辽宁省大连四十八中2015届高三上学期第一次摸底数学试卷(文科)
- 格式:doc
- 大小:379.00 KB
- 文档页数:17
2015年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1 B.2 C.3 D.1或22.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4]B.[1,3]C.[﹣2,1]D.[﹣1,1]8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()A.B.C.D.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e3510.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8 B.9 C.10 D.1111.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(﹣∞,) D.(﹣∞,]12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9 B.10 C.11 D.12二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)已知双曲线C :﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=.16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是(只写出所有正确命题的序)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年1月某日某省x个监测点数据统计如下:(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D 是BC边上的中点,连接OD交圆O与点M.(1)求证:DE是圆O的切线;(2)求证:DE•BC=DM•AC+DM•AB.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m 的值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.2015年东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求.1.(5分)已知集合A={0,b},B={x∈Z|x2﹣3x<0},若A∩B≠∅,则b等于()A.1 B.2 C.3 D.1或2【解答】解:∵集合B={x∈Z|x2﹣3x<0}={1,2},集合A={0,b},若A∩B≠∅,则b=1或b=2,故选:D.2.(5分)复数=()A.i B.﹣i C.2(+i)D.1+i【解答】解:复数==i,故选:A.3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:在三角形中,cos2A<cos2B等价为1﹣2sin2A<1﹣2sin2B,即sinA>sinB.若a>b,由正弦定理,得sinA>sinB.充分性成立.若sinA>sinB,则正弦定理,得a>b,必要性成立.所以,“a>b”是“sinA>sinB”的充要条件.即a>b是cos2A<cos2B成立的充要条件,故选C.4.(5分)向量,满足||=1,||=,(+)⊥(2﹣),则向量与的夹角为()A.45°B.60°C.90°D.120°【解答】解:设向量与的夹角为θ.∵(+)⊥(2﹣),∴(+)•(2﹣)=+==0,化为cosθ=0,∵θ∈[0,π],∴θ=90°.故选:C.5.(5分)实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为()A.B.C.D.【解答】解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.6.(5分)已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【解答】解:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.∴该三棱锥的体积V===.故选:B.7.(5分)椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[1,4]B.[1,3]C.[﹣2,1]D.[﹣1,1]【解答】解:椭圆的焦点坐标F1(,0),F2(,0).设P(2cosθ,sinθ)(θ∈∈[0,2π)).∴═(﹣﹣2cosθ,﹣sinθ)•(﹣2cosθ,﹣sinθ)=4cos2θ﹣3+sin2θ=3cos2θ﹣2,∵0≤cos2θ≤1,∴﹣2≤3cos2θ﹣2≤1.即的最大值与最小值分别是1,﹣2.故选:C.8.(5分)半径为1的球面上有四个点A,B,C,D,球心为点O,AB过点O,CA=CB,DA=DB,DC=1,则三棱锥A﹣BCD的体积为()A.B.C.D.【解答】解:由题意可知图形如图:AB过点O,CA=CB,DA=DB,三角形ABD与ACB 都是等腰直角三角形,半径为1的球面上有四个点A,B,C,D,球心为点O,∴AD=BD=AC=BC=,DC=1,OD=0C=1,AB⊥OD,AB⊥OC,几何体的体积为:×S△OCD•(AO+OB)==故选:A.9.(5分)已知数列{a n}满足•••…•=(n∈N*),则a10=()A.e26B.e29C.e32D.e35【解答】解:数列{a n}满足•••…•=(n∈N*),可知•••…•=,两式作商可得:==,可得lna n=3n+2.a10=e32.故选:C.10.(5分)执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A.8 B.9 C.10 D.11【解答】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin,k∈Z的值,∵sin的值以6为周期,且sin+sin+…+sin=0,∴当t=8时,S=sin+sin+…+sin=sin+sin+sin=>1,故A符合要求;当t=9时,S=sin+sin+…+sin+sin=sin+sin+sin+sin=<1,故B不符合要求;当t=10时,S=sin+sin+…+sin+sin+sin=sin+sin+sin+sin+sin=0<1,故C不符合要求;当t=11时,S=sin+sin+…+sin+sin+sin+sin=0<1,故D不符合要求;故选:A.11.(5分)若函数f(x)=2x3﹣3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是()A.(﹣∞,2)B.(﹣∞,2]C.(﹣∞,) D.(﹣∞,]【解答】解:f′(x)=6x2﹣6mx+6;由已知条件知x∈(2,+∞)时,f′(x)≥0恒成立;设g(x)=6x2﹣6mx+6,则g(x)≥0在(2,+∞)上恒成立;∴(1)若△=36(m2﹣4)≤0,即﹣2≤m≤2,满足g(x)≥0在(2,+∞)上恒成立;(2)若△=36(m2﹣4)>0,即m<﹣2,或m>2,则需:;解得;∴;∴综上得;∴实数m的取值范围是(﹣∞,].故选D.12.(5分)函数f(x)=lg(|x|+1)﹣sin2x的零点个数为()A.9 B.10 C.11 D.12【解答】解:函数f(x)=lg(|x|+1)﹣sin2x的零点个数即y=lg(|x|+1)与y=sin2x的图象的交点的个数,作函数y=lg(|x|+1)与y=sin2x的图象如下,结合图象及三角函数的最值知,图象在y轴左侧有6个交点,在y轴右侧有5个交点,在y轴上有一个交点;故选D.二.填空题(本大题共4小题,每小题5分.)13.(5分)若等差数列{a n}中,满足a4+a6+a2010+a2012=8,则S2015=4030.【解答】解:∵a2012+a4=a6+a2010=a1+a2015,a4+a6+a2010+a2012=8,∴2(a1+a2015)=8,∴a1+a2015=4,∴S2015==4030.故答案为:4030.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为﹣6.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.15.(5分)已知双曲线C:﹣=1,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1,则|P1A|﹣|P1B|=﹣16.【解答】解:设双曲线的上下焦点分别为F,F',连接QF,QF'.由点P关于双曲线C的上、下焦点的对称点分别为A、B,则F为PA的中点,F'为PB的中点,由点Q在双曲线C的上支上,点P关于点Q的对称点P1,则Q为PP1的中点,由中位线定理可得,|P1A|=2|QF|,|P1B|=2|QF'|,由双曲线的定义可得|QF'|﹣|QF|=2a=8,则|P1A|﹣|P1B|=2(|QF|﹣|QF'|)=﹣2×8=﹣16.故答案为:﹣16.16.(5分)若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2);(Ⅲ)f(1)=,则下列命题正确的是②③④(只写出所有正确命题的序)①函数f(x)是奇函数;②函数f(x)是偶函数;③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);④对任意x∈R,有f(x)≥﹣1.【解答】解:令x1=1,x2=0,f(1+0)+f(1﹣0)=2f(1)f(0),即2f(1)=2f(1)f(0),∵f(1)=,∴f(0)=1.令x1=0,x2=x,则f(x)+f(﹣x)=2f(0)f(x)=2f(x),则f(﹣x)=f(x),故函数f(x)为偶函数,故②正确,①错误.∵f(1)=,∴f(1+1)+f(1﹣1)=2f(1)f(1),即f(2)=2f2(1)﹣f(0)=2×()2﹣1=,f(2+1)+f(1)=2f(1)f(2),即f(3)=2f(1)f(2)﹣f(1)=2××﹣=,同理f(4)=,由归纳推理得对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2)正确;故③正确,令x1=x2=x,则由f(x1+x2)+f(x1﹣x2)=2f(x1)f(x2)得f(2x)+f(0)=2f(x)f(x)=2f2(x),即f(2x)+1=2f2(x)≥0,∴f(2x)+1≥0,即f(2x)≥﹣1.∴对任意x∈R,有f(x)≥﹣1.故④正确.三.解答题(解答应写出文字说明,证明过程或演算步骤)17.(12分)已知△ABC的面积为2,且满足0<•≤4,设和的夹角为θ.(1)求θ的取值范围;(2)求函数f(θ)=2sin2(+θ)﹣cos2θ的取值范围.【解答】解:(1)由题意可得•=cbcosθ,∵△ABC的面积为2,∴bcsinθ=2,变形可得cb=,∴•=cbcosθ==,由0<•≤4,可得0<≤4解得tanθ≥1,又∵0<θ<π,∴向量夹角θ的范围为[,);(2)化简可得f(θ)=2sin2(+θ)﹣cos2θ=2×﹣co s2θ=1+sin2θ﹣cos2θ=1+2sin(2θ﹣)∵由(1)知θ∈[,),∴2θ﹣∈[,),∴sin(2θ﹣)∈[,1],∴1+2sin(2θ﹣)∈[2,3],∴f(θ)的取值范围为:[2,3]18.(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年1月某日某省x个监测点数据统计如下:(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?【解答】解:(Ⅰ)根据频率分布直方图,得;0.003×50=,∴x=100;又∵15+40+y+10=100,∴y=35;…(2分)∴直方图中(50,100]对应矩形的高为=0.008,(100,150]对应矩形的高为=0.007,(150,200]对应矩形的高为=0.002;补全频率分布直方图,如图所示;…(5分)(Ⅱ)设A市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,…(8分)其中事件A“其中至少有一个为良”包含的基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种,…(10分)所以事件A“其中至少有一个为良”发生的概率是P(A)=.…(12分)19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.【解答】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A﹣BDEF=2×=2×=.20.(12分)在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为k1,k2的两条直线l1,l2,交C1于A,B两点(点A,B异于点P),若k1+k2=0,且直线AB与圆C2:(x﹣2)2+y2=相切,求△PAB的面积.【解答】解:(Ⅰ)设动圆圆心坐标为(x,y),半径为r,由题可知,∴动圆圆心的轨迹方程为:y2=4x;(Ⅱ)设直线l1的斜率为k,则l1:y﹣2=k(x﹣1),l2:y﹣2=﹣k(x﹣1),点P(1,2)在抛物线y2=4x上,联立,消去x得:ky2﹣4y+8﹣4k=0,设A(x1,y1),B(x2,y2),△>0恒成立,即(k﹣1)2>0,有k≠1,∴y1y P=,∵y P=2,∴y1=,代入直线方程可得:,同理可得:x2=,,k AB===﹣1,不妨设l AB:y=﹣x+b,∵直线AB与圆C相切,∴=,解得b=3或1,当b=3时,直线AB过点P,舍去,当b=1时,由,可得x2﹣6x+1=0,此时△=32,∴|AB|==8,∴P到直线AB的距离d=,△PAB的面积为=4.21.(12分)已知a是实常数,函数f(x)=xlnx+ax2.(1)若曲线y=f(x)在x=1处的切线过点A(0,﹣2),求实数a的值;(2)若f(x)有两个极值点x1,x2(x1<x2),①求证:﹣<a<0;②求证:f(x2)>f(x1)>﹣.【解答】(1)解:由已知可得,f′(x)=lnx+1+2ax(x>0),切点P(1,a),f(x)在x=1处的切线斜率为k=1+2a,切线方程:y﹣a=(2a+1)(x﹣1),把(0,﹣2)代入得:a=1;(2)证明:①依题意:f′(x)=0 有两个不等实根x1,x2(x1<x2),设g(x)=lnx+2ax+1 则:g′(x)=+2a(x>0)当a≥0时,有g′(x)>0,所以g(x)是增函数,不符合题意;当a<0时:由g′(x)=0得:x=﹣>0,列表如下:)依题意:g (﹣)=ln (﹣)>0,解得:﹣<a <0,综上可得,﹣<a <0得证; ②由①知:f (x ),f′(x ) 变化如下:由表可知:f (x ) 在[x 1,x 2]上为增函数,所以:f (x 2)>f (x 1) 又f′(1)=g (1)=1+2a >0,故x 1∈(0,1), 由(1)知:ax 1=,f (x 1)=x 1lnx 1+ax 12=(x 1lnx 1﹣x 1)(0<x1<1)设h (x )=(xlnx ﹣x )(0<x <1),则h′(x )=lnx <0成立,所以h (x )单调递减, 故:h (x )>h (1)=﹣,也就是f (x 1)>﹣ 综上所证:f (x 2)>f (x 1)>﹣成立.二、请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题.【选修4-1:几何证明选讲】22.(10分)如图,在△ABC 中,∠ABC=90°,以AB 为直径的圆O 交AC 于点E ,点D 是BC 边上的中点,连接OD 交圆O 与点M . (1)求证:DE 是圆O 的切线; (2)求证:DE•BC=DM•AC +DM•AB .【解答】证明:(1)连接BE ,OE , ∵AB 是直径,∴∠AEB=90°,∵∠ABC=90°=∠AEB ,∠A=∠A ,∴△AEB ∽△ABC , ∴∠ABE=∠C ,∵BE⊥AC,D为BC的中点,∴DE=BD=DC,∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,∴∠BEO+∠DEB=∠DCE+∠CBE=90°,∴∠OED=90°,∴DE是圆O的切线.(2)证明:∵O、D分别为AB、BC的中点,∴DM=OD﹣OM=(AC﹣AB),∴DM•AC+DM•AB=DM•(AC+AB)=(AC﹣AB)•(AC+AB)=(AC2﹣AB2)=BC2=DE•BC.∴DE•BC=DM•AC+DM•AB.【选修4-4:坐标系与参数方程】23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m 的值.【解答】解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=|t1t2|,∴m2﹣2m=±1,解得,1.又满足△>0.∴实数m=1,1.【选修4-5:不等式选讲】24.已知函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)>0的解集;(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.【解答】解:(1)函数f(x)=|2x﹣1|﹣|x+2|=,令f(x)=0,求得x=﹣,或x=3,故不等式f(x)>0的解集为{x|x<﹣,或x>3}.(2)若存在x0∈R,使得f(x0)+2a2<4a,即f(x0)<4a﹣2a2 有解,由(1)可得f(x)的最小值为f()=﹣3•﹣1=﹣,故﹣<4a﹣2a2 ,求得﹣<a<.。
哈尔滨师大附中 2015年高三第一次联合模拟考试文科数学试卷东北师大附中 辽宁省实验中学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.已知集合2{0,},{30,},A b B x x x x Z ==-<∈若AB ≠∅,则b 等于A .1B .2C .3D .1或22.复数212i i+=-A .iB .-iC .2(2)i +D .1 + i3.ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则“a > b ”是“cos2A < cos2B ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.向量a ,b 满足||1=a ,||2=b ,()(2)+⊥-a b a b ,则向量a 与b 的夹角为A .45°B .60°C .90°D .120°5.实数m 是区间[]0,6上的随机数,则关于x 的方程240x mx -+=有实根的概率为A .14B .13C .12D .236.已知三棱锥的三视图,则该三棱锥的体积是A .63B .263C .362D .62(第6题图)2222 2正视图侧视图俯视图7.椭圆2214x y +=两个焦点分别是F 1、F 2圆上任意一点,则12PF PF ⋅的取值范围是A .[]1,4B .[]1,3C .[]2,1-D .[]1,1-8.半径为1的球面上有四个点A 、B 、C 、D ,O 为球心,AB 过点O ,CA = CB ,DA = DB ,DC = 1,则三棱锥A - BCD 的体积为9.已知数列{}n a 满足312ln ln ln ln 32258312n a a a a n n +⋅⋅⋅⋅=-(*n N ∈),则a 10 =A .e 26B .e 29C .e 32D .e 3510.执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的A .8 A .3633C .3 6B .9C .10D .1111.若函数32()236f x x mx x =-+在区间()2,+∞上为增函数,则实数m 的取值范围是A .(),2-∞B .(],2-∞C .5(,)2-∞D .5(,]2-∞12.函数()lg(1)sin2f x x x =+-的零点个数为A .9B .10C .11D .12第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
左视图主视图1cm1cm 2cm 1cm1cm 大连市第四十八中学月模测试高三数学试卷(文科)(时间120 总分150)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、姓名代码、考号、考试科目用2B 铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不能答在试题卷上。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分。
每小题只有一个选项符合题意)1、已知集合{}5,4,3,2,1=A ,{}0322<--=x x x B ,则=⋂B A A .{}3,2,1 B .{}4,3,2 C .{}3,2 D .{}2,1 2、若i 是虚数单位,则复数=++-ii2131A .i +1B .i 55+C .i 55--D .i --13、命题“存在实数x ,使2280x x +-=”的否定是 A .对任意实数x , 都有2280x x +-= B .不存在实数x ,使2280x x +-≠ C . 对任意实数x , 都有2280x x +-≠D .存在实数x ,使2280x x +-≠4、已知平面向量(1,2)AB =u u u r ,(2,)AC y =u u u r,且0AB AC ⋅=u u u r u u u r ,则23AB AC +=u u u r u u u rA .(8,1)B .(8,7)C .()8,8-D .()16,85、“1a =”是“函数22cos sin y ax ax =-的最小正周期为π”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既非充分条件也不是必要条件6、一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于 A .32B .3C .33D .637、设函数()3xf x e x =-,则A .3x e=为()f x 的极大值点B .3x e=为()f x 的极小值点 C .ln 3x =为()f x 的极大值点D .ln 3x =为()f x 的极小值点8、函数2ln(43)y x x =+-的单调递减区间是( )A .3(,]2-∞B .3[,)2+∞C .3(1,]2-D .3[,4)292,各侧面均为直角三角形的正三棱锥的四个顶点都在同一球面上,则此球的表面积为 A .4πB .43πC .π3D .π210、设函数3()f x x =+sin x ,若20π≤≤x 时, ()()01cos >-+m f x m f 恒成立,则实数m 的取值范围是A .(0,1)B .(,1)-∞C .1(,)2-∞D .(,0)-∞11、定义行列式运算11a b212212a ab a b b =-,将函数3()1f x =sin2cos2x x的图象向左平移()0>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为( )A .12πB .6π C .512π D .3π12、对于函数()x f 与()x g 和区间E ,如果存在E x ∈0,使()()100<-x g x f ,则我们称函数()x f 与()x g 在区间E 上“互相接近”.那么下列所给的两个函数在区间()+∞,0上“互相接近”的是A .()2x x f =,()32-=x x g B .()x x f =,()2+=x x gC .()xex f -=,()xx g 1-= D . ()x x f ln =,()x x g = 第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分。
A.1B.3C.5D.94. 下列说法中错误的个数为( ).①图像关于坐标原点对称的函数是奇函数;②图像关于y 轴对称的函数是偶函数;③奇函数的图像一定过坐标原点;④偶函数的图像一定与y 轴相交.A.4B.3C.2D.05.设c b a ,,为非零实数,则abcabc c c b b a a x +++=的所有值组成的集合为( ). A.{}4,0 B.{}0,4- C.{}4,0,4- D.{}06.已知集合{}022<--=x x x A ,{}11<<-=x x B ,则( ).A.B A ≠⊂B. A B ≠⊂C. B A =D.A B ⋂=∅ 7.已知全集为R ,集合{}x y x M ==,{}0862≤+-=x x x N ,则(N)R M C ⋂=( ).A.{}0≤x xB.{}24x x ≤≤ C.{}024x x x ≤<>或 D.{}024x x x <≤≥或8.给定映射()():,2,2f a b a b a b →+-,则在映射f 下,()3,1的原象是( ).A.()5,5B. ()1,1C. ()3,1D.11,22⎛⎫ ⎪⎝⎭9.若函数()f x 的定义域为[]0,4,则函数()2f x 的定义域为( ).A.[]0,2B. []0,16C. []2,0-D. []2,2-10.若函数()2443x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( ). A.(),-∞+∞ B.30,4⎛⎫ ⎪⎝⎭ C.3,4⎛⎫+∞⎪⎝⎭ D.30,4⎡⎫⎪⎢⎣⎭ 11.函数()2845f x x x =-+的值域是( ). A. (]0,8 B.()0,+∞ C.[)8,+∞ D. (],8-∞12.若函数()f x 是定义在R 上的偶函数,在(],0-∞上是减函数,且()20f =,则使得()0f x <的x 的取值范围是( ).A.(),2-∞B.()2,+∞C.()(),22,-∞-⋃+∞D.()2,2-13.已知()f x 是R 上的偶函数,对任意的[)12,0,x x ∈+∞()12x x ≠,有()()21210f x f x x x -<-,则()2f -,()f π-,()3f 的大小关系是( ).A.()()()23f f f π->->B. ()()()32f f f π>->-C. ()()()23f f f π->>-D. ()()()32f f f π->>-14.当02x ≤≤时,22a x x <-+恒成立,则实数a 的取值范围是( ).A.(],1-∞B.(],0-∞C.(),0-∞D.()0,+∞第Ⅱ卷二、填空题(本题共4小题,每小题3分,共12分。
大连市高三第一次模拟考试数学(文科)能力测试第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、集合{|13}A x x =-<<,集合{|12}B x x =-<<,则A B =A .()1,2 B .()1,2- C .()1,3 D .()1,3-2、设复数12,z z 在复平面内对应的点关于虚轴对称,12z i =+,则2z =A .2i +B .2i -+C .2i -D .2i -- 3、已知向量(2,1),(0,1)a b =-=,则2a b +=A..2 D .4 4、已知函数()5log ,02,0xx x f x x >⎧=⎨≤⎩,则1(())25f f =A .4B .14C .4-D .14- 5、某集团为了解新产品的销售情况,销售部在3月1日至3月5日连续五天对某个大型批发市场中该产品的销售量及其价格进行了调查,其中该产品的价格x (元)与销售量y (万件)的统计资料如下表所示:已知销售量y (万件)与价格x (元)之间具有线性相关关系,其回归直线方程为:ˆˆ40ybx =+,若该集团将产品定价为10.2元,预测该批发市场的日销售量约为 A .7.66万件 B .7.86万件 C .8.06万件 D .7.36万件 6、已知tan 2,αα=为第一象限角,则sin 2cos αα+的值为 A7、如图,在长方体1111ABCD A B C D -中,点P 是线段CD 中点,则三棱锥11P A B A -的左视图为8、将函数()sin(2)()2f x x πϕϕ=+<的图象向右平移12π个单位,所得到的图象关于y 轴对称,则函数()f x 在[0,]2π上的最小值为A.12 C .12- D.-9、执行如图所示的程序框图,如果输入110011a =,则输出的结果是 A .51 B .49 C .47 D .4510、已知双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,以F 为 圆心和双曲线C 的渐近线相切与双曲线C 在第一象限的交点为M , 且MF 与双曲线C 的实轴垂直,则双曲线C 的离心率为 A.2BD .2 11、在ABC ∆中,,,a b c 分别为角,,A B C 的对边,满足 cos cos a A b B =,则ABC ∆的形状为A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12、已知函数()f x 的定义在R 上的奇函数,且在区间[0,)+∞上是增函数,则不等式1(ln )(ln()(1)2f x f xf -<的解集为A .1(0,)e B .(0,)e C .1(,)e eD .(,)e +∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
辽宁省大连市第四十八中学2015届高三第一次模拟考试物理试题第1卷一、选择题(此题共17小题,每一小题4分,共68分。
第1题~第13题每一小题只有一个选项符合题意,第14题~第17题每一小题会有多个选项符合题意,每一小题选项选对得4分,选不全得2分,有错选的得0分)1.右图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。
表中第二列是时间,第三列是物体沿斜面运动的距离.第一列是伽利略在分析实验数据时添加的。
依据表中的数据,伽利略可以得出的结论是〔〕A.物体具有惯性B.物体运动的距离与时间的平方成正比C.斜面倾角一定时,加速度与质量无关D.物体运动的加速度与重力加速度成正比2.如下列图,质量为M的直角劈B放在水平面上,在劈的斜面上放一质量为m的物体A,用一沿斜面向上的力F作用于A上,使其沿斜面匀速上滑,在A上滑的过程中直角劈B相对地面始终静止,如此关于地面对劈的摩擦力F f与支持力F N,如下说法正确的答案是〔〕A.F f向左,F N<Mg+mgB.F f=0,F N=Mg+mgC.F f向右,F N<Mg+mgD.F f向左,F N=Mg+mg3.某物体做直线运动的v-t图象,如下列图。
根据图象提供的信息可知,该物体〔〕A.在0~4s内与4~7 s内的平均速度相等B.在0~4 s内的加速度大于7~8 s内的加速度C.在4s末离起始点最远D.在8s末回到起始点4.如如下图所示,A是用绳拴在车厢底部上的氢气球,B是用绳挂在车厢顶的金属球.开始时它们和车厢一起向右做匀速直线运动,假设突然刹车使车厢做匀减速运动,如此如下图中哪个图能正确表示刹车期间车内的情况()5.如如下图1所示,一个物体放在粗糙的水平地面上。
从t=0时刻起,物体在水平力F作用下由静止开始做直线运动。
在0到t0时间内物体的加速度a随时间t的变化规律如图2所示。
物体与地面间的动摩擦因数处处相等。
如此()A.t0时刻,力F等于0B.在0到t0时间内,力F大小恒定C.在0到t0时间内,物体的速度逐渐变大D.在0到t0时间内,物体的速度逐渐变小6.质量分别为m和2m的物块、B用轻弹簧相连,设两物块与接触面间的动摩擦因数都一样.当用水平力F作用于B上且两物块在粗糙的水平面上,共同向右加速运动时,弹簧的伸长量为x1,如图甲所示;当用同样大小的力F竖直共同加速提升两物块时,弹簧的伸长量为x2,如图乙所示;当用同样大小的力F 沿固定斜面向上拉两物块使之共同加速运动时,弹簧的伸长量为x3,如图丙所示,如此x1:x2:x3等于〔〕A.1:2:3B.1:1:1C.1:2:1D.无法确定7.1966年曾在地球的上空完成了以牛顿第二定律为根底的测定质量的实验,如下列图,实验时,用双子星号宇宙飞船m1,去接触正在轨道上运行的空间站m2,接触以后,开动飞船尾部的推进器,使飞船和空间站共同加速,假设飞船质量为3.0×103kg,其推进器的平均推力为900N,在飞船与空间站对接后,推进器工作5s内,测出飞船和空间站速度变化是0.05m/s,如此空间站的质量为〔〕A.9.0×104kg B.8.7×104kgC.6.0×104kg D.6.0×103kg8.如下列图,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。
辽宁省大连市第四十八中学2015届高三第一次模拟考试数学〔文〕试题2.设20.34log 4log 30.3a b c -===,,,如此a ,b ,c 大小关系是〔 〕A .a <b <cB .a <c <bC .c <b <aD .b <a <c3.α∈(π2,π),tan α=-34,如此sin(α+π)=( ) A.35 B .-35C.45 D .-454.与-525°的终边一样的角可表示为( )A. 525°-k ·360°(k ∈Z )B. 165°+k ·360°(k ∈Z )C. 195°+k ·360°(k ∈Z )D. -195°+k ·360°(k ∈Z )5.在△ABC 中,假设tanAtanB =tanA +tanB +1,如此cosC 的值是( )A .-22B.22C.12D .-126.如下命题错误的答案是〔 〕A.对于命题R x p ∈∃:,使得012<++x x ,如此p ⌝为:R x ∈∀,均有012≥++x xB.命题“假设0232=+-x x ,如此1=x 〞的逆否命题为“假设1≠x , 如此0232≠+-x x 〞C.假设q p ∧为假命题,如此q p ,均为假命题D.“2>x 〞是“0232>+-x x 〞的充分不必要条件7.函数()f x 是奇函数,当0x >时,21()2()log 2f x f x =+,如此(2)f -=( )A.1B.3C.1-D.3-8.假设cos 22π2sin 4αα=⎛⎫- ⎪⎝⎭cos sin αα+的值为〔 〕A.72B.12- C.12 729.将函数sin y x =的图象上所有的点横坐标伸长到原来的2倍〔纵坐标不变〕,再把所得各点向右平行移动10π个单位长度,所得图象的函数解析式是( ) A.sin(2)10y x π=- B.1sin()220y x π=- C.sin(2)5y x π=- D.1sin()210y x π=-10.直线0x =和2x π=是函数()sin())f x x x ωϕωϕ=++〔0,||2πωϕ><〕图象的两条相邻的对称轴,如此( )A.()f x 的最小正周期为π,且在(0,)2π上为单调递增函数B.()f x 的最小正周期为π,且在(0,)2π上为单调递减函数 C.6πϕ=,在()f x 在(0,)2π上为单调递减函数 D.6πϕ=,在()f x 在(0,)2π上为单调递增函数 11.cos85°+sin25°cos30°cos25°=( ) A .-32B.22C.12D .1 12.定义行列式运算11a b 212212a a b a b b =-,将函数()f x sin 2cos2x x 的图象向左平移 ()0>t t 个单位,所得图象对应的函数为偶函数,如此t 的最小值为〔 〕A .12πB .6πC .512πD .3π第2卷二、填空题〔此题共4小题,每一小题5分,共20分。
2015年东北三省三校第一次高考模拟考试文科数学参考答案13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bc θ<≤, ……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =. ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF-的高. ……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE ,则(3/g m μ)1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=,23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩ 设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k -= ……6分同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C=解得3b =或1, 当3b =时, 直线AB 过点P ,舍当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆===P 到直线AB 的距离为d =PAB 的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=->依题意:11()ln()022g a a -=->,解得:102a -<< 综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a 0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB , ∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程FC D MO BEA解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=, ∴直线l的普通方程为0x m -= ……5分(2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m -+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+,()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-; 当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-; 当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-.……10分。
2024年大连市高三数学第一次模拟考试卷注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则U B A = ð()A .{2}4,B .{16},C .{3}5,D .{1}2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,xn 的平均数B .x 1,x 2,…,xn 的标准差C .x 1,x 2,…,xn 的最大值D .x 1,x 2,…,xn 的中位数3.方程2214x y m+=表示椭圆,则实数m 的取值范围()A .0m >B .4m >C .04m <<D .0m >且4m ≠4.已知直线a ,b ,c 是三条不同的直线,平面α,β,γ是三个不同的平面,下列命题正确的是()A .若a c b c ⊥⊥,,则//a bB .若////a b a α,,则//b αC .若////a b c a αα⊥,,,且c b ⊥,则c α⊥D .若βαγα⊥⊥,,且a βγ= ,则a α⊥5.将ABCDEF 六位教师分配到3所学校,若每所学校分配2人,其中,A B 分配到同一所学校,则不同的分配方法共有()A .12种B .18种C .36种D .54种6.若π,π2α⎛⎫∈ ⎪⎝⎭,且5cos 24παα⎛⎫=- ⎪⎝⎭,则tan α=()A .43-B .34-C .13-D .17.设函数3333()sin πe e 3x x f x x x --=+--+则满足()(32)4f x f x +-<的x 的取值范围是()A .(3,)+∞B .(3),-∞C .(1,)+∞D .(,1)-∞8.设12F F ,是双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点,点A 是双曲线C 右支上一点,若12AF F △的内切圆M 的半径为a (M 为圆心),且λ∃∈R ,使得123AM OM F F λ+=,则双曲线C 的离心率为()AB C .2D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知i 是虚数单位,下列说法正确的是()A .已知a b c d ∈R ,,,,若a c b d >=,,则i i a b c d +>+B .复数12z z ,满足12z z =,则12z z =C .复数z 满足|i ||i |z z -=+,则z 在复平面内对应的点的轨迹为一条直线D .复数z 满足(1i)|1|+=z ,则ππcos isin 44z ⎫=-⎪⎭10.已知函数()sin()(0,0π)f x x ωϕωϕ=+><<,若π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,则()A .()y f x =在5π0,12⎛⎫⎪⎝⎭单调递减B .()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称C .直线12y =+是一条切线D .()y f x =的图象向右平移π3个单位长度后得到函数()g x 是偶函数11.已知函数()f x 是定义域为R 的可导函数,若()()()()3f x y f x f y xy x y +=+++,且()03f '=-,则()A .()f x 是奇函数B .()f x 是减函数C .0f=D .1x =是()f x 的极小值点第Ⅱ卷三、填空题:(本大题共3小题,每小题5分,共15分,把答案填在答卷纸的相应位置上)12.“函数()2sin f x ax x =-是奇函数”的充要条件是实数=a .13.在边长为4的正方形ABCD 中,如图1所示,E ,F ,M 分别为BC ,CD ,BE 的中点,分别沿AE ,AF 及EF 所在直线把AEB AFD ,和EFC 折起,使B ,C ,D 三点重合于点P ,得到三棱锥P AEF -,如图2所示,则三棱锥P AEF -外接球的表面积是;过点M 的平面截三棱锥P AEF -外接球所得截面的面积的取值范围是.14.已知实数0,0a b >>,且()84ab a b +=,则4a b +的最小值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,EF BC ∥,且334EF BC ==,H ,G 分别为CE ,CD 的中点.(1)证明:BF AD ⊥;(2)求平面BCEF 与平面FGH 所成角的余弦值;(3)作平面FHG 与平面ABCD 的交线,记该交线与直线AD 交点为P ,写出APAD的值(不需要说明理由,保留作图痕迹).16.已知函数()()ln 1R f x x x ax a =++∈.(1)若()0f x ≥恒成立,求a 的取值范围;(2)当1x >时,证明:e ln e(1)x x x >-.17.一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.(1)求停止取球时盒中恰好剩3个白球的概率;(2)停止取球时,记总的抽取次数为X ,求X 的分布列与数学期望:(3)现对方案进行调整:将这7个球分装在甲乙两个盒子中,甲盒装3个小球,其中2个白球,1个黑球:乙盒装4个小球,其中2个白球,2个黑球.采取不放回的方式先从甲盒中每次随机抽取一个小球,当盒中只剩一种颜色时,用同样的方式从乙盒中抽取,直到乙盒中所剩小球颜色和甲盒剩余小球颜色相同,或者乙盒小球全部取出后停止.记这种方案的总抽取次数为Y ,求Y 的数学期望,并从实际意义解释X 与Y 的数学期望的大小关系.18.在平面直角坐标系xOy 中,点O 为坐标原点,已知两点()()1,21,2A B ---,,点M 满足()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r,记点M 的轨迹为G .(1)求曲线G 的方程:(2)若P ,C ,D 为曲线G 上的三个动点,CPD ∠的平分线交x 轴于点()0(1)Q a a <-,,点Q 到直线PC 的距离为1.(ⅰ)若点Q 为PCD 重心,用a 表示点P 的坐标;(ⅱ)若PQ CD ⊥,求a 的取值范围.19.对于数列()1231:,,,1,2,3A a a a a i ∈=N ,定义“T 变换”:T 将数列A 变换成数列123:,,B b b b ,其中1(12)i i i b a a i +=-=,,且331b a a =-.这种“T 变换”记作()B T A =,继续对数列B 进行“T 变换”,得到数列123:,,C c c c ,依此类推,当得到的数列各项均为0时变换结束.(1)写出数列A :3,6,5经过5次“T 变换”后得到的数列:(2)若123,,a a a 不全相等,判断数列123:,,A a a a 不断的“T 变换”是否会结束,并说明理由;(3)设数列A :2020,2,2024经过k 次“T 变换”得到的数列各项之和最小,求k 的最小值.1.C【分析】由补集和交集的定义运算.【详解】集合{123456}U =,,,,,,集合{124}{135}A B ==,,,,,,则{}3,5,6U A =ð,有{}3,5U B A = ð.故选:C 2.B【详解】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.点睛:众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一组数据的离散程度.3.D【分析】分焦点在x 轴,y 轴两种情况讨论,写出m 范围即可.【详解】方程2214x y m+=表示椭圆,若焦点在x 轴上,40m >>;若焦点在y 轴上,4m >.综上:实数m 的取值范围是0m >且4m ≠故选:D【点睛】本题考查了椭圆的标准方程,考查了学生概念理解,分类讨论,数学运算能力,属于基础题.4.D【分析】由空间中直线与平面的位置关系,对各项进行分析即可.【详解】若a c b c ⊥⊥,,则a ,b 可以是平行,也可以是相交或异面,故A 错误;若////a b a α,,则//b α或b α⊂,故B 错误;若////a b c a αα⊥,,且c b ⊥,当//a b 时,不能证明c α⊥,C 选项错误;若βαγα⊥⊥,,且a βγ= ,在a 上取一点P ,作PQ α⊥,由面面垂直的性质定理可得PQ β⊂且PQ γ⊂,既a 与PQ 重合,可得a α⊥,故D 正确.故选:D 5.B【分析】先平均分组,再利用全排列可求不同分配方法的总数.【详解】将余下四人分成两组,每组两人,有2242C C 2种分法,故不同的分配方法共有223423C C A 182⨯=种,故选:B.6.A【分析】先利用三角恒等变换公式化简可得1cos sin 5αα+=,结合22cos sin 1αα+=可得cos ,sin αα,进而可得tan α.【详解】由5cos 2sin 4παα⎛⎫- ⎪⎝⎭得()22225cos sin cos sin 22αααα⎫-=-⎪⎪⎭,即()()5cos sin cos sin cos sin αααααα-+=-,因为π,π2α⎛⎫∈ ⎪⎝⎭,所以cos sin 0αα-≠,所以1cos sin 5αα+=,结合22cos sin 1αα+=,且cos 0,sin 0αα<>,得34cos ,sin 55αα=-=,所以sin tan s 43co ααα==-.故选:A.7.C【分析】观察题设条件与所求不等式,构造函数()()12g x f x =+-,利用奇偶性的定义与导数说明其奇偶性和单调性,从而将所求转化为()()122g x g x -<-,进而得解.【详解】因为3333()sin πe e 3x x f x x x --=+--+,所以()()3333331sin ππee 13x xf x x x +---+=++---+33sin πe e 2x x x x -=-+--+,设()()3312sin πe e x xg x f x x x -=+-=-+--,显然定义域为R ,()()12g x f x -=-,又()()3333()sin πee sinπe e ()xx x x g x x x x x g x ---=--+-+=--+--=-,所以()g x 为R 上的奇函数,又33()πcos π3e 3e 1πcos 15πcos 0x x g x x x x -'=-++-≥-+=->,所以()g x 在R 上单调递增,又()(32)4f x f x +-<,则[][]()2(32)20f x f x -+--<,所以()()1220g x g x -+-<,即()()()12222g x g x g x -<--=-,所以122x x -<-,解得1x >,则满足()(32)4f x f x +-<的x 的取值范围是(1,)+∞.故选:C .8.A【分析】向量坐标化并结合双曲线定义与等面积得123,3,AF c a AF c a =+=-点点距列方程得()3,4A a a 代入双曲线求出离心率.【详解】设()(),,,M M A A M x y A x y ,由对称性不妨设A 在第一象限,此时M 也在第一象限,因为123AM OM F F λ+=uuu r uuu u u ruu r ,所以30,44M A M A M y y y y y a -+===,所以()12121124222AF F S c a AF AF c a =⋅⋅=⋅++⋅ ,又122AF AF a -=,解得()1213,3,,0AF c a AF c a F c =+=--,所以1A AF ex a=+,所以1A AF a ex =+,解得3A x a =,所以()3,4A a a ,代入双曲线方程得:2222(3)(4)1a a a b-=,解得,b c ==,所以==ce a故选:A【点睛】关键点点睛:本题考查双曲线的离心率,关键是向量坐标化并充分利用曲线定义确定A 的坐标.9.BCD【分析】根据虚数不能比较大小可知A 错误;根据共轭复数的定义可判断B ;根据复数的几何意义可判断C ;根据复数的运算法则进行计算,可判断D.【详解】对A ,虚数不能比较大小,可知A 错误;对B ,根据共轭复数的定义知,当12z z =时,12z z =,则12z z =,故B 正确;对C ,因为复数z 满足|i ||i |z z -=+,则复数z 在复平面上对应的点到()()0,1,0,1-两点间的距离相等,则复数z 在复平面上对应的点为两点构成线段的中垂线,即z 在复平面内对应的点的轨迹为一条直线,故C 正确;因为(1i)|1|2z +==,则()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,又ππ22cos isin i 1i 4422z ⎫⎫=--=-⎪⎪⎪⎭⎭,故D 正确,故选:BCD.10.BC【分析】依题意可得πT =即可求出ω,再根据函数的最大值求出ϕ,即可求出函数解析式,再根据正弦函数的性质判断A 、B 、D ,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,利用导数的几何意义求出0x ,即可判断C.【详解】对A ,因为()sin()(0,0π)f x x ωϕωϕ=+><<,所以()max 1f x =,又π5π166f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,且π5π,66x ⎛⎫∀∈- ⎪⎝⎭,都有()1f x <,所以5πππ66T ⎛⎫=--= ⎪⎝⎭,所以2ππT ω==,解得2ω=,即()()sin 2f x x ϕ=+,又ππsin 163f ϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,所以ππ2π,Z 32k k ϕ-+=+∈,解得5π2π,Z 6k k ϕ=+∈,又0πϕ<<,所以5π6ϕ=,所以()5πsin 26f x x ⎛⎫=+ ⎪⎝⎭,当5π0,12x ⎛⎫∈ ⎪⎝⎭时5π5π5π2,663x ⎛⎫+∈ ⎪⎝⎭,又sin y x =在5π5π,63⎛⎫⎪⎝⎭上不单调,所以()y f x =在5π0,12⎛⎫⎪⎝⎭上不单调,故A 错误;对B ,因为7π7π5πsin 2sin 2π012126f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于7π,012⎛⎫⎪⎝⎭对称,故B 正确;对C ,因为()5π2cos 26f x x ⎛⎫=+ ⎝'⎪⎭,设切点为005π,sin 26x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则()005π2cos 26f x x ⎛⎫=+= ⎪⎝⎭'所以05πcos 262x ⎛⎫+=- ⎪⎝⎭,所以05π5π22π,Z 66x k k +=+∈或05π5π22π,Z 66x k k +=-+∈,解得0π,Z x k k =∈或05ππ,Z 6x k k =-+∈,又005π1sin 262x ⎛⎫+=+ ⎪⎝⎭,因为05π1sin 216x ⎛⎫-≤+≤ ⎪⎝⎭,即01112-≤+≤,解得0x ≤,所以00x =,即直线12y =+是函数()f x 在10,2⎛⎫⎪⎝⎭处的切线,故C 正确;对D ,将()y f x =的图象向右平移π3个单位长度后得到()π5ππsin 2sin 2366g x x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,显然()g x 是非奇非偶函数,故D 错误.故选:BC 11.ACD【分析】令0x y ==求出()0f ,令y x =-可确定奇偶性,将y 当作常数,x 作为变量,对原式求导,然后可通过赋值,解不等式求单调性及极值.【详解】令0x y ==,得()00f =,令y x =-,得()()0f x f x =+-,所以()f x 是奇函数,A 正确;()()()()()22233,63f x y f x f y x y xy f x y f x yx y '+=+++'∴+=++ 令()()20,03x f y f y =∴=+'',又()()()2303,33,3f f y y f y y y c '=-∴='=-∴-+ ,()()()3300,0,3,3,0f c f y y y f x x x f=∴=∴=-∴=-∴= ,令()0f x '=,1x ∴=±,()0f x '>,1x <-或()1,0,11x f x x ><-<<'()f x ∴在(),1∞--和()1,∞+上为增函数,()f x 在()1,1-上为减函数,1x ∴=是()f x 的极小值,故CD 正确,B 错误.故选:ACD.12.0【分析】结合三角函数奇偶性、幂函数奇偶性以及奇偶性的定义即可运算求解.【详解】若函数()2sin f x ax x =-是奇函数,则当且仅当()()()()22sin sin f x ax x a x x f x ⎡⎤=-=----=--⎣⎦,也就是220ax =恒成立,从而只能0a =.故答案为:0.13.24π[]π,6π【分析】补体法确定外接球直径进而求得表面积;利用球的截面性质确定面积最值.【详解】由题意,将三棱锥补形为边长为2,2,4长方体,如图所示:三棱锥P AEF -外接球即为补形后长方体的外接球,所以外接球的直径()2222222424R R =++==,所以三棱锥P AEF -外接球的表面积为24π24πS R ==,过点M 的平面截三棱锥P AEF -的外接球所得截面为圆,其中最大截面为过球心O 的大圆,此时截面圆的面积为22π6πR ==,最小截面为过点M 垂直于球心O 与M 连线的圆,此时截面圆半径1r =(其中MN 长度为长方体前后面对角线长度),故截面圆的面积为2ππr =,所以过点M 的平面截三棱锥P AEF -的外接球所得截面的面积的取值范围为[]π,6π.故答案为:24π;[]π,6π14.【分析】利用消元法得到4a b +的函数关系式,再利用导数讨论其单调性后可求最小值.【详解】()222224(4)81681616a b a ab b a a b b b b+=++=++=+,设()2416g b b b =+,其中0b >,则()()322481432b g b b b b-=-+'=,当10,2b ⎛⎫∈ ⎪⎝⎭时,()0g b '<,当1,2b ∞⎛⎫∈+ ⎪⎝⎭时,()0g b '>,故()g b 在10,2⎛⎫ ⎪⎝⎭上为增函数,在1,2∞⎛⎫+ ⎪⎝⎭上为减函数,故()min 1122g b g ⎛⎫== ⎪⎝⎭,此时20a =-+>,故4a b +的最小值为故答案为:15.(1)证明见解析(3)14AP AD =,作图见解析【分析】(1)由面面垂直得到线面垂直,从而证明出线线垂直;(2)由面面垂直得到线面垂直,再建立空间直角坐标系,写出点的坐标,得到平面的法向量,进而利用平面法向量求出面面角的余弦值;(3)作出辅助线,得到线线平行,进而得到结论.【详解】(1)在正方形ABCD 中,AD AB ⊥,∵平面FAB ⊥平面ABCD ,平面FAB 平面,ABCD AB AD =⊂平面ABCD ,AD ∴⊥平面FAB ,又BF ⊂平面FAB ,BF AD ∴⊥;(2) FAB 为等边三角形,设AB 中点为O ,∴OF AB ⊥,又平面FAB ⊥平面ABCD ,面FAB 面,ABCD AB OF =⊂面FAB ,则OF ⊥面ABCD ,以O 为坐标原点,分别以,,OB OG OF 为,,x y z轴正方向建立空间直角坐标系,如图所示:因为334EF BC ==,则4BC =,则()()((()72,0,0,2,4,0,0,0,,0,3,21,,0,4,02B C F E H G ⎛ ⎝,所以(()(72,0,,0,4,0,1,,,0,4,2BF BC FH FG ⎛=-=== ⎝,设平面BCEF 的一个法向量为(),,m x y z =则020400m BF x y m BC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨=⎪⋅=⎪⎩⎩ ,取1z =得0x y ==,所以)m =,设平面FGH 的一个法向量为(),,n a b c =则7002040a b n FH n FG b ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=⎪⎪-=⎩⎩,取c =93,42a b =-=,所以93,42n ⎛=- ⎝ ,所以)93,42cos ,22n m n m n m⎛⋅- ⋅===-⋅,所以平面与BCEF 与平面FGH(3)如图所示:在AD 上取一点P ,使得DP EF =,连接,FP PG ,因为//EF BC ,AD //BC ,所以//EF AD ,即//EF DP ,所以EFPD 为平行四边形,故//FP ED ,因为H ,G 分别为CE ,CD 的中点,所以//GH DE ,故//GH PF ,即,,,G H P F共面,故14AP AD =.16.(1)1a ≥-(2)证明见解析【分析】(1)参变分离,构造函数,求导得到函数的单调性,从而求出最值,得到答案;(2)法一:在(1)的基础上得到()e 1e ln x xx x x ->,1x >,再构造函数得到e e xx >,得到()()e 1e 1x x x x->-,从而得到结论;法二:即证11ln e x x x -->,构造函数()11ln e x x G x x --=-,求导后再对分子求导,从而得到函数的单调性,得到()()10G x G >=,证明出结论.【详解】(1)由已知得,1ln a x x-≤+在()0,∞+上恒成立,设()()221111ln ,x g x x g x x x x x-=+=-=',()0g x '>,解得1x >,()0g x '<,解得01x <<,()g x ∴在()0,1上为减函数,在()1,∞+上为增函数,()()11g x g ∴≥=,即1a -≤,1a ∴≥-;(2)法一:由(1)知1a ≥-时,()0f x ≥恒成立,取1a =-,得1ln x x x-≥成立,1x =时取等号.所以当1x >时,()e 1e ln x xx x x->,设()()e e ,e e x xh x x h x =='--,故1x >时,()0h x '>,()e e x h x x ∴=-在()1,∞+上为增函数,()()10h x h ∴>=,e e x x ∴>.所以1x >时,e e xx>,即()()e 1e1xx x x->-.由此可证,当1x >时,()()e 1e ln e 1x x x x x x->>-,结论得证.法二:当1x >时,若证()e ln e 1xx x >-成立.即证11ln ex x x -->,1x >设()11ln ,1ex x G x x x --=->,()()()1112211e 1e 1e 2e e x x x x x x x x G x x x -------+-=-'=,设()()()1211e2,e 22e 21x x x m x x x m x x x ---=+-=+-=+-',当1x >时,()()0,m x m x >'∴在()1,∞+上为增函数.()()()10,0m x m G x ∴>=∴>',()G x ∴在()1,∞+上为增函数,()()10G x G >=,由此可证,当1x >时,()e ln e 1xx x >-成立.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.17.(1)335(2)分布列见解析,()275E X =(3)()409E Y =,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.【分析】(1)利用古典概型的概率公式可求A 得概率;(2)先确定X 的取值,再就每一个取值的意义结合古典概型的概率公式可求分布列,再利用公式可求期望.(3)先确定Y 的取值,再设甲盒、乙盒抽取次数分别为12Y Y 、,根据题设得到三者之间的关系,再结合古典概型的概率公式可求分布.【详解】(1)设“停止取球时盒中恰好剩3个白球”为事件A ,则()11343347C A A 3A 35P A ==;(2)X 的可能取值为3,4,5,6,()3337A 13A 35P X ===,()4113443347A C A A 44A 35P X +===,()11422334444357C A A C A A 25A 7P X +===,()11223427C C A 46A 7P X ===,所以X 的分布列为X3456P1354352747X 的数学期望()14242734563535775E X =⨯+⨯+⨯+⨯=;(3)Y 的可能取值为3,4,5,6,设甲盒、乙盒抽取次数分别为12Y Y 、,因为乙盒中两种小球个数相同,所以无论甲盒剩余小球什么颜色,乙盒只需取完一种颜色即可,()()()221224A 113123A 18P Y P Y P Y ======,()()()()()1122222212123244C A A A 12413223A A 923P Y P Y P Y P Y P Y ====+===⨯+⨯=,()()()()()121251423P Y P Y P Y P Y P Y ====+==11221122222222323444C A A A C A A 1273A A 3A 18⎛⎫=++= ⎪⎝⎭,()()()11222222123244C A A A 216243A A 3P Y P Y P Y ⎛⎫=====+= ⎪⎝⎭,Y 的数学期望()12714034561891839E Y =⨯+⨯+⨯+⨯=,在将球分装时,甲盒取完后直接取乙盒,此时甲盒中还有其它球,该球干扰作用已经消失,所以同样是要剩余同一颜色,调整后的方案总抽取次数的期望更低.18.(1)24y x=-(2)(i)334P ⎛-± ⎝,;(ii )94a <-【分析】(1)对()2MA MB OM OA OB +=⋅++uuu r uuu r uuu r uu r uu u r向量坐标化,整理得曲线轨迹方程;(2)法一:由条件得PQ CD ⊥,结合斜率和重心坐标公式得P1=,平方化简得,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,直线与曲线联立,结合韦达定理求出P 坐标,即可求解;法二:由圆切线方程抽方程可知直线EF 的方程为()()001x a x a y y --+=,与圆联立得()0012221y x a k k y -+=-,结合韦达定理得P 坐标,即可求解.【详解】(1)设点()()(),,1,2,1,2M x y A B ---Q ,()()()()()1,2,1,2,,,1,2,1,2MA x y MB x y OM x y OA OB ∴=---=----==-=--uuu r uuu r uuu r uu r uu u r即()()22,2,2,0MA MB x y OA OB +=---+=-uuu r uuu r uu r uu u r,MA MB ∴+==uuu r uuu r()()()2,2,0222OM OA OB x y x ⋅++=⋅-+=-+uuu r uu r uu u r,()2,22MA MB OM OA OB x +=⋅++=-+Q uuu r uuu r uuu r uu r uu u r,化简得曲线G 的方程:24y x =-;(2)(ⅰ)解法1:设()()()112200,,,,,C x y D x y P x y ,PQ 为PCD 的角平分线.Q 为PCD 重心PQ ∴为PCD 的中线,S 三线合一可得PQ CD⊥021221124,4CD PQ y y y k k y x x y y a --===-+--Q ,Q 为PCD 重心0120y y y ∴++=(14,PQ CD k k P a ⋅=-∴-± ①设直线PC 方程为:()00x x m y y -=-,直线PD 方程为:()00x x n y y -=-,PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,1=,可得()()()2220000120y m x a y m x a -+---=同理()()()2220000120y n x a y n x a -+---=,即,m n 是方程()()()2220000120y t x a y t x a -+---=的两根,()002021x a y m n y -∴+=-,()0024x x m y y y x ⎧-=-⎨=-⎩联立可得:2004440y my x my ++-=,011044y y m y m y ∴+=-∴=--,同理()201204,42y n y y y m n y =--∴+=-+-,点Q 为PCD 重心,0120y y y ∴++=,即()()00002024401x a y m n y y y ⎛⎫--+-=--=⎪-⎝⎭,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②联立①②可得174a =-即33,4P ⎛⎫- ⎪⎝⎭(ⅱ)由(ⅰ)知()002021x a y m n y -+=-,()()()()2021*******0020214422424121CDy y y k x a y x x y y m n y a y y y -----∴=====--+-+----⨯--,020,1,4PQ PQ CD y k k k y a =⋅=---Q 22216481648,04949a a a a y a a +-+-∴=∴≥----216481,049a a a a +-<-∴≥--Q 等价于94904a a -->∴<-时满足题意.(ⅰ)解法2:PQ ∵是CPD ∠的平分线,点Q 到直线PC 的距离为1,∴点Q 到直线PD 的距离为1,∴直线PC PD 、与圆22:()1Q x a y -+=相切,设直线PC PD 、与圆的切点分别为()()1122,,,E x y F x y ,设直线PC 上任意一点坐标为(),P x y ,则0PE QE ⋅=,可得()()1111,,0x x y y x a y --⋅-=,整理得()()()11110x x x a y y y --+-=,结合2211()1x a y -+=,进一步可得直线PC 方程为:()()111x a x a y y --+=,同理直线PD 方程为()()221x a x a y y --+=,因为点()00,P x y 在两条直线上,所以可知直线EF 的方程为()()001x a x a y y --+=,代入圆方程可得:()()22200()x a y x a x a y y ⎡⎤-+=--+⎣⎦即:()()()()22220000121()0y y x a x a y y x a x a ⎡⎤----+---=⎣⎦设直线QE 的斜率1114y k x a =-,直线QF 的斜率为2224y k x a=-,()()()2220001210y y y y x a x a x a x a ⎛⎫∴---+--= ⎪--⎝⎭即()0012221y x a k k y -+=-,联立直线PC 与抛物线方程,()()21141y x x a x a y y ⎧=-⎪⎨--+=⎪⎩,可得:21114140y y y a x a x a ⎛⎫--+= ⎪--⎝⎭,014C y y k ∴+=,同理可得024D y y k ∴+=,()12042C D y y k k y ∴+=+- 点Q 为PCD 重心,00C D y y y ∴++=,即()()00120028401x a y k k y y y -+-=-=-,又020008144,a x y x y +⎧=⎪=-∴⎨⎪=⎩ 故点P的坐标为81,4a +⎛ ⎝②其余过程同解法1.【点睛】关键点点睛:本题考查直线与抛物线位置关系,关键是利用角分线的意义抽方程或直线,进而得韦达定理求出P 坐标.19.(1)0,1,1(2)不会,理由见解析(3)507【分析】(1)根据数列的新定义写出经过5次“T 变换”后得到的数列即可;(2)先假设数列A 经过不断的“T 变换”结束,不妨设最后的数列123123:,,,:,,,:0,0,0D d d d E e e e F ,由F 数列往前推,则非零数量可能通过“T 变换”结束,或者数列E 为常数列,进而得到D 可能出现的情况,推出矛盾,故假设不成立,即可证明;(3)先往后推几项,发现规律,假设1次“T 变换”后得到的通项,多写几项推出规律,往后继续进行,推到使数字接近1时,再继续推,往后会发现k 次“T 变换”得到的数列是循环的,得到最小值,进而推出次数即可.【详解】(1)由题知,5次变换得到的数列依次为3,1,2;2,1,1;1,0,1;1,1,0;0,1,1;所以数列A :3,6,5经过5次“T 变换”后得到的数列为0,1,1.(2)数列A 经过不断的“T 变换”不会结束,设数列123123:,,,:,,,:0,0,0D d d d E e e e F ,且()(),E T D F T E ==,由题可知:2132310,0,0e e e e e e -=-=-=,123e e e ∴==,即非零常数列才能经过“T 变换”结束;设123e e e e ===(e 为非零常数列),则为变换得到数列E 的前两项,数列D 只有四种可能:111111111111:,,2;:,,;:,,2;:,,D d d e d e D d d e d D d d e d e D d d e d +++---,而以上四种情况,数列E 的第三项只能是0或2e ,即不存在数列D ,使得其经过“T 变换”变成非零常数列,故数列A 经过不断的“T 变换”不会结束;(3)数列A 经过一次“T 变换”后得到数列:2018,2022,4B ,其结构为,4,4,a a +(a 远大于4)数列B 经过6次“T 变换”后得到的数列依次为:4,,4;4,4,8;8,12,4;4,16,12;a a a a a a a a -------;20,4,16;24,20,4a a a a ----所以,经过6次“T 变换”后得到的数列也是形如“,4,4a a +”的数列,变化的是,除了4之外的两项均减小24,201824842,=⨯+ 则数列B 经过684504⨯=次“T 变换”后得到的数列为:2,6,4,接下来经过“T 变换”后得到的数列依次为:4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;至此,数列各项和的最小值为4,以后数列循环出现,数列各项之和不会变得更小,所以最快经过16842507+⨯+=次“T 变换”得到的数列各项之和最小,即k 的最小值为507.【点睛】思路点睛:本题考查数列的新定义问题.关于数列的新定义一般思路为:()1根据定义写出几项;()2找出规律;()3写成通项;()4证明结论.。
辽宁省大连市第四十八中学2015届高三第一次模拟考试英语试题〔时间120 总分150〕须知事项:1.答第1卷前,考生务必将自己的姓名、姓名代码、考号、考试科目用2B铅笔涂写在答题卡上。
从第21题开始涂。
2.每一小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不能答在试题卷上。
3.学科要求:七选五试题填涂在答题卡上:E=AB;F=AC;G=AD〕第1卷第二局部阅读理解〔共两节,总分为60分〕第一节〔共15小题;每一小题3分,总分为45分〕阅读如下短文,从每题所给的四个选项〔A 、B 、C 和 D 〕中,选出最优选项,并在题卡上将该项涂黑。
AArriving in Sydney on his own from India, my husband , Rashid, stayed in a hotel for a short time while looking for a short time while looking for a house for me and our children.During the first week of his stay, he went out one day to do some shopping. He came back in the late afternoon to discover that his suitcase was gone. He was extremely worried as the suitcase had all his important papers, including his passport.He reported the case to the police and then sat there,lost and lonely in strange city, thinking of the terrible troubles of getting all the paperwork organized again from a distant country while trying to settle down in a new one.Late in the evening, the phone rang. It was a stranger. He was trying to pronounce my husband’s name and was asking him a lot of questions. Then he said they had found a pile of papers in their trash can〔垃圾桶〕that had been left out on the footpath.My husband rushed to their home to find a kind family holding all his papers and documents. Their young daughter had gone to the trash can and found a pile of unfamiliar papers. Her parents had carefully sorted them out, although they had found mainly foreign addresses on most of the documents. At last they had seen a half-written letter in the pile in which my husband had given his new telephone number to a friend.That family not only restored the important documents to us that day but also restored our faith and trust in people. We still remember their kindness and often send a warm wish their way.21. What did Rashid plan to do after his arrival in Sydney?A. Go shoppingB. Find a houseC. Join his familyD. Take a vacation22. The girl’s parents got Rashid’s phone number from_______.A. a friend of his familyB. a Sydney policemanC. a letter in his papersD. a stranger in Sydney23. What does the underlined word “restored〞 in the last paragraph mean?A. ShowedB. Sent outC. DeliveredD. Gave back24. Which of the following can be the best title for the text?A. From India to Australia.B. Living in a a New Country.C. Turning Trash to Treasure.D. In Search of New Friends.BSince the first Earth Day in 1970, Americans have gotten a lot “greener〞 toward the environment . “We didn’t know at that time that there even was an environment, let alone that there was a problem with it, 〞says Bruce Anderson, president of Earth Day USA.But what began as nothing important in public affairs has grown into a social movement . Business people, political leaders, university professors, and especially millions of grass-roots Americans are taking part in the movement. “The understanding has increased many, many times, 〞says Gaylord Nelson, the former governor from Wisconsin, who thought up the first Earth Day.According to US government reports , emissions (排放)from cars and trucks have dropped from 10.3 million tons a year to 5. 5 tons . The number of cities producing CO beyond the standard has been reduced from 40 to 9 . Although serious problems still remain and need to be dealt with , the world is a safer and healthier place . A kind of “Green thinking 〞 has become part of practices .Great improvement has been achieved . In 1988 there were only 600 recycling programs , ; today in 1995 there are about 6, 600 . Advanced lights , motors , and building designs have helped save a lot of energy and therefore prevented pollution .Twenty –five years ago , there were hardly any education programs for environment . Today , it’s hard to fin d a public school , university , or law school that does not have such a kind of program . 〞 Until we do that , nothing else will change! 〞 say Bruce Anderson .25. According to Anderson , before 1970, Americans had little idea about ___A. the social movementB. recycling techniquesC. environmental problemsD. the importance of Earth Day26 Where does the support for environmental protection mainly come from?A. The grass –roots levelB. The business circleC. Government officialsD. University professors27 What have Americans achieved in environmental protection ?A.They have cut car emissions to the lowestB. They have settled their environmental problemsC. They have lowered their CO levels in forty cities.D. They have reduced pollution through effective measures .28. What is especially important for environmental protection according to the last paragraph ? A. EducationB. PlanningC. Green livingD. CO reductionCOne of the latest trends〔趋势〕 in American Childcare is Chinese au pairs. Au Pair in Stamford, Conn, for example, has got increasing numbers of request for Chinese au pairs from aero to around 4, 000 since 2004. And that’s true all across the country.“I thought it would be useful for him to learn Chine se at an early age〞 Joseph Stocke, the managing director of a company, says of his 2-year old son. “I would at least like to give him the chance to use the language in the future, 〞 After only six months of being cared by 25-year-old woman from China, the boy can already understand basic Chinese daily expressions, his dad says.Li Drake, a Chinese native raising two children in Minnesota with an American husband, had another reason for looking for an au pair from China. She didn’t want her children t o miss out on their roots. 〞 Because I am Chinese, my husband and I wanted the children to keep exposed to(接触) the language and culture. 〞 she says.“Staying with a native speaker is better for children than simply sitting in a classroom, 〞says Suzanne Flynn, a professor in language education of Children. 〞But parents must understand that just one year with au pair is unlikely to produce wonders. Complete mastery demands continued learning until the age of 10 or 12. 〞The popularity if au pairs from china has been strengthened by the increasing numbers of American parents who want their children who want their children to learn Chinese. It is expected that American demand for au pairs will continue to rise in the next few years.29. What does the term〞 au pair〞 in the text mean?A. A mother raising her children on her ownB. A child learning a foreign language at homeC. A professor in language education of childrenD. A young foreign woman taking care of children.30. Li Drake has her children study Chinese because she wants them ______.A. to live in China some dayB. to speak the language at homeC. to catch up wit other childrenD. to learn about the Chinese culture31. What can we infer from the text?A. Learning Chinese is becoming popular In America,B. Educated woman do better in looking after childrenC. Chinese au pairs need to improve their English Skills.D. Children can learn a foreign language well in six months.DMetro Pocket GuideMetrorail(地铁)Each passenger needs a farecard to enter and go out. Up to two children under ago five may travelfree with a paying customer.Farecard machine are in every station, Bring small bills because there are no change machines in the station and farecard machine only provide up to $ 5 in change.Get one of unlimited Metrorail rides with a One Day Pass. Buy it from a farecard machine in Metro stations. Use it after 9:30 a. m. until closing on weekdays, and all day on weekends and holidays.Hours of ServiceOpen: 5 a. m Mon-Fri 7a. m. Sat—Sun .Close: midnight Sun—Thurs 3 a.m. Fri.---Sat. nights.Last train times vary. To avoid missing the last train, please check the last train times posted in the station.MetrobusWhen paying with exact change, the fare is $ 1. 35 . when paying with a smarTrip card, the fare is $1. 25Fares for the Senior /disabled customersSenior citizens 65 and older and disabled customers may ride for half the regular fare. On Metrorail and Metrobus, use a senior/disabled farecard or SmarTrip card. For more information about buying senior/disabled farecards, farecard or SmarTrip cards and passes, please visit MetroOpenDoors. com or call 202-637-7000 and 202-637-8000.Senior citizens and disabled customers can get free guide on how to use proper Metrobus and Metrorail services by calling 202-962-1100Travel tips 〔提示〕. Avoid riding during weekday rush periods –before 9:30 a. m. and between 4 and 6 p. m. . If you lose something on a bus or train or in a station, please call Lost & Found at 202-962-1195.32. what should you know about farecard machine?A. They start selling tickets at 9:30 a. m.B. They are connected to change machines.C. They offer special service to the elderly.D. They make change for no more than $5.33. At what time does Metrorail stop service on Saturday?A. At midnightB. at 3 a. m.C. at 5 amD. at 7 p. m.34. What is good about a SmarTrip card?A. It is convenient for old peopleB. It saves money for its usersC. it can be bought at any timeD. it is sold on the Internet.35. Which number should you call if you lose something on the Metro?A. 202-962-1195B. 202-962-1100C. 202-673-7000D. 202-673-8000第二节(共5小题;每一小题2分,总分为10分)根据短文内容,从短文后的选项中选出能填入空白处的最优选项。
辽宁省大连四十八中2015届高三上学期第一次摸底数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分.每题只有一个选项符合题意)1.(5分)设U=R,M={x|x2﹣x≤0},函数f(x)=的定义域为D,则M∩(∁U D)=()A.[0,1)B.(0,1)C.[0,1]D.{1}2.(5分)设a=log0.34,b=log43,c=0.3﹣2,则a、b、c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.b<a<c3.(5分)已知,,则sin(α+π)等于()A.B.C.D.4.(5分)与﹣525°的终边相同的角可表示为()A.525°﹣k•360°(k∈Z)B.165°+k•360°(k∈Z)C.195°+k•360°(k∈Z)D.﹣195°+k•360°(k∈Z)5.(5分)在△ABC中,若tanAtanB=tanA+tanB+1,则cosC=()A.B.C.D.6.(5分)下列命题错误的是()A.对于命题p:∂x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”C.若p∧q为假命题,则p,q均为假命题D.“x>2”是“x2﹣3x+2>0”的充分不必要条件7.(5分)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2+f()log2x,则f(﹣2)=()A.1B.3C.﹣1 D.﹣38.(5分)若,则cosα+sinα的值为()A.B.C.D.9.(5分)将函数y=sinx的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动个单位长度,所得图象的函数解析式是()A.y=sin(2x﹣)B.y=sin(x﹣)C.y=sin(2x﹣)D.y=sin(x﹣)10.(5分)已知直线x=0和x=是函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,|φ|<)图象的两条相邻的对称轴,则()A.f(x)的最小正周期为π,且在(0,)上为单调递增函数B.f(x)的最小正周期为π,且在(0,)上为单调递减函数C.φ=,在f(x)在(0,)上为单调递减函数D.φ=,在f(x)在(0,)上为单调递增函数11.(5分)=()A.﹣B.C.D.112.(5分)定义行列式运算,将函数的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数f(x)=,则f=.14.(5分)已知sin(α﹣)=,则cos(α+)的值等于.15.(5分)y=log(2x+)的定义域是.16.(5分)给出下列命题:①函数y=sin(π+x)是偶函数;②函数y=cos(2x+)图象的一条对称轴方程为x=;③对于任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);④若对∀x∈R函数f(x)满足f(x+2)=﹣f(x),则4是该函数的一个周期.其中真命题的个数为.三、解答题(共6小题,满分70分)17.(10分)已知角α的终边经过点P(,﹣).(1)求sinα的值.(2)求式•的值.18.(12分)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.19.(12分)已知sin(π﹣α)=,α∈(0,).(1)求sin2α﹣cos2的值;(2)求函数f(x)=cosαsin2x﹣cos2x的单调递减区间.20.(12分)函数的部分图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)设,求函数g(x)在上的最大值,并确定此时x的值.21.(12分)已知α,β∈(0,π),且tanα=2,cosβ=﹣.(1)求cos2α的值;(2)求2α﹣β的值.22.(12分)已知f(x)=x3+ax2﹣a2x+2.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若a≠0,求函数f(x)的单调区间;(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.辽宁省大连四十八中2015届高三上学期第一次摸底数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.每题只有一个选项符合题意)1.(5分)设U=R,M={x|x2﹣x≤0},函数f(x)=的定义域为D,则M∩(∁U D)=()A.[0,1)B.(0,1)C.[0,1]D.{1}考点:交、并、补集的混合运算.专题:集合.分析:求出M中不等式的解集确定出M,求出f(x)的定义域确定出D,根据全集U=R,求出D的补集,找出M与D补集的交集即可.解答:解:由M中的不等式变形得:x(x﹣1)≤0,解得:0≤x≤1,即M=[0,1],由f(x)=,得到x﹣1>0,即x>1,∴D=(1,+∞),∵全集U=R,∴∁U D=(﹣∞,1],则M∩(∁U D)=[0,1].故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)设a=log0.34,b=log43,c=0.3﹣2,则a、b、c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.b<a<c考点:对数函数的单调性与特殊点.专题:计算题.分析:由指数函数和对数函数的图象可以判断a、b、c和0、1的大小,从而可以判断a、b、c的大小解答:解:由指数函数和对数函数的图象可以得到:a<0,0<b<1,c>1,所以a<b<c 故选A点评:本题考查利用插值法比较大小,熟练掌握指数函数和对数函数的图象和取值的分布是解决本题的关键.3.(5分)已知,,则sin(α+π)等于()A.B.C.D.考点:诱导公式的作用;同角三角函数间的基本关系.专题:三角函数的求值.分析:根据α的范围,由tanα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出sinα的值,原式利用诱导公式化简后,将sinα的值代入计算即可求出值.解答:解:∵α∈(,π),tanα=﹣,∴cosα=﹣=﹣,sinα==,则sin(α+π)=﹣sinα=﹣.故选:D.点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.4.(5分)与﹣525°的终边相同的角可表示为()A.525°﹣k•360°(k∈Z)B.165°+k•360°(k∈Z)C.195°+k•360°(k∈Z)D.﹣195°+k•360°(k∈Z)考点:终边相同的角.专题:三角函数的求值.分析:直接利用终边相同的角的表示方法,写出结果即可.解答:解:∵﹣525°=﹣2×360°+195°,∴195°与﹣525°终边相同,由此可得与角﹣525°终边相同的角一定可以写成195°+k•360°(k∈Z)的形式,故选:C.点评:本题考查终边相同的角的表示方法,是基础题.5.(5分)在△ABC中,若tanAtanB=tanA+tanB+1,则cosC=()A.B.C.D.考点:两角和与差的正切函数;同角三角函数间的基本关系.专题:三角函数的图像与性质.分析:利用两角和与差的正切函数公式化简tan(A+B),将已知等式变形后代入求出tan (A+B)的值,进而确定出tanC的值,利用特殊角的三角函数值求出C的度数,即可确定出cosC的值.解答:解:∵tanAtanB=tanA+tanB+1,即tanA+tanB=tanAtanB﹣1,∴tan(A+B)==﹣1,即tan(A+B)=﹣tanC=﹣1,∴tanC=1,即C=,则cosC=cos=.故选B点评:此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,熟练掌握公式是解本题的关键.6.(5分)下列命题错误的是()A.对于命题p:∂x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0B.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”C.若p∧q为假命题,则p,q均为假命题D.“x>2”是“x2﹣3x+2>0”的充分不必要条件考点:复合命题的真假.专题:阅读型.分析:根据命题:∂x∈R,使得x2+x+1<0是特称命题,其否定为全称命题,即:∀x∈R,均有x2+x+1≥0,从而得到答案.故A对;根据逆否命题的写法进行判断B即可;P∧q为假命题⇒P、q不均为真命题.故C错误;利用充分不必要条件的判定方法即可进行D的判定.解答:解:∵命题:∂x∈R,使得x2+x+1<0是特称命题∴否定命题为:∀x∈R,均有x2+x+1≥0,从而得到答案.故A对B命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”故②正确;C:若P∧q为假命题,则P、q不均为真命题.故③错误;D“x>2”⇒“x2﹣3x+2>0”,反之不成立,“x>2”是“x2﹣3x+2>0”的充分不必要条件,故选C.点评:这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.本题考查命题的真假判断与应用,解题时要认真审题,仔细解答.7.(5分)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2+f()log2x,则f(﹣2)=()A.1B.3C.﹣1 D.﹣3考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:首先令x=,求出f(),写出x>0的函数f(x)的解析式,由函数奇偶性的定义,得f(﹣2)=﹣f(2),利用x>0的解析式求出f(2)即可.解答:解:当x>0时,f(x)=2+f()log2x,令x=,则f()=2+f()log2=2﹣f(),则f()=1,∴x>0时,f(x)=2+log2x,∵f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2),又f(2)=2+log22=3,∴f(﹣2)=﹣3.故选D.点评:本题主要考查函数的奇偶性及应用求值,注意赋值化简,正确理解函数奇偶性的定义和灵活运用,是解决问题的关键.8.(5分)若,则cosα+sinα的值为()A.B.C.D.考点:三角函数中的恒等变换应用.分析:题目的条件和结论都是三角函数式,第一感觉是先整理条件,用二倍角公式和两角差的正弦公式,约分后恰好是要求的结论.解答:解:∵,∴,故选C点评:本题解法巧妙,能解的原因是要密切注意各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.9.(5分)将函数y=sinx的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动个单位长度,所得图象的函数解析式是()A.y=sin(2x﹣)B.y=sin(x﹣)C.y=sin(2x﹣)D.y=sin(x﹣)考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:利用三角函数的图象变化规律首先由y=sinx的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到y=sin x,再将y=sin x的图象上各点向右平行移动个单位长度,即得答案.解答:解:函数y=sinx y=sin xy=sin(x﹣)=sin(x﹣),故选B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,掌握三角函数的图象变化规律是解决问题之关键,考查分析与解决问题的能力,属于基础题.10.(5分)已知直线x=0和x=是函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0,|φ|<)图象的两条相邻的对称轴,则()A.f(x)的最小正周期为π,且在(0,)上为单调递增函数B.f(x)的最小正周期为π,且在(0,)上为单调递减函数C.φ=,在f(x)在(0,)上为单调递减函数D.φ=,在f(x)在(0,)上为单调递增函数考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由对称性易得函数的周期,由对称性可得φ值,再由单调性可得.解答:解:化简可得f(x)=sin(ωx+φ)﹣cos(ωx+φ)=2sin(ωx+φ﹣),∵直线x=0和x=是函数f(x)图象的两条相邻的对称轴,∴T==2(﹣0)=π,解得ω=2,∴f(x)=2sin(2x+φ﹣),由对称性可知f(0)=±2,即φ﹣=kπ+,解得φ=kπ+,由|φ|<可知当k=﹣1时,φ=﹣,∴f(x)=2sin(2x﹣﹣)=2sin(2x﹣)=﹣2cos2x,令2kπ≤2x≤2kπ+π可得kπ≤x≤kπ+,k∈Z当k=0时,可得函数的一个单调递增区间为(0,)故选:A点评:本题考查两角和与差的三角函数,涉及三角函数的单调性和对称性,属基础题.11.(5分)=()A.﹣B.C.D.1考点:两角和与差的余弦函数.专题:三角函数的求值.分析:把cos85°化为cos(60°+25°),由两角和的余弦公式化简即可.解答:解:===故选:C点评: 本题考查两角和与差的三角函数公式,属基础题.12.(5分)定义行列式运算,将函数的图象向左平移t (t >0)个单位,所得图象对应的函数为偶函数,则t 的最小值为()A .B .C .D .考点: 函数y=Asin (ωx+φ)的图象变换.专题: 计算题.分析: 根据已知中行列式运算,我们易写出函数的解析式,利用辅助角公式,可将函数的解析式化为正弦型函数的形式,结合函数f (x )的图象向左平移t (t >0)个单位后图象对应的函数为偶函数,易得平移后,初相角的终边落在y 轴上,写出满足条件的t 的取值,即可得到答案.解答: 解:∵,∴=cos2x ﹣sin2x=2sin (2x+)将函数f (x )=2sin (2x+)的图象向左平移t (t >0)个单位后可以得到函数f (x )=2sin (2x++2t )的图象 则所得图象对应的函数为偶函数,则+2t=+k π,k ∈N*当k=1时,t 取最小值为故选C点评: 本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,其中根据已知中行列式运算法则及辅助角公式,求出函数的解析式是解答本题的关键.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数f (x )=,则f=2016.考点: 函数的值;分段函数的应用.专题: 函数的性质及应用.分析: 利用分段函数的性质求解.解答:解:∵f(x)=,∴f=f=f(﹣1)=2﹣(﹣1)+2014=2016.故答案为:2016.点评:本题考查函数值的求法,是基础题,解题时要注意函数的性质的合理运用.14.(5分)已知sin(α﹣)=,则cos(α+)的值等于.考点:两角和与差的正弦函数.分析:利用两角和与差的三角函数化简已知条件,然后求解所求表达式的值.解答:解:sin(α﹣)=,即:sinα﹣cosα=.cos(α+)=cosα﹣sinα=﹣(sinα﹣cosα)=﹣.故答案为:﹣.点评:本题考查两角和与差的三角函数,诱导公式的应用,基本知识的考查.15.(5分)y=log(2x+)的定义域是(﹣,+∞).考点:对数函数的定义域.专题:函数的性质及应用.分析:利用对数函数的性质求解.解答:解:y=log(2x+)的定义域满足2x+>0,解得x>﹣.∴y=log(2x+)的定义域是(﹣,+∞).故答案为:(﹣,+∞).点评:本题考查函数的定义域的求法,是基础题,解题时要注意对数函数的性质的合理运用.16.(5分)给出下列命题:①函数y=sin(π+x)是偶函数;②函数y=cos(2x+)图象的一条对称轴方程为x=;③对于任意实数x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);④若对∀x∈R函数f(x)满足f(x+2)=﹣f(x),则4是该函数的一个周期.其中真命题的个数为①③④.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:根据诱导公式和余弦函数的奇偶性,可判断①;根据正弦函数的对称性,可判断②;根据奇函数在对称区间上单调相同,偶函数在对称区间上单调相反,及导数符号与函数单调性的关系,可判断③;根据函数周期性的定义可判断④解答:解:函数y=sin(π+x)=﹣cosx,满足f(﹣x)=f(x)为偶函数,故①正确;由2x+=kπ,k∈Z得:x=﹣,k∈Z,故函数y=cos(2x+)图象的一条对称轴方程为﹣,k∈Z,故②错误;由已知可得函数f(x)为奇函数,函数g(x)为偶函数,当x>0时,f′(x)>0,g′(x)>0,函数f(x),g(x)均为均函数,故x<0时,函数f(x)为增函数,g(x)为减函数,故f′(x)>0,g′(x)<0,即f′(x)>g′(x),故③正确;若f(x+2)=﹣f(x),则f(x+4)=﹣f[(x+2)]=f(x),即4是该函数的一个周期,故答案为:①③④点评:本题考查的知识点是函数的奇偶性,对称性,单调性,周期性,是函数图象和性质的综合应用,难度中档.三、解答题(共6小题,满分70分)17.(10分)已知角α的终边经过点P(,﹣).(1)求sinα的值.(2)求式•的值.考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:(1)求出|OP|,利用三角函数的定义,直接求出sinα的值.(2)利用诱导公式化简表达式,根据角的终边所在象限,求出cosα=,可得结果.解答:解:(1)∵|OP|=,∴点P在单位圆上.(2分)由正弦函数的定义得sinα=﹣(5分)(2)原式=(9分)=..(10分)由余弦的定义可知,cosα=(11分)即所求式的值为(12分)点评:本题考查任意角的三角函数的定义,运用诱导公式化简求值,考查计算能力,推理能力,是基础题.18.(12分)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;(2)由于x是[0,]范围内的角,得到2x+的范围,然后通过正弦函数的单调性求出f(x)在区间[0,]上的单调性.解答:解:(1)f(x)=4cosωxsin(ωx+)=2sinωx•cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.点评:本题考查三角函数的化简求值,恒等关系的应用,注意三角函数值的变换,考查计算能力,常考题型.19.(12分)已知sin(π﹣α)=,α∈(0,).(1)求sin2α﹣cos2的值;(2)求函数f(x)=cosαsin2x﹣cos2x的单调递减区间.考点:三角函数中的恒等变换应用.专题:三角函数的求值.分析:(1)由sin(π﹣α)=,可得sinα=,由于α∈(0,),可得cos.再利用倍角公式即可得出.(2)利用两角和差的正弦公式、正弦函数的单调性即可得出.解答:解:(1)∵sin(π﹣α)=,∴sinα=,∵α∈(0,),∴cos.∴sin2α﹣cos2=2sinαcosα﹣==.(2)函数f(x)=cosαsin2x﹣cos2x=sin2x﹣cos2x=.由,解得(k∈Z).∴函数f(x)单调递减区间为(k∈Z).点评:本题考查了倍角公式、两角和差的正弦公式、正弦函数的单调性、同角三角函数的基本关系式,考查了计算能力,属于中档题.20.(12分)函数的部分图象如图所示.(Ⅰ)求f(x)的解析式;(Ⅱ)设,求函数g(x)在上的最大值,并确定此时x的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.专题:计算题;数形结合.分析:(Ⅰ)由图读出A,最高点到时左边第一个零点的横坐标的差的绝对值为四分之一周期,求出周期T,进而求出ω,代入点的坐标求出φ,得f(x)的解析式;(Ⅱ)由(Ⅰ)知f(x)的解析式,把x﹣代入求f(x﹣),进而求出g(x),利用降幂公式得一个角一个三角函数值,由x的范围,求出3x+的范围,借助余弦函数的图象,求出cos(3x+)的范围,进一步求出最大值.解答:解:(Ⅰ)由图知A=2,,则∴∴f(x)=2sin(x+φ),∴2sin(×+φ)=2,∴sin(+φ)=1,∴+φ=,∴φ=,∴f(x)的解析式为(Ⅱ)由(Ⅰ)可知:∴∵∴∴当即时,g(x)max=4点评:给出条件求y=Asin(ωx+φ)的解析式,条件不管以何种方式给出,一般先求A,再求ω,最后求φ;求三角函数最值时,一般要把式子化为y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B的形式,从x的范围由里向外扩,一直扩到Asin(ωx+φ)+B或Acos(ωx+φ)+B的范围,即函数f(x)的值域,数形结合,看ωx+φ为多少时,取得最值.用到转化化归的思想.21.(12分)已知α,β∈(0,π),且tanα=2,cosβ=﹣.(1)求cos2α的值;(2)求2α﹣β的值.考点:二倍角的余弦;同角三角函数间的基本关系;两角和与差的正弦函数.专题:计算题;三角函数的求值.分析:(1)利用二倍角的余弦函数,通过分母“1=sin2α+cos2α”的代换,然后化简分式2tanα的形式,代入数值全家健康.(2)通过α,β的范围求出sin2α,sinβ,通过二倍角的正弦函数,求出sin(2α﹣β)的值,结合角的范围求出角的大小即可.解答:解:(1)cos2α=cos2α﹣sin2α==,因为tanα=2,所以,所以cos2α=.(2)因为α∈(0,π),且tanα=2,所以又cos2α=,∴,,因为β∈(0,π),cosβ=﹣.所以,,所以sin(2α﹣β)=sin2αcosβ﹣cos2αsinβ==﹣,又,∴2α﹣β=﹣.点评:本题考查同角三角函数的基本关系式,二倍角的余弦函数与两角和与差的三角函数的应用,考查计算能力,注意角的范围是解题的关键.22.(12分)已知f(x)=x3+ax2﹣a2x+2.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若a≠0,求函数f(x)的单调区间;(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)求出切点坐标,斜率k,k=f′(1),用点斜式即可求出方程;(Ⅱ)解含参的不等式:f′(x)>0,f′(x)<0即可;(Ⅲ)分离出参数a后,转化为函数的最值问题解决,注意函数定义域.解答:解:(Ⅰ)∵a=1,∴f(x)=x3+x2﹣x+2,∴f′(x)=3x2+2x﹣1,∴k=f′(1)=4,又f(1)=3,所有切点坐标为(1,3).∴所求切线方程为y﹣3=4(x﹣1),即4x﹣y﹣1=0.(Ⅱ)f′(x)=3x2+2ax﹣a2=(x+a)(3x﹣a)由f′(x)=0,得x=﹣a或x=.(1)当a>0时,由f′(x)<0,得﹣a<x<;由f′(x)>0,得x<﹣a或x>,此时f(x)的单调递减区间为(﹣a,),单调递增区间为(﹣∞,﹣a)和(,+∞).(2)当a<0时,由f′(x)<0,得;由f′(x)>0,得x<或x>﹣a.此时f(x)的单调递减区间为(,﹣a),单调递增区间为(﹣∞,)和(﹣a,+∞).综上:当a>0时,f(x)的单调递减区间为(﹣a,),单调递增区间为(﹣∞,﹣a)和(,+∞);当a<0时,f(x)的单调递减区间为(,﹣a),单调递增区间为(﹣∞,)和(﹣a,+∞).(Ⅲ)依题意x∈(0,+∞),不等式2xlnx≤f′(x)+a2+1恒成立,等价于2xlnx≤3x2+2ax+1在(0,+∞)上恒成立,可得a≥lnx﹣x﹣在(0,+∞)上恒成立,设h(x)=lnx﹣﹣,则h′(x)=﹣+=﹣.令h′(x)=0,得x=1,x=﹣(舍),当0<x<1时,h′(x)>0;当x>1时,h′(x)<0,当x变化时,h′(x),h(x)变化情况如下表:x (0,1) 1 (1,+∞)h′(x)+ 0 ﹣h(x)单调递增﹣2 单调递减∴当x=1时,h(x)取得最大值,h(x)max=﹣2,∴a≥﹣2.∴a的取值范围是[﹣2,+∞).点评:本题考查了导数的几何意义、应用导数研究函数的单调性、求函数最值问题,不等式恒成立常转化为函数最值问题解决.。