2019年多元统计分析课本数据.doc
- 格式:doc
- 大小:1.03 MB
- 文档页数:17
多元统计剖析实例院系 : 商学院学号 :姓名 :多元统计剖析实例本文采集了 2012 年 31 个省市自治区的农林牧渔和有关农业数据 , 经过对对采集的数据进行比较剖析对 31 个省市自治区进行分类 . 选用了 6个指标农业产值 , 林业产值 . 牧业总产值 , 渔业总产值 , 乡村居民家庭拥有生产性固定财产原值 , 乡村居民家庭经营耕地面积 .数据以下表 :一. 聚类法设定 4 个群聚 , 采纳了系统聚类法 . 下表为 spss 剖析以后的结果 .聚类表群集组合初次出现阶群集阶群集 1 群集 2 系数群集 1 群集 2 下一阶1 5 7 226.381 0 0 132 2 9 1715.218 0 0 53 22 24 1974.098 0 0 74 1 29 5392.690 0 0 65 2 30 6079.755 2 0 66 1 2 11120.902 4 5 87 4 22 21528.719 0 3 118 1 26 23185.444 6 0 149 12 20 26914.251 0 0 1910 27 31 35203.443 0 0 2011 4 28 50321.121 7 0 2212 11 13 65624.068 0 0 2413 5 25 114687.756 1 0 1714 1 21 169600.075 8 0 2215 8 18 188500.814 0 0 2116 17 19 204825.463 0 0 2117 5 14 268125.103 13 0 2018 3 23 387465.457 0 0 2619 6 12 425667.984 0 9 2320 5 27 459235.019 17 10 2321 8 17 499195.430 15 16 2522 1 4 559258.810 14 11 2823 5 6 708176.881 20 19 2424 5 11 854998.386 23 12 2825 8 10 1042394.608 21 0 2626 3 8 1222229.597 18 25 2927 15 16 1396048.280 0 0 2928 1 5 1915098.014 22 24 3029 3 15 3086204.552 26 27 3030 1 3 6791755.637 28 29 0Rescaled Distance Cluster CombineCASE 0 5 1015 20 25 Label Num +--------- +--------- +--------- +--------- +---------+内蒙 5 -+吉林7 -+云南25 -+-+江西14 -+ +-+陕西27 -+-+ |新疆31 -+ +-+安徽12 -+-+ | |广西20 -+ +-+ +------- +辽宁 6 ---+ | |浙江11 -+----- + |福建13 -+ |重庆22 -+ +--------------------------------- +贵州24 -+ | |山西 4 -+--- + | |甘肃28 -+ | | |北京 1 -+ | | |青海29 -+ +--------- + |天津 2 -+ | |上海9 -+ | |宁夏30 -+--- + |西藏26 -+ |海南21 -+ |河北 3 ---+----- + |四川23 ---+ | |黑龙江8 -+-+ +------------- + |湖南18 -+ +--- + | | |湖北17 -+-+ +-+ +------------------------- + 广东19 -+ | |江苏10 ------- + |山东15 ----------- +----------- +河南16 ----------- +群集成员事例 4 群集1: 北京 12: 天津 13: 河北 14: 山西 15: 内蒙 26: 辽宁 17: 吉林 28: 黑龙江 29: 上海 110: 江苏 111: 浙江 112: 安徽 113: 福建 114: 江西 115: 山东 316: 河南 117: 湖北 118: 湖南 119: 广东 120: 广西 121: 海南 122: 重庆 123: 四川 124: 贵州 125: 云南 126: 西藏 427: 陕西 128: 甘肃 129: 青海 130: 宁夏 131: 新疆 2从 SPSS剖析结果能够获得 , 内蒙 , 吉林 , 黑龙江 , 新疆为第 2族群 , 这一族群的特色是农业收入可能不高 , 可是农民的固定财产 , 和耕地面积特别高 , 农民的充裕程度或许机械化程度较高; 山东是第 3族群 , 这一族群中六个指标都处于较高水平,农林牧渔四项收入都处于较高水平并且农民充裕; 西藏处于第 4族群 , 这是因为 , 西藏人员较少 , 自然条件恶劣 , 可使用耕地少 , 可是 , 因为国家的扶助 , 农民的固定 财产许多 , 农民相对而言比较富裕 ; 大部分省份属于第 1族群 , 这一族群的特色在 于六项指标都没有较为突出的一项, 或许农林牧渔收入的原来就少, 或许是农民 的固然比较辛苦 , 整体的农业收入较高 , 可是农民的收入水平比较低, 固定财产较 少 .三. 鉴别法X 1,X 2,X 3,X 4,X 5,X 6分别代表农业产值 , 林业产值 . 牧业总产值 , 渔业总产值 , 乡村居民家庭拥有生产性固定财产原值, 乡村居民家庭经营耕地面积 .剖析事例办理纲要未加权事例N百分比有效31 100.0清除的缺失或越界组代码 0 .0 起码一个缺失鉴别变量 0 .0 缺失或越界组代码还有起码一 0.0个缺失鉴别变量共计 0 .0 共计31 100.0实验结果剖析 :组统计量有效的 N (列表状态)Average Linkage (Between Groups) 均值 标准差 未加权的已加权的1农业总产值 1463.8900 1062.0348625 25.000 林业总产值 118.5768 87.02052 25 25.000 牧业总产值 830.3664 671.10440 25 25.000渔业总产值291.4128346.719022525.000乡村居民家庭拥有生产性固定14432.3400 5287.92950 25 25.000 财产原值乡村居民家庭经营耕地面积 1.5496 .88484 25 25.000 2 农业总产值1582.2975 543.92851 4 4.000林业总产值93.3500 37.71131 4 4.000 牧业总产值1021.3175 372.88255 4 4.000 渔业总产值38.3500 27.49067 4 4.000 乡村居民家庭拥有生产性固定30226.4175 4233.77839 4 4.000 财产原值乡村居民家庭经营耕地面积9.4975 3.30626 4 4.000 3 农业总产值3960.6200 . a 1 1.000林业总产值107.0100a1 1.000 .牧业总产值2285.9200 . a 1 1.000 渔业总产值1267.0700 . a 1 1.000 乡村居民家庭拥有生产性固定19168.1400 . a 1 1.000 财产原值乡村居民家庭经营耕地面积 1.6400 . a 1 1.000 4 农业总产值53.3900 . a 1 1.000林业总产值 2.5600 . a 1 1.000牧业总产值59.0200a1 1.000 .渔业总产值.2200 . a 1 1.000乡村居民家庭拥有生产性固定52935.0700 . a 1 1.000财产原值乡村居民家庭经营耕地面积 1.8900 . a 1 1.000 从表上能够看出 , 组均值之间差值很大 . 各个分组 , 在 6 项指标上均值有较明显的差别 .组均值的均等性的查验Wilks 的 Lambda F df1 df2 Sig.农业总产值.773 2.640 3 27 .070林业总产值.928 .699 3 27 .561牧业总产值.801 2.238 3 27 .107渔业总产值.691 4.019 3 27 .017乡村居民家庭拥有生产性固定.253 26.538 3 27 .000财产原值组均值的均等性的查验Wilks 的 Lambda F df1 df2 Sig.农业总产值.773 2.640 3 27 .070林业总产值.928 .699 3 27 .561牧业总产值.801 2.238 3 27 .107渔业总产值.691 4.019 3 27 .017乡村居民家庭拥有生产性固定.253 26.538 3 27 .000财产原值乡村居民家庭经营耕地面积.190 38.263 3 27 .000 由表中能够知道 ,13456 指标之间的 sig 值较小 ,2 指标 sig 值有 0.561 较大 ,可是仍说明接受原假定 , 各指标族群间差别较大 .汇聚的组内矩阵农业总产值林业总产值牧业总产值渔业总产值有关性农业总产值 1.000 .449 .895 .400 林业总产值.449 1.000 .489 .481牧业总产值.895 .489 1.000 .294渔业总产值.400 .481 .294 1.000乡村居民家庭拥有生产性固定-.093 -.262 -.052 -.040财产原值乡村居民家庭经营耕地面积.056 -.033 .181 -.104汇聚的组内矩阵乡村居民家庭拥有生产性固定资乡村居民家庭经产原值营耕地面积有关性农业总产值-.093 .056林业总产值-.262 -.033牧业总产值-.052 .181渔业总产值-.040 -.104乡村居民家庭拥有生产性固定 1.000 .326财产原值乡村居民家庭经营耕地面积.326 1.000从表中能够知道 , 查验结果 p 值>0.05, 此时 , 说明协方差矩阵相等,能够进行 bayes 查验 .Fisher剖析法协方差矩阵的均等性的箱式查验对数队列式AverageLinkage(BetweenGroups) 秩对数队列式1 6 61.1252 . a . b3 . c . b4 . c . b汇聚的组内 6 62.351打印的队列式的秩和自然对数是组协方差矩阵的秩和自然对数。
第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。
多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。
本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。
二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。
三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。
2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。
(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。
(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。
(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。
(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。
四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。
(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。
(3)工作环境得分普遍较高,其中工作压力得分最低。
2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。
(2)创新能力与稳定性呈负相关。
3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。
第二章数据习题2.4地区人均GDP 三产比重人均消费人口增长文盲半文盲内蒙古5068 31.1 2141 8.23 15,83广西4076 34.2 2040 9.01 13.32贵州2342 29.8 1551 14.26 28.98云南4355 31.1 2059 12.1 25.48西藏3716 43.5 1551 15.9 57.97宁夏4270 37.3 1947 13.08 25.56新疆6229 35.4 2745 12.81 11.44甘肃3456 32.8 1612 10..04 28.65青海4367 40.9 2047 14.48 42.92第三章数据例3-1X1 职工标准工资收入 X5 单位得到的其他收入X2 职工奖金收入 X6 其他收入X3 职工津贴收入 X7 性别X4 其他工资性收入 X8 就业身份X1 X2 X3 X4 X5 X6 X7 X8 540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体例3-3English Norwegian Danish Dutch German French One En en een ein unTwo To to twee zwei deux Three Tre tre drie drei troisFour Fire fire vier vier quatre Five Fem fem vijf funf einqSix Seks seks zes sechs sixseven Sju syv zeven siebcn septEight Ate otte acht acht huitNine Ni ni negen neun neufTen Ti ti tien zehn dixSpanish Italian Polish Hungarian FinnishUno uno jeden egy yksiDos due dwa ketto kaksiTres tre trzy harom kolmecuatro quattro cztery negy neuaCinco cinque piec ot viisiSeix sei szesc hat kuusiSiete sette siedem het seitsemanOcho otto osiem nyolc kahdeksaunueve nove dziewiec kilenc yhdeksanDiez dieci dziesiec tiz kymmenen例3-4X1 食品支出(元/人)X5 交通和通讯支出(元/人)X2 衣着支出(元/人)X6 娱乐、教育和文化服务支出(元/人)X3 家庭设备、用品及服务支出(元/人)X7 居住支出(元/人)X4 医疗保健支出(元/人)X8 杂项商品和服务支出(元/人)X1 X2 X3 X4 X5 X6 X7 X8 辽宁1772.14 568.25 298.66 352.20 307.21 490.83 364.28 202.50 浙江2752.25 569.95 662.31 541.06 623.05 917.23 599.98 354.39 河南1386.76 460.99 312.97 280.78 246.24 407.26 547.19 188.52 甘肃1552.77 517.16 402.03 272.44 265.29 563.10 302.27 251.41 青海1711.03 458.57 334.91 307.24 297.72 495.34 274.48 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)4 人均其他副食支出(元/人)8 人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人)x3 人均住房支出(元/人)x7 人均医疗保健支出(元/人)4 人均家庭设备及服务支出(元/人)其他商品及服务支出(元/人)例4-4x1工业增加值率(%) x5 工业成本费用利润率(%)x2 总资产贡献率(%)x6 全员劳动生产率(万元/人·年)x3 资产负债率(%)x7 产品销售率(%)x4 流动资产周转次数(次)例4-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)x4 人均其他副食支出(元/人)人均其他非商品支出(元/人)习题4.6X1:0岁组死亡概率 X2:1岁组死亡概率 X4:55岁组死亡概率 X5:80岁组死亡概率第五章数据例5-3100固定资产原值实现值(%)100元固定资产原值实现利税(%)100元资金实现利税(%)100元工业总产值实现利税(%)100元销售收入实现利税(%)每吨标准煤实现工业产值(元)每千瓦时电力实现工业产值(元)全员劳动生产率(元/人.年)100元流动资金实现产值(元)北京(1)119.29 30.98 29.92 25.97 15.48 2178 3.41 21006 296.7天津(2)143.98 31.59 30.21 21.94 12.29 2852 4.29 20254 363.1 河北(3)94.8 17.2 17.95 18.14 9.37 1167 2.03 12607 322.2 山西(4)65.8 11.08 11.06 12.15 16.84 8.82 1.65 10166 284.7 内蒙(5)54.79 9.24 9.54 16.86 6.27 894 1.8 7564 225.4 辽宁(6)94.51 21.12 22.83 22.35 11.28 1416 2.36 13.386 311.7 吉林(7)80.49 13.36 13.76 16.6 7.14 1306 2.07 9400 274.1 黑龙江(8)75.86 15.82 16.67 20.86 10.37 1267 2.26 9830 267 上海(9)187.79 45.9 39.77 24.44 15.09 4346 4.11 31246 418.6 江苏(10)205.96 27.65 22.58 13.42 7.81 3202 4.69 23377 407.2 浙江(11)207.46 33.06 25.78 15.94 9.28 3811 4.19 22054 385.5 安徽(12)110.78 20.7 20.12 18.69 6.6 1468 2.23 12578 341.1 福建(13)122.76 22.52 19.93 18.34 8.35 2200 2.63 12164 301.2 江西(14)94.94 14.7 14.18 15.49 6.69 1669 2.24 10463 274.4 山东(15)117.58 21.93 20.89 18.65 9.1 1820 2.8 17829 331.1 河南(16)85.98 17.3 17.18 20.12 7.67 1306 1.89 11247 276.5 湖北(17)103.96 19.5 18.48 18.77 9.16 1829 2.75 15745 308.9 湖南(18)104.03 21.47 21.28 20.63 8.72 1272 1.98 13161 309 广东(19)136.44 23.64 20.83 17.33 7.85 2959 3.71 16259 334 广西(20)100.72 22.04 20.9 21.88 9.67 1732 2.13 12441 296.4 四川(21)84.73 14.35 14.17 16.93 7.96 1310 2.34 11703 242.5 贵州(22)59.05 14.48 14.35 24.53 8.09 1068 1.32 9710 206.7 云南(23)73.72 21.91 22.7 29.72 9.38 1447 1.94 12517 295.8 陕西(24)78.02 13.13 12.57 16.83 9.19 1731 2.08 11369 220.3甘肃(25)59.62 14.07 16.24 23.59 11.34 926 1.13 13084 246.8 青海(26)51.66 8.32 8.26 16.11 7.05 1055 1.31 9246 176.49 宁夏(27)52.95 8.25 8.82 15.57 6.58 834 1.12 10406 245.4 新疆(28)60.29 11.26 13.14 18.68 8.39 1041 2.9 10983 266例5-4厂家编号及指标固定资产利税率资金利税率销售收入利税率资金利润率固定资产产值率流动资金周转天数万元产值能耗全员劳动生产率1 琉璃河16.68 26.75 31.84 18.4 53.25 55 28.83 1.752 邯郸19.7 27.56 32.94 19.2 59.82 55 32.92 2.873 大同15.2 23.4 32.98 16.24 46.78 65 41.69 1.534 哈尔滨7.29 8.97 21.3 4.76 34.39 62 39.28 1.635 华新29.45 56.49 40.74 43.68 75.32 69 26.68 2.146 湘乡32.93 42.78 47.98 33.87 66.46 50 32.87 2.67 柳州25.39 37.82 36.76 27.56 68.18 63 35.79 2.438 峨嵋15.05 19.49 27.21 14.21 6.13 76 35.76 1.759 耀县19.82 28.78 33.41 20.17 59.25 71 39.13 1.8310 永登21.13 35.2 39.16 26.52 52.47 62 35.08 1.7311 工源16.75 28.72 29.62 19.23 55.76 58 30.08 1.5212 抚顺15.83 28.03 26.4 17.43 61.19 61 32.75 1.613 大连16.53 29.73 32.49 20.63 50.41 69 37.57 1.3114 江南22.24 54.59 31.05 37 67.95 63 32.33 1.5715 江油12.92 20.82 25.12 12.54 51.07 66 39.18 1.83第六章数据例6-3x1 x2 x3 x4 x5 x6北京830.8 38103630 30671.14 127.4 5925388 64413910天津549.74 40496103 34679 15.38 2045295 18253200石家庄331.33 11981505 10008.48 8.07 493429 10444919太原222.63 5183200 15248.11 2.43 333473 6601300呼和浩特97.81 2407794 4155.1 2 205779 2554496沈阳440.6 10643612 14635.74 7.3 810889 14229575长春313.05 15115270 10891.98 6.94 459709 8313564哈尔滨454.52 7215089 9517.8 24.99 763600 11536951上海1041.39 1.03E+08 63861 35.22 8992850 60546000南京391.67 25093816 14804.68 7.62 1364788 11336202 杭州263.67 32025226 16815.2 8.36 1503888 14664200 合肥160.18 5348605 4640.84 3.39 358694 3592488 福州205.43 12889573 8250.39 4.69 674522 8762245 南昌195.46 4149169 4454.45 3.62 314094 4828029 济南297.21 13185425 14354.4 6.6 761054 7583525 郑州249.72 9270494 7846.91 8.77 658737 10484859 武汉474.98 13344938 16610.34 13.58 804368 12855341 长沙205.83 5339304 10630.5 6.31 598930 7048500 广州493.32 40178324 28859.45 21.47 2747707 37273276 南宁167.99 2083763 5893.09 4.95 362435 4514961 海口76.05 2025643 3304.4 2.72 122541 2843664 成都386.23 9700976 28798.2 8.06 895752 14944197 贵阳165.27 3569419 5317.55 5.75 403855 3449487 昆明205.34 5809573 12337.86 7.07 601101 7085278 西安312.88 6386627 9392 12.21 648037 12105607 兰州175.54 5215490 5580.8 3.7 205660 4683830 西宁105.13 1148959 2037.15 1.24 84397 1749293 银川79.2 1464867 2127.17 1.65 122605 1930771 乌鲁木齐142.94 3110943 12754.02 3.94 409119 4203000 大连297.48 15468641 21081.47 6.6 1105405 13101986 宁波168.81 26302862 13797.38 4.8 1394162 10596339 厦门83.74 13201500 3054.82 2.83 701456 3971559 青岛329.96 25588695 30552.6 6.72 1201398 9084693 深圳122.39 52451037 6792.66 10.84 2908370 21994500 重庆753.92 15889928 32450.2 12.83 1615618 18965569 x7 x8 x9 x10 x11 x12北京434.15 10989365 15 17.3 8.56 44.94 天津174.5 3254148 18 7.99 7.23 17.45 石家庄86.74 1067432 18 7.23 8.28 21.56 太原74.55 945212 16 5.06 7.88 20.58 呼和浩特28.9 407963 18 3.81 8.92 26.58 沈阳101.7 1521548 15 9.32 6.7 28.36 长春89.7 1244167 15 11.87 7.03 18.75 哈尔滨168.83 2102165 14 12.75 6.34 18.51 上海281.51 7686511 19 14.57 12.92 19.11 南京87.91 1950742 16 9.06 12.13 136.72 杭州75.72 1867776 17 8.93 6.5 23.19 合肥37.88 526577 17 14.11 15.72 28.74 福州71.3 1073262 18 9.65 7.9 31.6南昌49.79 692717 17 7.37 7.67 23.98 济南78.38 1256160 19 7.77 10.62 19.54 郑州83.99 1137056 19 10.11 7.63 17.77 武汉136.08 1868350 17 6.87 4.16 8.34 长沙60.04 1019924 18 10.09 9.1 29.1 广州182.16 5247087 17 11.16 12.76 178.76 南宁50.79 668976 18 9.91 9.32 35.12 海口22.97 340392 20 5.09 7.07 15.79 成都124.03 1894496 17 8.95 10.17 25.59 贵阳54.53 664234 16 9.37 3.11 105.35 昆明73.34 1045469 15 15.33 4.49 23.33 西安113.73 1535896 15 7.32 4.48 8.82 兰州54.91 740661 15 10.33 6.3 11.22 西宁20.6 301364 17 11.47 4.92 14.2 银川29.12 393035 15 9.26 10.43 40.21 乌鲁木齐47.42 782873 19 22.89 6.49 20.53 大连82.13 1442215 14 13.79 6.24 40.21 宁波59.88 1418635 17 9.88 6.81 17.65 厦门54.78 1042111 20 15.5 8.15 26.44 青岛104.55 1603305 15 14.78 11.41 35.78 深圳104.98 3259900 21 114.91 47.29 177.62 重庆203.79 2535070 21 4.94 4.24 10.8第七章数据第九章数据例9-3第十章数据例10-2分行号不良贷款贷款余额应收贷款项目数固定资产投资额10.90 67.30 6.80 551.902 1.10 111.30 19.80 1690.903 4.80 173.00 7.70 1773.704 3.20 80.80 7.20 1014.5057.80 199.70 16.50 1963.206 2.70 16.20 2.20 1 2.207 1.60 107.40 10.70 1720.20812.50 185.40 27.10 1843.809 1.00 96.10 1.70 1055.9010 2.60 72.80 9.10 1464.30110.30 64.20 2.10 1142.7012 4.00 132.20 11.20 2376.70130.80 58.60 6.00 1422.8014 3.50 174.60 12.70 26117.101510.20 263.50 15.60 34146.7016 3.00 79.30 8.90 1522.90170.20 14.80 0.60 242.10180.40 73.50 5.90 1125.3019 1.00 24.70 5.00 413.4020 6.80 139.40 7.20 2864.302111.60 368.20 16.80 32163.9022 1.60 95.70 3.80 1044.5023 1.20 109.60 10.30 1467.90247.20 196.20 15.80 1639.7025 3.20 102.20 12.00 1097.10第十二章数据例12-1例12-2品牌内存容量/MB CPU/GHZ 单价/元方正联想惠普25651210242344200720010039第十三章数据例13-4第十四章数据例14-7城市天津北京锦州沈阳长春哈尔滨满洲里齐齐哈尔牡丹江吉林天津0北京137 0锦州499 486 0沈阳741 728 242 0长春1046 1033 547 305 01288 1275 789 547 242 0哈尔滨2326 2210 1724 1482 1177 935 0满洲里1451 1335 849 760 530 288 693 0齐齐哈尔牡丹1746 1630 1144 902 597 355 1290 643 0江吉林1187 1174 688 446 128 275 1210 563 630 0。
1、主成分分析的目的是什么?主成分分析是考虑各指标间的相互关系,利用降维的思想把多个指标转换成较少的几个相互独立的、能够解释原始变量绝大局部信息的综合指标,从而使进一步研究变得简单的一种统计方法。
它的目的是希望用较少的变量去解释原始资料的大局部变异,即数据压缩,数据的解释。
常被用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进展适当的解释。
2、主成分分析根本思想?主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标。
同时根据实际需要从中选取几个较少的综合指标尽可能多地反映原来的指标的信息。
● 设p 个原始变量为 ,新的变量(即主成分)为 , 主成分和原始变量之间的关系表示为?3、在进展主成分分析时是否要对原来的p 个指标进展标准化?SPSS 软件是否能对数据自动进展标准化?标准化的目的是什么?需要进展标准化,因为因素之间的数值或者数量级存在较大差距,导致较小的数被淹没,导致主成分偏差较大,所以要进展数据标准化; 进展主成分分析时SPSS 可以自动进展标准化;标准化的目的是消除变量在水平和量纲上的差异造成的影响。
求解步骤⏹ 对原来的p 个指标进展标准化,以消除变量在水平和量纲上的影响 ⏹ 根据标准化后的数据矩阵求出相关系数矩阵 ⏹ 求出协方差矩阵的特征根和特征向量⏹ 确定主成分,并对各主成分所包含的信息给予适当的解释版本二:根据我国31个省市自治区2006年的6项主要经济指标数据,表二至表五,是SPSS 的输出表,试解释从每X 表可以得出哪些结论,进展主成分分析,找出主成分并进展适当的解释:〔下面是SPSS 的输出结果,请根据结果写出结论〕 表一:数据输入界面p 21p x x x ,,, 2121p y y y ,,, 21表二:数据输出界面a〕此表为相关系数矩阵,表示的是各个变量之间的相关关系,说明变量之间存在较强的相关系数,适合做主成分分析。
观察各相关系数,假如相关矩阵中的大局部相关系数小于,如此不适合作因子分析。
作业一1.2 分析2016年经济发展情况排名省gdp 占比累计占比1 广东79512.05 10.30 10.302 江苏76086.2 9.86 20.173 山东67008.2 8.68 28.854 浙江46485 6.02 34.875 河南40160.01 5.20 40.086 四川32680.5 4.24 44.317 湖北32297.9 4.19 48.508 河北31827.9 4.12 52.629 湖南31244.7 4.05 56.6710 福建28519.2 3.70 60.3711 上海27466.2 3.56 63.9312 北京24899.3 3.23 67.1613 安徽24117.9 3.13 70.2814 辽宁22037.88 2.86 73.1415 陕西19165.39 2.48 75.6216 内蒙古18632.6 2.41 78.0417 江西18364.4 2.38 80.4218 广西18245.07 2.36 82.7819 天津17885.4 2.32 85.1020 重庆17558.8 2.28 87.3721 黑龙江15386.09 1.99 89.3722 吉林14886.23 1.93 91.3023 云南14869.95 1.93 93.2224 山西12928.3 1.68 94.9025 贵州11734.43 1.52 96.4226 新疆9550 1.24 97.6627 甘肃7152.04 0.93 98.5928 海南4044.51 0.52 99.1129 宁夏3150.06 0.41 99.5230 青海2572.49 0.33 99.8531 西藏1150.07 0.15 100.00将2016各省的GDP进行排名,可以发现,经济发达的的地区主要集中在东部地区。
西部gdp的占比较小。
作出2016各省的gdp直方图如下:作业二 多元回归分析2.1多元线性回归 2.1.1数据来源《福建省统计年鉴-2017》 年份 商品零售价格指数y 农业生产资料价格指数x1 工业生产价格指数x2 工业生产者购进价格指数x3 固定资产投资价格总指数x4 2000 98.9 97.4 100.5 112.4 100.2 2001 98 98.7 98.1 96.7 99.5 2002 98.3 99.9 97.6 97.6 99.7 2003 99.1 101.8 100.7 106.3 101.4 2004 102.7 112.5 102.6 113.3 103.4 2005 100.6 108.1 100.2 108.1 100.7 2006 100.5 100.9 99.2 103.9 102 2007 104.3 110.3 100.8 104.3 105.9 2008 105.7 123.6 102.7 110.2 105.9 2009 97.9 93.3 95.5 93.2 98 2010 103.4 102.4 103.2 107.7 103.3 2011 104.8 111.8 103.9 108 106.2 2012 101.8 103.3 98.7 97.7 100.3 2013 101.1 99.5 98.4 98.4 100.1 2014 101.1 99.5 98.6 98.3 100.4 2015 99.9 101.4 97 96.1 98.3 2016 100.7100.2 99.198 1002.1.2模型假设商品的零售价格会受很多因素的影响,对于影响零售价格指数y 的影响现在仅考虑农业生产资料指数x1、工业生产价格指数x2、工业生产者购进价格指数x3、固定资产投资的影响x4。
题目:研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
(注:要对方差齐性进行检验)不同温度与不同湿度粘虫发育历期表根据上述题目,分析结果如下。
一、相关理论概述F 检验与方差齐性检验在方差分析的F 检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。
如果各个实验组内总体方差为齐性,而且经过F 检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。
但是,方差齐性检验也可以在F 检验结果为多个样本所属总体平均数差异显著的情况下进行,因为F 检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。
本文分析数据采用后一种方法,即先F 检验再方差齐次性检验。
相对湿度(%) 温度℃ 重复1 2 3 4 10025 91.2 95.0 93.8 93.0 2787.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 8025 93.2 89.3 95.1 95.5 2785.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 4025 100.2 103.3 98.3 103.8 2790.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 3173.673.276.472.5二、从单因子方差角度分析(一)在假定相对湿度不变的情况下分析1、假定相对湿度恒为40%,分析不同温度对粘虫发育历期的影响。
如下表: 温度℃重复252729311100.2 90.6 77.2 73.6 2 103.3 91.7 85.8 73.2 3 98.3 94.5 81.7 76.4 4 103.8 92.2 79.7 72.5 Ti 405.6 369324.4295.7T 2i164511.36136161105235.36 87438.49在本例中,r=4,m=4, n=16 ,=1394.7,= 123413.4696T 2/n=(1394.7)2/16=121574.2556 (式1)( 式2)(式3)S E =S T -S A =1839.214-1762.297=76.917 (式4)数据的方差分析表见表1.表1 粘虫发育历期方差分析表粘虫发育历期 (相对湿度40%)来源平方和 df 均方 F 显著性 组间 1762.297 3 587.432 91.646.000组内 76.917 12 6.410总数1839.21415分析表1可知,F 0.05(3,12)=3.49,F 值=,91.646,F>F 0.05,P=0.000<0.05,说明在相对湿度为40%时,不同温度对粘虫发育历期有显著影响。
一、聚类分析例1、为深入了解我国人口的文化程度状况,现利用1990年全国人口普查数据对全国30个省市自治区进行聚类分析。
分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人口占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映较高、中等、较低文化程度人口的状况,原始数据如下表:(%)地区DXBZ CZBZ WMBZ 北京9.30 30.55 8.70 天津 4.67 29.38 8.92 河北0.96 24.69 15.21 山西 1.38 29.24 11.30 内蒙 1.48 25.47 15.39 辽宁 2.60 32.32 8.81 吉林 2.15 26.31 17.23 黑龙江 2.14 28.46 10.87 上海 6.53 31.59 11.04 江苏 1.47 26.43 17.23 浙江 1.17 23.74 17.46 安徽0.88 19.97 24.43 福建 1.23 16.87 15.63 江西0.99 18.84 16.22 山东0.98 25.18 16.87 河南0.85 26.55 16.15 湖北 1.57 23.16 15.79 湖南 1.14 22.57 12.10 广东 1.34 23.04 10.45 广西0.79 19.14 10.61 海南 1.24 22.53 13.97 四川0.96 21.65 16.24 贵州0.78 14.65 24.27 云南0.81 13.85 25.44 西藏0.57 3.85 44.43 陕西 1.67 24.36 17.62 甘肃 1.10 16.85 27.93 青海 1.49 17.76 27.70 宁夏 1.61 20.27 22.06 新疆 1.85 20.66 12.75 例2、根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数据的统计与分析教学内容:本节课的内容安排是七上第四章的一点补充,即在学习了数据的分析的基础上带学生到网络教室利用网络和EXCEL平台对生活和社会中的一些热点问题的相关数据进行统计和分析并得出相应的信息教材分析:数据的处理和分析是社会生活中较为普遍的一个知识点,与我们的生活息息相关,也是北师大版新教材每学期都要涉及的一个重要内容。
本节课不仅仅要让学生回顾和掌握所学的相关知识,还要通过动手实做了解信息技术在数据处理中的作用。
学校及学生状况分析:重庆外国语学校是全国首批创办的八所外国语学校之一,重庆市教委直属重点中学,全国享受20%保送名额的13所外国语学校之一,学校设备先进一流,实现了校园网络化,学生来自全国各地,素质普遍较高,由于我校是国家级课题“Z+Z智能教育平台运用与国家数学课程改革的实验研究”实验学校,学生有在网络教室上数学课的实际体验。
学习目标:认知目标:经历综合运用已有知识解决问题的过程,加深对数据的认识,体会数学与现实生活的联系。
能力目标:经历观察、比较、估计、推理、交流等过程,发展获得一些研究问题与合作交流的方法与经验。
让学生实际操作,了解信息技术在数据处理中的作用。
情感目标:设置丰富的问题情景与活动,激发学生的好奇心和自动学习的欲望,让学生想学,会学,乐学;体验数学与日常生活密切相关。
重点:通过对数据的分析从而得出相应的一些信息难点:比较、估计、推理等方法的应用教具:采用多媒体教学(Powerpoint和Excel展示)并让学生在网络教室动手实做。
教法:运用多种教学方法,既有老师的讲解,又有学生探索、师生共做,学生小组合作及动手实做。
教学过程:我们今天生活的这个世界,是一个充满信息、瞬息变化的世界,而表达信息的重要方式之一就是数据。
如果大家看看报纸、电视,就会发现无论是新闻、经济论坛、天气预报、广告或者是体育比赛,很多地方都十分频繁地使用着数据。
第二章数据第三章数据例3-1X1 职工标准工资收入 X5 单位得到的其他收入X2 职工奖金收入 X6 其他收入X3 职工津贴收入 X7 性别X4 其他工资性收入 X8 就业身份X1 X2 X3 X4 X5 X6 X7 X8 540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体例3-3English Norwegian Danish Dutch German French One En en een ein unTwo To to twee zwei deux Three Tre tre drie drei troisFour Fire fire vier vier quatre Five Fem fem vijf funf einqSix Seks seks zes sechs sixseven Sju syv zeven siebcn septEight Ate otte acht acht huitNine Ni ni negen neun neufTen Ti ti tien zehn dixSpanish Italian Polish Hungarian FinnishUno uno jeden egy yksiDos due dwa ketto kaksiTres tre trzy harom kolmecuatro quattro cztery negy neuaCinco cinque piec ot viisiSeix sei szesc hat kuusiSiete sette siedem het seitsemanOcho otto osiem nyolc kahdeksaunueve nove dziewiec kilenc yhdeksanDiez dieci dziesiec tiz kymmenen例3-4X1 食品支出(元/人)X5 交通和通讯支出(元/人)X2 衣着支出(元/人)X6 娱乐、教育和文化服务支出(元/人)X3 家庭设备、用品及服务支出(元/人)X7 居住支出(元/人)X4 医疗保健支出(元/人)X8 杂项商品和服务支出(元/人)X1 X2 X3 X4 X5 X6 X7 X8 辽宁1772.14 568.25 298.66 352.20 307.21 490.83 364.28 202.50 浙江2752.25 569.95 662.31 541.06 623.05 917.23 599.98 354.39 河南1386.76 460.99 312.97 280.78 246.24 407.26 547.19 188.52 甘肃1552.77 517.16 402.03 272.44 265.29 563.10 302.27 251.41 青海1711.03 458.57 334.91 307.24 297.72 495.34 274.48 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)4 人均其他副食支出(元/人)8 人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人)x3 人均住房支出(元/人)x7 人均医疗保健支出(元/人)4 人均家庭设备及服务支出(元/人)其他商品及服务支出(元/人)例4-4x1工业增加值率(%) x5 工业成本费用利润率(%)x2 总资产贡献率(%)x6 全员劳动生产率(万元/人·年)x3 资产负债率(%)x7 产品销售率(%)x4 流动资产周转次数(次)例4-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人)x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人)x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)x4 人均其他副食支出(元/人)人均其他非商品支出(元/人)习题4.6X1:0岁组死亡概率 X2:1岁组死亡概率 X4:55岁组死亡概率 X5:80岁组死亡概率第五章数据例5-3100固定资产原值实现值(%)100元固定资产原值实现利税(%)100元资金实现利税(%)100元工业总产值实现利税(%)100元销售收入实现利税(%)每吨标准煤实现工业产值(元)每千瓦时电力实现工业产值(元)全员劳动生产率(元/人.年)100元流动资金实现产值(元)北京(1)119.29 30.98 29.92 25.97 15.48 2178 3.41 21006 296.7天津(2)143.98 31.59 30.21 21.94 12.29 2852 4.29 20254 363.1 河北(3)94.8 17.2 17.95 18.14 9.37 1167 2.03 12607 322.2 山西(4)65.8 11.08 11.06 12.15 16.84 8.82 1.65 10166 284.7 内蒙(5)54.79 9.24 9.54 16.86 6.27 894 1.8 7564 225.4 辽宁(6)94.51 21.12 22.83 22.35 11.28 1416 2.36 13.386 311.7 吉林(7)80.49 13.36 13.76 16.6 7.14 1306 2.07 9400 274.1 黑龙江(8)75.86 15.82 16.67 20.86 10.37 1267 2.26 9830 267 上海(9)187.79 45.9 39.77 24.44 15.09 4346 4.11 31246 418.6 江苏(10)205.96 27.65 22.58 13.42 7.81 3202 4.69 23377 407.2 浙江(11)207.46 33.06 25.78 15.94 9.28 3811 4.19 22054 385.5 安徽(12)110.78 20.7 20.12 18.69 6.6 1468 2.23 12578 341.1 福建(13)122.76 22.52 19.93 18.34 8.35 2200 2.63 12164 301.2 江西(14)94.94 14.7 14.18 15.49 6.69 1669 2.24 10463 274.4 山东(15)117.58 21.93 20.89 18.65 9.1 1820 2.8 17829 331.1 河南(16)85.98 17.3 17.18 20.12 7.67 1306 1.89 11247 276.5 湖北(17)103.96 19.5 18.48 18.77 9.16 1829 2.75 15745 308.9 湖南(18)104.03 21.47 21.28 20.63 8.72 1272 1.98 13161 309 广东(19)136.44 23.64 20.83 17.33 7.85 2959 3.71 16259 334 广西(20)100.72 22.04 20.9 21.88 9.67 1732 2.13 12441 296.4 四川(21)84.73 14.35 14.17 16.93 7.96 1310 2.34 11703 242.5 贵州(22)59.05 14.48 14.35 24.53 8.09 1068 1.32 9710 206.7 云南(23)73.72 21.91 22.7 29.72 9.38 1447 1.94 12517 295.8陕西(24)78.02 13.13 12.57 16.83 9.19 1731 2.08 11369 220.3 甘肃(25)59.62 14.07 16.24 23.59 11.34 926 1.13 13084 246.8 青海(26)51.66 8.32 8.26 16.11 7.05 1055 1.31 9246 176.49 宁夏(27)52.95 8.25 8.82 15.57 6.58 834 1.12 10406 245.4 新疆(28)60.29 11.26 13.14 18.68 8.39 1041 2.9 10983 266例5-4厂家编号及指标固定资产利税率资金利税率销售收入利税率资金利润率固定资产产值率流动资金周转天数万元产值能耗全员劳动生产率1 琉璃河16.68 26.75 31.84 18.4 53.25 55 28.83 1.752 邯郸19.7 27.56 32.94 19.2 59.82 55 32.92 2.873 大同15.2 23.4 32.98 16.24 46.78 65 41.69 1.534 哈尔滨7.29 8.97 21.3 4.76 34.39 62 39.28 1.635 华新29.45 56.49 40.74 43.68 75.32 69 26.68 2.146 湘乡32.93 42.78 47.98 33.87 66.46 50 32.87 2.67 柳州25.39 37.82 36.76 27.56 68.18 63 35.79 2.438 峨嵋15.05 19.49 27.21 14.21 6.13 76 35.76 1.759 耀县19.82 28.78 33.41 20.17 59.25 71 39.13 1.8310 永登21.13 35.2 39.16 26.52 52.47 62 35.08 1.7311 工源16.75 28.72 29.62 19.23 55.76 58 30.08 1.5212 抚顺15.83 28.03 26.4 17.43 61.19 61 32.75 1.613 大连16.53 29.73 32.49 20.63 50.41 69 37.57 1.3114 江南22.24 54.59 31.05 37 67.95 63 32.33 1.5715 江油12.92 20.82 25.12 12.54 51.07 66 39.18 1.83第六章数据例6-3x1 x2 x3 x4 x5 x6北京830.8 38103630 30671.14 127.4 5925388 64413910天津549.74 40496103 34679 15.38 2045295 18253200石家庄331.33 11981505 10008.48 8.07 493429 10444919太原222.63 5183200 15248.11 2.43 333473 6601300呼和浩特97.81 2407794 4155.1 2 205779 2554496沈阳440.6 10643612 14635.74 7.3 810889 14229575长春313.05 15115270 10891.98 6.94 459709 8313564哈尔滨454.52 7215089 9517.8 24.99 763600 11536951上海1041.39 1.03E+08 63861 35.22 8992850 60546000 南京391.67 25093816 14804.68 7.62 1364788 11336202 杭州263.67 32025226 16815.2 8.36 1503888 14664200 合肥160.18 5348605 4640.84 3.39 358694 3592488 福州205.43 12889573 8250.39 4.69 674522 8762245 南昌195.46 4149169 4454.45 3.62 314094 4828029 济南297.21 13185425 14354.4 6.6 761054 7583525 郑州249.72 9270494 7846.91 8.77 658737 10484859 武汉474.98 13344938 16610.34 13.58 804368 12855341 长沙205.83 5339304 10630.5 6.31 598930 7048500 广州493.32 40178324 28859.45 21.47 2747707 37273276 南宁167.99 2083763 5893.09 4.95 362435 4514961 海口76.05 2025643 3304.4 2.72 122541 2843664 成都386.23 9700976 28798.2 8.06 895752 14944197 贵阳165.27 3569419 5317.55 5.75 403855 3449487 昆明205.34 5809573 12337.86 7.07 601101 7085278 西安312.88 6386627 9392 12.21 648037 12105607 兰州175.54 5215490 5580.8 3.7 205660 4683830 西宁105.13 1148959 2037.15 1.24 84397 1749293 银川79.2 1464867 2127.17 1.65 122605 1930771 乌鲁木齐142.94 3110943 12754.02 3.94 409119 4203000 大连297.48 15468641 21081.47 6.6 1105405 13101986 宁波168.81 26302862 13797.38 4.8 1394162 10596339 厦门83.74 13201500 3054.82 2.83 701456 3971559 青岛329.96 25588695 30552.6 6.72 1201398 9084693 深圳122.39 52451037 6792.66 10.84 2908370 21994500 重庆753.92 15889928 32450.2 12.83 1615618 18965569 x7 x8 x9 x10 x11 x12北京434.15 10989365 15 17.3 8.56 44.94 天津174.5 3254148 18 7.99 7.23 17.45 石家庄86.74 1067432 18 7.23 8.28 21.56 太原74.55 945212 16 5.06 7.88 20.58 呼和浩特28.9 407963 18 3.81 8.92 26.58 沈阳101.7 1521548 15 9.32 6.7 28.36 长春89.7 1244167 15 11.87 7.03 18.75 哈尔滨168.83 2102165 14 12.75 6.34 18.51 上海281.51 7686511 19 14.57 12.92 19.11 南京87.91 1950742 16 9.06 12.13 136.72 杭州75.72 1867776 17 8.93 6.5 23.19 合肥37.88 526577 17 14.11 15.72 28.74福州71.3 1073262 18 9.65 7.9 31.6 南昌49.79 692717 17 7.37 7.67 23.98 济南78.38 1256160 19 7.77 10.62 19.54 郑州83.99 1137056 19 10.11 7.63 17.77 武汉136.08 1868350 17 6.87 4.16 8.34 长沙60.04 1019924 18 10.09 9.1 29.1 广州182.16 5247087 17 11.16 12.76 178.76 南宁50.79 668976 18 9.91 9.32 35.12 海口22.97 340392 20 5.09 7.07 15.79 成都124.03 1894496 17 8.95 10.17 25.59 贵阳54.53 664234 16 9.37 3.11 105.35 昆明73.34 1045469 15 15.33 4.49 23.33 西安113.73 1535896 15 7.32 4.48 8.82 兰州54.91 740661 15 10.33 6.3 11.22 西宁20.6 301364 17 11.47 4.92 14.2 银川29.12 393035 15 9.26 10.43 40.21 乌鲁木齐47.42 782873 19 22.89 6.49 20.53 大连82.13 1442215 14 13.79 6.24 40.21 宁波59.88 1418635 17 9.88 6.81 17.65 厦门54.78 1042111 20 15.5 8.15 26.44 青岛104.55 1603305 15 14.78 11.41 35.78 深圳104.98 3259900 21 114.91 47.29 177.62 重庆203.79 2535070 21 4.94 4.24 10.8第七章数据第九章数据例9-3第十章数据例10-2分行号不良贷款贷款余额应收贷款项目数固定资产投资额10.90 67.30 6.80 551.902 1.10 111.30 19.80 1690.903 4.80 173.00 7.70 1773.704 3.20 80.80 7.20 1014.5057.80 199.70 16.50 1963.206 2.70 16.20 2.20 1 2.207 1.60 107.40 10.70 1720.20812.50 185.40 27.10 1843.809 1.00 96.10 1.70 1055.9010 2.60 72.80 9.10 1464.30110.30 64.20 2.10 1142.7012 4.00 132.20 11.20 2376.70130.80 58.60 6.00 1422.8014 3.50 174.60 12.70 26117.101510.20 263.50 15.60 34146.7016 3.00 79.30 8.90 1522.90170.20 14.80 0.60 242.10180.40 73.50 5.90 1125.3019 1.00 24.70 5.00 413.4020 6.80 139.40 7.20 2864.302111.60 368.20 16.80 32163.9022 1.60 95.70 3.80 1044.5023 1.20 109.60 10.30 1467.90247.20 196.20 15.80 1639.7025 3.20 102.20 12.00 1097.10第十二章数据例12-1第十三章数据例13-4第十四章数据。