的角.方法归纳(1)写出终边落在直线上的角的集合的步骤①写出在[0°,360°)内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并一定合并,使结果简洁.(2)终边相同角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.跟踪训练2写出与下列各角终边相同的角的集合S,并把S中满足-360°≤α<720°的元素写出来.(1)α=60°;(2)α=-210°;(3)α=364°13′.3.下面与-850°12′终边相同的角是()A.230°12′B.229°48′C.129°48′D.130°12′4.写出角α的终边落在第二、四象限角平分线上的角的集合为________.5.已知角α=2 018°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.类型三象限角与区间角的表示例3(1)若α是第四象限角,则-α一定在()A.第一象限B.第二象限C.第三象限D.第四象限(2)写出终边落在图中阴影部分(包括边界)的角的集合.方法归纳象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.跟踪训练1、(1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角 (2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合; ②写出终边落在阴影部分(包括边界)的角的集合.2、已知α是第二象限角,则180°-α是( )A.第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列角中,终边在y 轴非负半轴上的是( ) A .45° B .90° C .180° D .270° 2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( )A .120°B .-120°C .240°D .-240° 3.与-457°角终边相同的角的集合是( )A .{α|α=k ·360°+457°,k ∈Z }B .{α|α=k ·360°+97°,k ∈Z }C .{α|α=k ·360°+263°,k ∈Z }D .{α|α=k ·360°-263°,k ∈Z } 4.若α为锐角,则下列各角中一定为第四象限角的是( )A .90°-αB .90°+αC .360°-αD .180°+α 5.若角α与角β的终边关于y 轴对称,则必有( )A .α+β=90°B .α+β=k ·360°+90°(k ∈Z )C .α+β=k ·360°(k ∈Z )D .α+β=(2k +1)180°(k ∈Z ) 二、填空题(每小题5分,共15分)6.图中从OA 旋转到OB ,OB 1,OB 2时所成的角度分别是________、________、________.7.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.8.如图,终边在阴影部分内的角的集合为________________________. 三、解答题(每小题10分,共20分) 9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM 上; (2)终边落在直线OM 上;(3)终边落在阴影区域内(含边界).=0对称,且0°<α<360°13.如图,写出终边在直线上的角的集合.14.已知α是第四象限角,则1.1.2 弧度制度量角的两种制度定义用度作为单位来度量角的单位制角度.扇形圆心角为216°,弧长为30π,则扇形半径为________.类型一角度与弧度的换算1(1)将下列各角进行角度与弧度的互化(角度精确到0.01):2、(1)①将112°30′化为弧度为________;②将-5π12rad 化为角度为________.(2)设α1=510°,α2=-750°,β1=4π5,β2=-11π6. ①将α1,α2用弧度表示出来,并指出它们各自终边所在的象限;②将β1,β2用角度表示出来,并在-360°~360°范围内找出与它们终边相同的所有的角.类型二 用弧度制表示角的集合 例2 已知角α=2 005°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在[-5π,0)内找出与α终边相同的角.(3)用弧度表示终边落在如图(1)(2)所示的阴影部分内(不包括边界)的角的集合.方法归纳用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练1.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z ) C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )2.用弧度写出终边落在如图阴影部分(不包括边界)内的角的集合.【例4】(1)如图,以正方形ABCD中的点A为圆心,边长AB为半径作扇形EAB,若图中两块阴影部分的面积相等,则∠EAD的弧度数大小为________;(2)已知扇形OAB的周长是60 cm,面积是20 cm2,求扇形OAB的圆心角的弧度数.1.(变条件)将本例(2)中的条件“60”改为“10”,“20”改为“4”,其他条件不变,求扇形圆心角的弧度数.基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)6.若三角形三内角之比为::5135°的扇形的半径为分,共20分)将下列角度与弧度进行互化:(1)20°⎩⎭⎪42.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出ππ。