聚合物蠕变的定义
- 格式:docx
- 大小:49.03 KB
- 文档页数:1
单体:能通过相互反应生成高分子的化合物。
高分子或聚合物:由许多结构和组成相同的单元相互键连而成的相对分子质量在10000以上的化合物。
相对分子质量低于1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
相对分子质量大于1 000 000的称为超高相对分子质量聚合物。
主链:构成高分子骨架结构,以化学键结合的原子集合。
侧链或侧基:连接在主链原子上的原子或原子集合,又称支链。
支链可以较小,称为侧基;也可以较大,称为侧链。
聚合反应:由低分子单体合成聚合物的反应称做~.重复单元:聚合物中组成和结构相同的最小单位称为~,又称为链节。
结构单元:构成高分子链并决定高分子性质的最小结构单位(或原子组合)称为~单体单元:聚合物中具有与单体的化学组成相同而键合的电子状态不同的单元称为~。
连锁聚合(Chain Polymerization ):活性中心引发单体,迅速连锁增长的聚合。
烯类单体的加聚反应大部分属于连锁聚合。
连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。
逐步聚合(Step Polymerization ):无活性中心,单体官能团之间相互反应而逐步增长。
绝大多数缩聚反应都属于逐步聚合。
加聚反应(Addition Polymerization ):即加成聚合反应, 烯类单体经加成而聚合起来的反应。
加聚反应无副产物。
缩聚反应(Condensation Polymerization ):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。
该反应常伴随着小分子的生成。
线型聚合物:指许多重复单元在一个连续长度上连接而成的高分子.热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。
聚苯乙烯(PS )、聚氯乙烯(PVC )、聚乙烯(PE )等均属于此类。
热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。
ptfe蠕变温度
PTFE(聚四氟乙烯)是一种具有出色的耐化学腐蚀性、高温稳定性和电绝缘性能的聚合物材料。
关于PTFE的蠕变温度,蠕变是指在长时间受力作用下,材料逐渐发生形变的现象。
PTFE具有相对较低的蠕变温度,大约在25°C至35°C之间。
这表示在这个温度范围内,PTFE可能开始表现出蠕变特性。
然而,PTFE 的高温稳定性使其在高温环境下仍能保持相对较好的性能,因此在实际应用中,通常在PTFE的蠕变温度之下的温度范围内使用。
值得注意的是,PTFE在高温下可以保持稳定性,但在高温下的长时间使用也可能导致其性能下降。
此外,PTFE在高温下可能会分解释放有毒气体,因此在应用中需要注意相关的安全和环保问题。
具体的PTFE蠕变温度可能会受到材料的不同牌号、制备方法以及实际应用条件等因素的影响。
因此,在具体的工程设计中,建议参考材料供应商提供的技术数据表,以获取更准确的关于PTFE蠕变温度的信息。
聚合物流变学复习题一、名词解释(任选5小题,每小题2分,共10分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT 将 某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
9、断裂韧性K 1C :表征材料阻止裂纹扩展的能力,是材料抵抗脆性破坏能力的韧性指标,s b C E c K γπσ21==,其中,σ b 为脆性材料的拉伸强度;C 为半裂纹长度;E 为材料的弹性模量;s γ为单位表面的表面能。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
或拉伸流动:质点速度仅沿流动方向发生变化的流动。
聚合物的黏弹现象及理解———蠕变及应力松弛概念解析李丽萍(东北林业大学理学院,黑龙江哈尔滨150040)摘要:针对《高分子物理》课程中黏弹现象难于理解,作者根据教学经验对聚合物的黏弹性进行解析,通过理论联系实际,让学生加深对黏弹现象的理解,对于提高学生对课程的整体认识,强化学生对课程的理解,取得了良好的教学效果。
关键词:黏弹性;蠕变;应力松弛中图分类号:G642文献标志码:A文章编号:1674-9324(2015)11-0206-02同一物体即可以是弹性的,也可以是黏性的,主要因环境温度或外力作用速率不同,在某些条件下主要表现为弹性,而在其他条件下主要表现黏性。
聚合物的这种特性称为黏弹性,对于黏性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。
这种现象称为应力松弛[1,2]。
在应力保持不变的情况下,材料可随时间继续变形,这种性能就是蠕变或流动,因此高分子材料具有黏弹性。
材料的黏弹性能主要表现在蠕变和应力松弛两个方面。
蠕变与力学松弛是材料在加载完成能够以后的力学反应,或衡量材料在使用过程中的尺寸稳定性[3,4],本文结合聚合物的分子运动,阐述聚合物的蠕变和应力松弛过程。
一、蠕变(Creep)1.蠕变概念解析。
蠕变,是在一定温度及应力下,固体材料缓慢永久性的移动或者变形的趋势。
即在较小的恒定外力作用下,应变随时间延长而慢慢增加的现象。
它的发生是低于材料屈服强度的应力长时间作用下,材料内部通过链段与网链的蠕动、变形、调整位置,逐步达到与外应力相平衡的过程。
它不同于塑性变形,塑性变形通常在应力超过弹性极限之后才出现,发生塑性形变时,微观结构相邻部分产生永久性位移,在外力去除后形变不能恢复,而蠕变只要应力的作用时间相当长,它在应力小于弹性极限时也能出现,当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态。
由于高聚物既有弹性又有黏性,所以外力对他所做的功一部分以弹性能的形式储存起来,另一部分又以热的形式消耗掉。
聚合物材料中的流变性能测试分析在聚合物材料的开发、制造和应用过程中,流变性能测试是一个重要的环节,其能够有效地评估材料的变形行为、力学性能以及应用性能。
因此,了解聚合物材料中的流变性能及其测试分析方法,对于提高聚合物材料的应用性能、推动聚合物材料的研究和应用具有重要的意义。
一、聚合物材料的流变性能聚合物材料是指一类具有高分子结构的材料,其分子量通常高于10万,这种材料的性能是由其分子结构决定的。
在应用场合中,聚合物材料的性能会随着其形状、尺寸和应力状态的变化而发生变化。
因此,聚合物材料的流变性能对于其应用性能的评估和控制具有重要的作用。
聚合物材料的流变性能包括了黏弹性、塑性和蠕变等性质。
黏弹性是指聚合物材料在受到一定应力时的变形能力,即材料随时间的变形量。
塑性是指聚合物材料在受到应力时,随着应力的增加发生的可塑性变形。
蠕变是指聚合物材料在受到恒定应力时,材料随时间的收缩变形。
二、聚合物材料的流变性能测试聚合物材料的流变性能测试是利用流变仪对聚合物材料进行测试,主要包括剪切模量、黏性、塑性和流量指数等参数的测试。
其测试过程是将样品装入流变仪的测量室中,然后通过引入规定的变形应力,来测定聚合物材料在规定的应力范围和频率下的流变性能。
流变仪是一种专门用于测量材料流变性质的仪器。
其主要原理是利用试样在测量室中应变或位移的变化来计算材料在不同应力下的黏弹性、塑性、蠕变等性质。
流变仪可以通过调节控制板的参数,来控制样品的速度、应力、频率和温度等参数,从而实现对材料流变性质的测试和分析。
三、聚合物材料流变性能测试分析1.剪切模量测试分析剪切模量是衡量材料刚度和变形能力的重要参数。
聚合物材料的剪切模量随着应力的增加而增加,因此,其在应用过程中往往需要具有一定的刚度和力学性能。
流变仪可以通过调节控制板的参数,来测定样品在不同应力下的剪切模量。
2.黏性测试分析黏性是衡量材料流体性质的重要参数。
聚合物材料的黏性随着应力的增加而减小,因此其应用过程中不易出现黏滞和流动离散等情况。
一.名词解释1. 链段:高分子链上能独立运动(或自由取向)最小单元。
2. 溶胀:高聚物溶解前吸收溶剂而体积增大的现象。
3. 蠕变:在恒温下施加一定的恒定外力时,材料的形变随时间而逐渐增大的力学现象。
4. 介电损耗:在交变电场的作用下,电介质由于极化而消耗的电能。
5. 构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。
6. 分子量分布宽度指数:描述聚合物分子量分布宽度的常用参数之一,是实验中各个分子量与平均分子量之间差值的平方平均值,可简明地描述聚合物试样分子量的多分散性。
有重均和数均之分。
其数值越大,表明其分子量分布越宽。
7. 时温等效原理:指升高温度和延长观察时间对于聚合物的分子运动是等效的,对于聚合物的粘弹行为也是等效的。
8. 高分子链:单体通过聚合反应连接而成的链状分子,称为高分子链,高分子中的重复结构单元的数目称为聚合度。
9. 构型:指分子中由化学键所固定的原子在空间的几何排列,或指分子中原子的键接方式。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
构型不同的异构体有旋光、几何、键接三种。
10. 链段:由于分子内旋受阻而在高分子链中能够自由旋转的单元长度,称为链段。
作为一个独立运动的单元,是描述柔性的尺度。
11. 内聚能密度:把1mol 的液体或固体分子移到其分子引力范围之外所需要的能量为内聚能。
单位体积的内聚能称为内聚能密度,一般用CED 表示。
12. 溶解度参数:内聚能密度的平方根称为溶解度参数,一般用δ 表示。
13. 等规度:等规度是高聚物中含有全同立构和间同立构总的百分数。
14. 结晶度:结晶度即高聚物试样中结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。
15. 介电性:包括介电系数、介电损耗、介电击穿等,介电性的本质是物质在外场(电场、力、温度等)作用下的极化。
16. 海岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。
在聚合物科学中,蠕变、应力松弛、滞后和内耗是与聚合物材料的力学行为相关的术语。
蠕变(Creep):蠕变是指在持续受到应力的情况下,聚合物材料会随着时间的推移发生形变。
蠕变是一个时间依赖的现象,即应力施加时间越长,形变越明显。
蠕变通常由于聚合物链的重新排列和滑移引起,导致聚合物结构的变化。
蠕变是一种可逆现象,当去除应力时,材料会回弹至原始形态。
应力松弛(Stress relaxation):应力松弛是指在一定的应变条件下,聚合物材料所受的应力会随着时间的推移逐渐减小。
这是因为聚合物链在应力作用下发生重排,使得材料内部的应力逐渐减小。
与蠕变不同,应力松弛通常是在给定应变条件下观察到的。
滞后(Hysteresis):滞后是指聚合物材料在循环加载和卸载的过程中,其应力和应变之间存在的差异。
在加载期间,聚合物会表现出较高的应力响应,但在卸载期间,应力并不完全消失。
这种差异是由于聚合物链的结构重排和能量耗散引起的。
滞后现象常见于高分子弹性材料,如弹簧和橡胶。
内耗(Internal friction):内耗是指聚合物材料在受力或形变时,由于分子内部摩擦和相互作用而产生的能量损耗。
内耗可以导致材料的能量耗散和温升。
聚合物材料的内耗通常与材料的分子结构、聚合度和温度等因素有关。
内耗在聚合物的动态力学性能和阻尼特性中起着重要作用。
这些现象在聚合物工程和材料科学中具有重要的应用。
研究和了解聚合物的蠕变、应力松弛、滞后和内耗行为对于设计和开发具有特定力学性能和可靠性的聚合物制品非常重要。
kelvin模型蠕变方程推导
Kelvin模型是一种经典的线性弹性模型,常用于描述聚合物蠕变行为。
蠕变是指材料在一定应力下,随着时间的推移产生的变形。
Kelvin模型中,材料被看作由一个弹簧和一个粘滞元素组成的串联结构。
弹簧代表材料的弹性,粘滞元素代表材料的粘性,两者共同作用使得材料在受到外力时呈现出蠕变行为。
根据Kelvin模型,材料的蠕变方程可以表示为:
ε(t) = σ/E + ησ/η0 * (1 - e^(-t/τ))
其中,ε(t)表示时间t内的应变,σ表示施加的应力,E表示材料的弹性模量,η表示材料的粘滞阻尼系数,η0表示材料的初始粘滞阻尼系数,τ表示材料的松弛时间。
该蠕变方程的含义是,随着时间的推移,材料的应变将由施加应力和其粘滞元素的贡献共同决定。
当时间趋于无穷大时,材料的应变将趋近于一个稳定值,这反映了材料的稳态蠕变行为。
Kelvin模型蠕变方程的推导,需要引入弹性与粘性的概念,并运用线性微积分和微积分方程的知识进行推导。
通过这种方法,我们可以深入理解材料的蠕变行为,为工程应用提供参考依据。
- 1 -。
01聚合物蠕变蠕变在恒定温度、较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象,称为形变。
蠕变过程中包括三种形变:(1)瞬时普弹形变(虎克弹性)特征:施加应力,形变瞬时产生,除去外力,立即恢复。
(2)高弹形变特征:通过链段的运动逐渐展开,形变量大,且形变的发展与时间有关,恢复也是逐渐进行的。
(3)黏性形变——永久变形特征:黏性形变的发展与时间呈线性关系,外力除去后,不能恢复。
例如,软PVC丝悬挂一定重量的砝码,就会慢慢地伸长,解下砝码后,又会慢慢缩回去,这就是典型的蠕变现象。
对于工程塑料,要求蠕变越小越好,对于蠕变严重的材料,使用时需采取必要补救措施。
如硬PVC有良好的抗腐蚀性能,可用于加工化工管道、容器等设备,但它容易蠕变,使用时必须增加支架以防止蠕变.PFTE是塑料中摩擦系数最小的,由于其蠕变现象严重,所以不能用作机械零件,但却是很好的密封材料.为探究GFRP锚杆在循环荷载下的黏结锚固性能,在软岩地基边坡开展GFRP 锚杆现场拉拔试验,通过光纤光栅应变传感器测量技术进行研究。
结果表明:循环荷载作用下锚杆杆体与锚固体的黏结蜕化深度小于锚杆的有效锚固长度,黏结蜕化深度以上锚杆杆体与锚固体界面提供摩擦力,黏结蜕化深度以下提供黏聚力。
当锚固界面受到破坏时,黏聚力将失去作用。
锚杆同-锚固深度处循环荷载作用的次数越多,锚固界面的黏结蜕化现象越严重;不同锚固深度处循环荷载作用的次数越多,黏结蜕化现象反而越不明显。
图7为GFRP锚杆杆体应变时程曲线,表明不同循环荷载对锚杆杆体黏结蜕化作用的影响。
通过多变量控制下的GFRP锚杆静载和反复荷载试验发现:在静载和反复荷载试验下,GFRP锚杆的破坏形式均为杆体拔出破坏;在反复荷载作用下,较少的循环次数对GFRP筋与混凝土黏结强度和锚杆滑移量影响不明显,当在低应力水平、反复荷载循环次数较少时,GFRP锚杆黏结强度退化不显著,反而在一定程度上有所增加;而在高应力反复荷载作用下,GFRP筋与混凝土间的黏结强度降低,黏结性能退化比较明显。
1 聚合物流变学复习题参考答案一、名词解释(任选 5 小题,每小题 2 分,共 10 分):1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。
应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。
或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象.2.端末效应:流体在管子进口端一定区域内剪切流动与收敛流动会产生较大压力降,消耗于粘性液体流动的摩擦以及大分子流动过程的高弹形变,在聚合物流出管子时,高弹形变恢复引起液流膨胀,管子进口端的压力降和出口端的液流膨胀都是与聚合物液体弹性行为有密切联系的现象。
2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。
挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。
4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。
5、非牛顿流体:凡不服从牛顿粘性定律的流体。
牛顿流体:服从牛顿粘性定律的流体。
6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。
膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。
7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。
8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。
10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。
塑料蠕变曲线引言塑料是一种常见的材料,被广泛应用于各个领域。
然而,随着时间的推移,塑料会发生一种现象,即蠕变。
蠕变是指在长时间受力的情况下,塑料会发生变形,导致塑料制品失去原有的形状和性能。
了解塑料蠕变的曲线是非常重要的,可以帮助我们选择合适的塑料材料,设计出更加可靠的塑料制品。
塑料蠕变的定义和机理塑料蠕变是指在长时间受力下,塑料会发生形状和尺寸的持久变化。
蠕变可以分为弹性蠕变和塑性蠕变两种类型。
•弹性蠕变:在一定的应力作用下,塑料会发生可逆性的形变。
一旦去除应力,塑料会恢复到初始形状。
这种形变是由于聚合物链的伸长和取向所致。
•塑性蠕变:在长时间受力下,塑料会发生非可逆性的形变。
一旦去除应力,塑料无法完全恢复到初始形状,并且会产生永久变形。
这种形变是由于分子链的断裂、滑移和交联所致。
塑料蠕变的机理主要涉及分子链的运动和聚合物结构的变化。
分子链会在应力下发生伸长和取向,使得塑料材料发生形变。
同时,分子链的运动也可能会导致链断裂、滑移等现象,进一步加速蠕变过程。
塑料蠕变曲线和测试方法为了研究塑料的蠕变性能,人们通常使用蠕变试验方法。
在蠕变试验中,将塑料样品在一定的应力和温度条件下进行恒定载荷或恒定应力下的长时间加载,记录下载荷和时间的关系。
根据试验结果,可以绘制出塑料蠕变曲线。
塑料蠕变曲线通常分为三个阶段:初期蠕变、稳定蠕变和加速蠕变。
•初期蠕变:在施加应力的初始阶段,塑料会发生快速的蠕变,形变速率较大。
这是由于塑料内部结构的马上重新排列和微观损伤的修复造成的。
•稳定蠕变:经过一段时间的加载后,塑料会进入稳定蠕变阶段。
在这个阶段,塑料的形变速率逐渐减小,并保持一个较稳定的数值。
这是由于塑料内部结构的稳定重新调整所致。
•加速蠕变:当加载时间继续增加时,塑料的形变速率又开始增加。
这是由于塑料内部结构的继续破坏和变形导致的。
通过测试,可以获取塑料蠕变的应力、时间和形变等数据,进而分析塑料的蠕变性能,制定合适的使用条件和设计准则。
第一章高分子链的结构*近程结构:单个高分子内一个或几个结构单元的化学结构和立体化学结构。
又称高分子的一次结构。
*远程结构:整个分子的大小和在空间的形态,又称高分子的二次结构。
*构型:分子中由化学键所固定的原子在空间的几何排列。
*构象:由于围绕单键内旋转而产生的分子在空间的不同形态称作构象。
*键接结构:指聚合物大分子结构单元的连接方式。
*全同立构(等规立构):结构单元含有不对称碳原子C*的聚合物,C -C 链成锯齿状放在一个平面上。
当取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。
*间同立构(间规立构):结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。
当取代基相间的分布于主链平面的二侧或者说两种旋光异构单元交替键接。
无规立构:结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。
当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接。
*柔顺性:高分子长链能发生不同程度卷曲的特性或者说高分子链能改变其构象的性质,简称柔性。
静态柔顺性:又称平衡态柔性,指的是高分子链处于较稳定状态时的卷曲程度。
*动态柔顺性:又称动力学柔性,指的是分子链从一种平衡态构象转变成另一种平衡态构象的容易程度。
*链段:高分子链上能独立运动的最小单元。
*等效自由结合链:在库恩统计法中,以链段为统计单元,链段看作刚性棒,自由连接,称为等效自由结合链。
*空间位阻参数σ:以σ来度量由于链的内旋转受阻而导致的分子尺寸增大程度的量度,σ愈小分子愈柔顺。
无扰尺寸A :因为均方末端距与键数n 成正比,而n 又比例于分子量M ,所以可以用单位分子量的均方末端距作为衡量分子柔性的参数,A 值愈小,分子链愈柔顺. 极限特征比C ∞:链均方末端距与自由结合链的均方末端距的比值,当n →∞时的极限值。
链的柔性愈大,则C ∞值愈小。
*均方末端距:线型高分子链的两端直线距离的平方的平均值。
交联聚合物的蠕变全过程交联聚合物是一种特殊的高分子材料,具有良好的强度和稳定性。
它在应用中表现出不可忽视的蠕变现象。
蠕变是指材料在长时间受力作用下发生的形变现象。
本文将从交联聚合物的定义、蠕变的原因、蠕变行为及其影响因素等方面进行探讨。
我们来了解一下交联聚合物的基本概念。
交联聚合物是由线性聚合物经过化学交联或物理交联等方法形成的网络结构的高分子材料。
这种网络结构赋予了交联聚合物优异的机械性能和化学稳定性。
然而,正是由于其特殊的结构,交联聚合物在长时间受力作用下会产生蠕变现象。
那么,为什么交联聚合物会发生蠕变呢?蠕变主要是由于聚合物链之间的相互滑动和取向重排引起的。
在受力作用下,聚合物链会发生位移和重排,使得材料整体发生形变。
这种形变是由于聚合物链的长期弛豫导致的,而不是瞬时应变造成的。
蠕变行为可以通过蠕变曲线来描述。
一般来说,蠕变曲线可以分为三个阶段:瞬态蠕变、稳态蠕变和加速蠕变。
瞬态蠕变阶段是指材料在刚开始受力作用下出现的瞬时弹性形变。
稳态蠕变阶段是指材料经过一段时间后达到的稳定蠕变速率。
加速蠕变阶段是指材料在长时间受力作用下蠕变速率逐渐增大的过程。
蠕变行为受多种因素的影响,其中温度和应力是最主要的两个因素。
温度的升高会显著增加聚合物链的运动能力,从而加速蠕变速率。
而应力的增加会导致聚合物链之间的相互作用增强,从而减缓蠕变速率。
此外,材料的结构和化学组成也会对蠕变行为产生影响。
例如,交联程度的增加会使材料的蠕变速率降低。
蠕变对交联聚合物的应用有着重要的影响。
在一些需要长期受力的工程领域,如建筑材料、航空航天和汽车工业等,蠕变是一个必须考虑的因素。
合理选择交联聚合物的结构和组成,可以有效地控制蠕变现象,提高材料的使用寿命和性能稳定性。
交联聚合物的蠕变现象是由聚合物链的长期弛豫引起的。
蠕变行为可以通过蠕变曲线来描述,其包括瞬态蠕变、稳态蠕变和加速蠕变三个阶段。
蠕变受温度、应力、结构和化学组成等因素的影响。
蠕变定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。
它的发生是低于材料屈服强度的应力长时间作用的结果。
这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。
取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。
阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。
2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶段的应变率。
3颈缩现象,应变率随着应变增大指数性的增长。
晶体蠕变(考虑金属)公式: Q m kTb d C e dt d εσ-=其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。
位错蠕变在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。
当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。
位错蠕变中,self diffusion Q Q -=,46m =,0b =。
因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。
引入初始应力0σ,低于初始应力时无法测量。
这样,方程就写成0()Q m kT d C e dtεσσ-=-。
Nabarro-Herring 蠕变在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。
k 和原子通过晶格的扩散系数有关,self diffusion Q Q -=,1m =,2b =。
因此N-H 蠕变是一种弱应力依赖、中等晶粒尺寸依赖的蠕变,它的蠕变形变率随着晶粒尺寸增长而降低。
故公式变化成:2Q kT d C e dt dεσ-= 上图是相关文献中的表格,按蠕变机理不一样确定指数m (在表中是n ),以及常见金属对应的激活能。
注意:金属蠕变在受力元件温度超过0.3Tα(Tα是熔点温度)时才开始显现出来,把常见金属熔点温度列我们可以看出,以上几种金属,在常温的贮存条件下钢、铜等熔点较高的金属一般不考虑蠕变,而铝、锡等金属常常会受到蠕变的影响。
聚合物蠕变的定义
聚合物蠕变的定义是指在一定温度和较小的恒定外力的作用下,材料的变形随时间的增加而逐渐增大的一种现象,主要的外力形式有:拉伸、弯曲、剪切、压缩等。
聚合物蠕变最为直接地表现了高聚物静态粘弹性能,也是材料寿命主要失效形式之一。
它与普通的塑性变形不同,塑性变形一般在应力超过弹性极限以后才产生,而蠕变变形是随时间变化的一种现象,只要作用时间足够长,没有达到弹性极限同样也会出现蠕变变形。
聚合物蠕变大致可划分为三个阶段。
第一阶段为减速螺变阶段,是指出现弹性形变以后的形变阶段,这个阶段的蠕变速率随时间地增长而不断下降;第二阶段为稳态螺变或着恒速蠕变阶段,蠕变速率保持不变,这个阶段的形变硬化与软化过程表现出一种平衡的状态,同时这一阶段的蠕变速率最小;第三阶段为加速蠕变阶段,蠕变速率随时间增长又开始大幅度地增加,最后导致材料断裂最终的破坏。