2014-2015年江苏省苏州市景范中学八年级(上)数学期中试卷及参考答案
- 格式:pdf
- 大小:679.70 KB
- 文档页数:23
吴中区2014-2015学年第一学期期中统一测试初二数学试卷本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效,一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列各选项的图形中,不是..轴对称图形的是(▲)A B C D2.如图,,点与,与分别是对应顶点,且测得,,则长为(▲) A. B. C. D.3.等腰三角形的两边长分别为2、4,则它的周长为(▲)A.8B.10C.8或10D.以上都不对4.有四个三角形,分别满足下列条件:其中直角三角形有(▲)(1)一个内角等于另外两个内角之和:(2)三个内角之比....为3:4:5;(3)三边..之比为5:12:13;(4)三边长分别为7、24、25.A.1个B.2个C.3个D.4个5.若点P在x轴的上方、y轴的左侧,且到两条坐标轴的距离都是4,则点P的坐标是(▲).A.(4,4)B.(4,-4)C.(-4,-4)D.(-4,4)6.在△ABC内部取一点P,使得点P到△ABC的三边的距离相等,则点P应是△ABC的下列哪三条线段的交点(▲). A.角平分线B.高C.中线D.垂直平分线7. 如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR; ③△BPR≌△QPS中一定正确....的是(▲)A.全部正确B. 仅①和②正确C.仅①正确D. 仅①和③正确8.如图,在△ABC中,AD⊥BC,垂足为D,若AD=3,∠B=45°,△ABC的面积为6,则AC边的长是(▲)第2题第7题第8题A .B .2C .D .39.如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ▲ )A .B .C .D .10. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .12个B .10个C .8个D .6个二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若等腰三角形的一个角是80°,则其底角为_ ▲ . 12.已知点A (3,4)先向左平移5个单位,再向下平移2个单位得到点B ,则点B 的坐标为 ▲ . 13. 点A (m +2,m +1)在轴上,则A 点的坐标为 ▲ .14. 如图,在△ABC 中,DE 是AC 的垂直平分线,AE=4 cm ,△ABD 的周长为13cm ,则△ABC 的周长为 ▲ cm. 15. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 ▲ .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 ▲ . 17.已知等腰三角形一腰上的中线将它周长分成18cm 和9cm 两部分,则这个等腰三角形的底边长是 ▲ cm .18. 如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是 ▲ cm 2.EC ′ BD 第18题 第14题 第15题 第16题吴中区2014-2015学年第一学期期中统一测试初二数学答题卷一、选择题(把每题的答案填在下表中,每小题3分,共30分。
2014-2015学年江苏省苏州市景范中学九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.(3分)设x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,则x1+x2等于()A.﹣2 B.﹣5 C.2 D.53.(3分)一个三角形三边之比为4:6:7,与之相似的另一个三角形最长边为28cm,则最短边为()A.12cm B.16cm C.24cm D.49cm4.(3分)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.5.(3分)已知二次函数y=2(x﹣3)2+1,可知正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.当x<3时,y随x的增大而增大 D.其最小值为16.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.(3分)若b<0,则一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()A.B.C.D.8.(3分)已知二次函数y=a(x﹣2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别为y1、y2、y3,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19.(3分)如图为△ABC与△DEC重迭的情形,其中E在BC上,AC交DE于F 点,且AB∥DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=()A.3 B.7 C.12 D.1510.(3分)对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=﹣1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共8小题,每小题3分,满分24分)11.(3分)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=,另一个根为.12.(3分)已知a、b为一元二次方程x2+2x﹣2014=0的两根,那么a2+2a+ab的值是.13.(3分)将抛物线y=﹣x2向上平移2个单位,再向右平移1个单位后,得到的抛物线所对应的函数关系式为.14.(3分)如图,△ABC中,AB=18,AC=16,D在AB上,AD=9,在AC上取一点P,问AP=时,以A、P、D为顶点的三角形与△ABC相似.15.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=m.16.(3分)已知抛物线的顶点坐标为(2,9),且它在x轴上截得的线段长为6,则该抛物线的解析式为.17.(3分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.动点P从点B开始沿折线BC﹣CD﹣DA以1cm/s的速度运动到点A.设点P运动的时间为t(s),△PAB面积为S(cm2).当点P在边DA上运动时,则S关于t的函数表达式为.18.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的结论是.三、解答题(共11小题,满分66分)19.(6分)解方程:(x+1)2=4.20.(6分)解方程:x2﹣6x﹣6=0.21.(6分)解方程:2x2﹣x﹣6=0.22.(6分)解方程:.23.(6分)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根(1)求实数k的取值范围;(2)方程有两个实数根x1,x2且有x1+x2+2x1x2=0,求k.24.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)△ADF与△DEC相似吗?为什么?(2)若AB=4,AD=,AE=3,求AF的长.25.(6分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、C分别在x轴的负半轴、y轴的正半轴上,已知A(﹣1,0)、D(2,3),并且二次函数y=ax2+bx+c的图象经过A、C、D三点.(1)求该二次函数的解析式;(2)若直线y=kx+d经过B、C两点,试判断直线BC是否经过抛物线的顶点M,说明理由;并结合函数的图象探索:当二次函数的函数值大于一次函数的函数值时x的取值范围.26.(6分)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)27.(6分)已知边长为4的正方形截取一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.若在AB上有一点P使矩形MPND的面积最大,请你求出此时矩形MPND的边长DN、PN.28.(6分)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.29.(6分)如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q 在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.2014-2015学年江苏省苏州市景范中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.2.(3分)设x1,x2是一元二次方程x2﹣2x﹣5=0的两个根,则x1+x2等于()A.﹣2 B.﹣5 C.2 D.5【解答】解:根据题意得x1+x2=2.故选:C.3.(3分)一个三角形三边之比为4:6:7,与之相似的另一个三角形最长边为28cm,则最短边为()A.12cm B.16cm C.24cm D.49cm【解答】解:∵一个三角形三边之比为4:6:7,∴与之相似的另一个三角形的三边比为4:6:7,∵最长边为28cm,∴每一份为4cm,∴最短边为4×4cm=16cm,故选:B.4.(3分)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【解答】解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.5.(3分)已知二次函数y=2(x﹣3)2+1,可知正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.当x<3时,y随x的增大而增大 D.其最小值为1【解答】解:A、∵二次函数y=2(x﹣3)2+1中,a=2>0,∴其图象的开口向上,故本选项错误;B、∵二次函数的解析式是y=2(x﹣3)2+1,∴其图象的对称轴是直线x=3,故本选项错误;C、∵二次函数的图象开口向上,对称轴是直线x=3,∴当x<3时,y随x的增大而减小,故本选项错误;D、∵由函数解析式可知其顶点坐标为(3,1),∴其最小值为1,故本选项正确.故选:D.6.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.7.(3分)若b<0,则一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()A.B.C.D.【解答】解:∵b<0,∴一次函数y=ax+b图象与y轴的负半轴相交,故排除A、C选项,B、D选项中,一次函数图象经过第一三象限,∴a>0,二次函数开口向上,故D选项不符合题意,∵a>0,b<0时,对称轴x=﹣>0,B选项符合题意.故选:B.8.(3分)已知二次函数y=a(x﹣2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别为y1、y2、y3,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【解答】解:∵a>0,∴二次函数图象开口向上,又∵对称轴为直线x=2,∴x分别取、3、0时,对应的函数值分别为y1最小y3最大,∴y3>y2>y1.故选:D.9.(3分)如图为△ABC与△DEC重迭的情形,其中E在BC上,AC交DE于F 点,且AB∥DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=()A.3 B.7 C.12 D.15【解答】解:∵△ABC与△DEC的面积相等∴△CDF与四边形AFEB的面积相等∵AB∥DE∴△CEF∽△CBA∵EF=9,AB=12∴EF:AB=9:12=3:4∴面积比=9:16设△CEF的面积为9k,则四边形AFEB的面积=7k∵△CDF与四边形AFEB的面积相等∴△CDF=7k∵△CDF与△CEF是同高不同底的三角形∴面积比等于底之比∴DF:EF=7k:9k∴DF=7.故选:B.10.(3分)对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=﹣1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵△=(﹣2m)2﹣4×1×(﹣3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本小题正确;②∵当x≤1时y随x的增大而减小,∴对称轴直线x=﹣≥1,解得m≥1,故本小题错误;③∵将它的图象向左平移3个单位后过原点,∴平移前的图象经过点(3,0),代入函数关系式得,32﹣2m•3﹣3=0,解得m=1,故本小题错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为直线x==1006,∴﹣=1006,解得m=1006,∴函数关系式为y=x2﹣2012x﹣3,当x=2012时,y=20122﹣2012×2012﹣3=﹣3,故本小题正确;综上所述,结论正确的是①④共2个.故选:B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=2,另一个根为2.【解答】解:将x=1代入方程得:1﹣3+m=0,解得:m=2,方程为x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2,则另一根为2.故答案为:2,2.12.(3分)已知a、b为一元二次方程x2+2x﹣2014=0的两根,那么a2+2a+ab的值是0.【解答】解:∵a为一元二次方程x2+2x﹣2014=0的根,∴a2+2a﹣2014=0,即a2+2a=2014,∵a、b为一元二次方程x2+2x﹣2014=0的两根,∴ab=﹣2014,∴a2+2a+ab=2014﹣2014=0.故答案为0.13.(3分)将抛物线y=﹣x2向上平移2个单位,再向右平移1个单位后,得到的抛物线所对应的函数关系式为y=﹣(x﹣1)2+2.【解答】解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移1个单位得到点的坐标为(1,2),所以平移后的抛物线解析式为y=﹣(x﹣1)2+2.故答案为y=﹣(x﹣1)2+2.14.(3分)如图,△ABC中,AB=18,AC=16,D在AB上,AD=9,在AC上取一点P,问AP=8或时,以A、P、D为顶点的三角形与△ABC相似.【解答】解:∵AB和AC、AD和AP有共同的夹角∠A,∴=或=,均可使得△ADP和△ABC相似,∴=或=解得AP=或8.故答案为:8或.15.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5m.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴=∴BC=4米,∴AB=AC+BC=1.5+4=5.5米,故答案为:5.5.16.(3分)已知抛物线的顶点坐标为(2,9),且它在x轴上截得的线段长为6,则该抛物线的解析式为y=﹣(x﹣2)2+9.【解答】解:设此抛物线的解析式为:y=a(x﹣h)2+k,∵抛物线的顶点坐标为(2,9),∴h=2,k=9,∴y=a(x﹣2)2+9,∵且它在x轴上截得的线段长为6,令y=0得,方程0=a(x﹣2)2+9,即:ax2﹣4ax+4a+9=0,∵抛物线ya(x﹣2)2+9在x轴上的交点的横坐标为方程的根,设为x1,x2,∴x1+x2=4,x1•x2=,∴|x1﹣x2|==6,即16﹣4×=36解得:a=﹣1,y=﹣(x﹣2)2+9,故答案为:y=﹣(x﹣2)2+9.17.(3分)如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.动点P从点B开始沿折线BC﹣CD﹣DA以1cm/s的速度运动到点A.设点P运动的时间为t(s),△PAB面积为S(cm2).当点P在边DA上运动时,则S关于t的函数表达式为.【解答】解:如图,过点D作DE⊥AB于点E;当点P运动到点Q的位置时,连接BQ,过点Q作QF⊥AB于点F;则四边形DEBC为矩形,DE=BC=4cm,BE=DC=5cm,∴AE=8﹣5=3(cm);由勾股定理得:AD2=32+42=25,∴AD=5(cm);由题意得:DQ=t﹣﹣4﹣5=t﹣9,AQ=5﹣(t﹣9)=14﹣t;∵QF⊥AB,DE⊥AB,∴QF∥DE,∴△AQF∽△ADE;∴,∴QF=;∴=,故答案为:.18.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=0的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的结论是①③④.【解答】解:∵x=﹣1时y=﹣1,x=0时,y=3,x=1时,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<0,故①正确;对称轴为直线x=﹣=,所以,当x>时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=0的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>0正确,故④正确;综上所述,结论正确的是①③④.故答案为:①③④.三、解答题(共11小题,满分66分)19.(6分)解方程:(x+1)2=4.【解答】解:两边直接开平方得:x+1=±2,则x+1=2,x+1=﹣2,解得:x1=1,x2=﹣3.20.(6分)解方程:x2﹣6x﹣6=0.【解答】解:(x﹣3)2=15,x﹣3=±.∴x1=3+,x2=3﹣.21.(6分)解方程:2x2﹣x﹣6=0.【解答】解:原式即(2x+3)(x﹣2)=0,则2x+3=0或x﹣2=0,解得:x1=﹣,x2=2.22.(6分)解方程:.【解答】解:方程两边同时乘以x2﹣4得,4﹣(x2﹣4)=x+2,解得x1=2,x2=﹣3,检验:当x=2时,22﹣4=0;当x=﹣3时,(﹣3)2﹣4=5.故x=2是原方程的增根,x=﹣3是原方程的根.23.(6分)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根(1)求实数k的取值范围;(2)方程有两个实数根x1,x2且有x1+x2+2x1x2=0,求k.【解答】解:(1)依题意得△=4(k﹣1)2﹣4(k2﹣1)>0,解得k<1;(2)∵x1+x2=﹣2(k﹣1),x1x2=k2﹣1,∴由x1+x2+2x1x2=0,得﹣2(k﹣1)+2(k2﹣1)=0,解得k1=0,k2=1因为k<1,所以k=0.24.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)△ADF与△DEC相似吗?为什么?(2)若AB=4,AD=,AE=3,求AF的长.【解答】解:(1)△ADF∽△DEC;理由:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=4,又∵AE⊥BC,∴AE⊥AD,在Rt△ADE中,DE===6,∵△ADF∽△DEC,∴=,∴=,解得:AF=2.25.(6分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、C分别在x轴的负半轴、y轴的正半轴上,已知A(﹣1,0)、D(2,3),并且二次函数y=ax2+bx+c的图象经过A、C、D三点.(1)求该二次函数的解析式;(2)若直线y=kx+d经过B、C两点,试判断直线BC是否经过抛物线的顶点M,说明理由;并结合函数的图象探索:当二次函数的函数值大于一次函数的函数值时x的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∵D(2,3),∴抛物线对称轴为直线x=1,设抛物线解析式为y=a(x﹣1)2+k,将点A(﹣1,0)、D(2,3)代入得,,解得,所以,抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)令x=0,则y=3,所以,点C的坐标为(0,3),∵A(﹣1,0),∴点B的坐标为(﹣3,0),设直线BC的解析式为y=kx+d,则,解得,,所以,y=x+3,∵抛物线解析式为y=﹣(x﹣1)2+4的顶点坐标M(1,4),∴当x=1时,y=1+3=4,∴点M在直线BC上;二次函数的函数值大于一次函数的函数值时x的取值范围是0<x<1.26.(6分)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【解答】解:(1)由题意,得:w=(x﹣20)•y,=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,,答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:﹣10x2+700x﹣10000=2000,解这个方程得:x1=30,x2=40,答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵a=﹣10<0,∴抛物线开口向下,∴当30≤x≤40时,w≥2000,∵x≤32,∴当30≤x≤32时,w≥2000,设成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000,∵a=﹣200<0,∴P随x的增大而减小,∴当x=32时,P=3600,最小答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.27.(6分)已知边长为4的正方形截取一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.若在AB上有一点P使矩形MPND的面积最大,请你求出此时矩形MPND的边长DN、PN.【解答】解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x ≤4),过点B作BH⊥PN于点H,∵正方形ABCD的边长为4,∴CN=4﹣x,EM=4﹣y.∵EF∥BH,∴∠BAF=∠PBH,∠F=∠BHP=90°,∴△ABF∽△BPH,∴=,∴=,即=,∴y=﹣x+5,S=xy=﹣x2+5x(2≤x≤4),∵此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值是随x的增大而增大.对2≤x≤4来说,当x=4,即PM=4时,S有最大值,=﹣×42+5×4=12.∴S最大∴DN=4,PN=3.28.(6分)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.【解答】解:(1)∵∠A=∠B=∠DEC=45°,∴∠AED+∠ADE=135°,∠AED+∠CEB=135°∴∠ADE=∠CEB,在△ADE和△BEC中,,∴△ADE∽△BEC,∴点E是四边形ABCD的边AB上的相似点.(2)如图所示:点E是四边形ABCD的边AB上的强相似点,(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,BE=,在Rt△BCE中,tan∠BCE==tan30°=,∴.29.(6分)如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为y=﹣x2﹣x+2;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为y=﹣4x+4.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q 在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.【解答】解:(1)若l:y=﹣2x+2,则A(1,0),B(0,2).∵将△AOB绕点O逆时针旋转90°,得到△COD,∴D(﹣2,0).设P表示的函数解析式为:y=ax2+bx+c,将点A、B、D坐标代入得:,解得,∴P表示的函数解析式为:y=﹣x2﹣x+2;若P:y=﹣x2﹣3x+4=﹣(x+4)(x﹣1),则D(﹣4,0),A(1,0).∴B(0,4).设l表示的函数解析式为:y=kx+b,将点A、B坐标代入得:,解得,∴l表示的函数解析式为:y=﹣4x+4.(2)直线l:y=mx+n(m<0,n>0),令y=0,即mx+n=0,得x=﹣;令x=0,得y=n.∴A(﹣,0)、B(0,n),∴D(﹣n,0).设抛物线对称轴与x轴的交点为N(x,0),∵DN=AN,∴﹣﹣x=x﹣(﹣n),∴2x=﹣n﹣,∴P的对称轴为x=﹣.(3)若l:y=﹣2x+4,则A(2,0)、B(0,4),∴C(0,2)、D(﹣4,0).可求得直线CD的解析式为:y=x+2.由(2)可知,P的对称轴为x=﹣1.∵以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形,∴FQ∥CE,且FQ=CE.设直线FQ的解析式为:y=x+b.∵点E、点C的横坐标相差1,∴点F、点Q的横坐标也是相差1.则|x F﹣(﹣1)|=|x F+1|=1,解得x F=0或x F=﹣2.∵点F在直线l l:y=﹣2x+4上,∴点F坐标为(0,4)或(﹣2,8).若F(0,4),则直线FQ的解析式为:y=x+4,当x=﹣1时,y=,∴Q1(﹣1,);若F(﹣2,8),则直线FQ的解析式为:y=x+9,当x=﹣1时,y=,∴Q2(﹣1,).∴满足条件的点Q有2个,如答图1所示,点Q坐标为Q1(﹣1,)、Q2(﹣1,).(4)如答图2所示,连接OG、OH.∵点G、H为斜边中点,∴OG=AB,OH=CD.由旋转性质可知,AB=CD,OG⊥OH,∴△OGH为等腰直角三角形.∵点M为GH中点,∴△OMG为等腰直角三角形,∴OG=OM=•=2,∴AB=2OG=4.∵l:y=mx﹣4m,∴A(4,0),B(0,﹣4m).在Rt△AOB中,由勾股定理得:OA2+OB2=AB2,即:42+(﹣4m)2=(4)2,解得:m=﹣2或m=2,∵点B在y轴正半轴,∴m=2舍去,∴m=﹣2.∴l表示的函数解析式为:y=﹣2x+8;∴B(0,8),D(﹣8,0).又A(4,0),利用待定系数法求得P:y=﹣x2﹣x+8.。
苏教版八年级数学上册期中考试题(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°52(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或 7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2B 2C .2D .4 8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =__________.3.计算:()()201820195-252+的结果是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.化简:x(4x +3y)-(2x +y)(2x -y)3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、C7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、52、-5324、10.5、1 (21,2) n n--6、42.三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3xy+y23、(1)12b-≤≤;(2)24、(1)k=-1,b=4;(2)点D的坐标为(0,-4).5、(1)略;(2)略.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
2014-2015学年江苏省苏州市工业园区八年级(上)期中数学试卷一.选择题(本大题共10小题,每题2分,共20分)1.(2分)下列四个图案中,是轴对称图形的是()A.B.C.D.2.(2分)在3.14、、﹣、、π、0这六个数中,无理数有()A.0个 B.1个 C.2个 D.3个3.(2分)下列计算正确的是()A.B.C.D.4.(2分)给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④6,8,10.其中能组成直角三角形的是()A.①②B.②③C.②④D.③④5.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm6.(2分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.(2分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N8.(2分)已知等腰三角形的周长为29,其中一边长为7,则该等腰三角形的底边长为()A.11 B.7 C.15 D.15或79.(2分)一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为()A.12cm B.cm C.cm D.cm10.(2分)如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结=AF•DE;④∠BDF+论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE∠FEC=2∠BAC,正确的个数是()A.1 B.2 C.3 D.4二.填空题(本大题共8小题,每题2分,共16分)11.(2分)使有意义的x的取值范围是.12.(2分)化简:=.13.(2分)已知直角三角形的两边的长分别是3和4,则第三边长为.14.(2分)若x、y为实数,且满足|x﹣3|+=0,则()2=.15.(2分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则m=.16.(2分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.17.(2分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.18.(2分)如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.三、解答题(共10小题,满分64分)19.(6分)计算:(1)|﹣4|﹣22+;(2)(﹣2)3×+(﹣1)2013﹣.20.(6分)求下列各式中的x:①(x+2)2=16②8(x3+1)=﹣5621.(6分)化简求值已知x=2﹣,y=2+,求下列各式的值.(1)x2﹣y2;(2)x2+xy+y2.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为3,4,5;(3)在图3中以格点为顶点画一个三角形,使三角形三边长分别为2,,.23.(5分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.24.(5分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.25.(6分)已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D 为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=,CD=1,求ED的长.26.(6分)如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC 为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.27.(8分)将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”(1)证明:BC⊥CE;(2)如图②,连结BE,取BE中点F,连结AF、CF、DF,试判断并证明△AFD 的形状.28.(10分)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB 的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值.2014-2015学年江苏省苏州市工业园区八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每题2分,共20分)1.(2分)下列四个图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.2.(2分)在3.14、、﹣、、π、0这六个数中,无理数有()A.0个 B.1个 C.2个 D.3个【解答】解:无理数有:﹣,π共有2个.故选:C.3.(2分)下列计算正确的是()A.B.C.D.【解答】解:A、==,故本选项正确;B、==,故本选项错误;C、=0.5,故本选项错误;D、没有意义,故本选项错误;故选:A.4.(2分)给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④6,8,10.其中能组成直角三角形的是()A.①②B.②③C.②④D.③④【解答】解:①12+22=5≠22,故不是直角三角形;②122+52=132,故是直角三角形;③62+72=85≠82,故不是直角三角形;④62+82=102,故是直角三角形.故选:C.5.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9+2×3=15cm,故选:C.6.(2分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.7.(2分)如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【解答】解:∵4<8<9,∴2<<3,∴在数轴上表示实数的点可能是点M.故选:C.8.(2分)已知等腰三角形的周长为29,其中一边长为7,则该等腰三角形的底边长为()A.11 B.7 C.15 D.15或7【解答】解:本题可分两种情况:①当腰长为7时,底边长=29﹣2×7=15;而7+7<15,不符合三角形三边关系,因此此种情况不成立.②底边长即为7,此时腰长=(29﹣7)÷2=11,经检验,符合三角形三边关系.因此该等腰三角形的底边长为7.故选:B.9.(2分)一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为()A.12cm B.cm C.cm D.cm【解答】解:底边上的高==12(cm).腰上的高==(cm).故选:C.10.(2分)如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S=AF•DE;④∠BDF+四边形ADFE∠FEC=2∠BAC,正确的个数是()A.1 B.2 C.3 D.4【解答】解:①由题意得AE=EF,BF=FC,但并不能说明AE=EC,∴不能说明EF 是△ABC的中位线,故①错;②题中没有说AB=AC,那么中线AF也就不可能是顶角的平分线,故②错;③易知A,F关于D,E对称.那么四边形ADFE是对角线互相垂直的四边形,那么面积等于对角线积的一半,故③对;④∠BDF=∠BAF+∠DFA,∠FEC=∠EAF+∠AFE,∴∠BDF+∠FEC=∠BAC+∠DFE=2∠BAC,故④对.正确的有两个,故选B.二.填空题(本大题共8小题,每题2分,共16分)11.(2分)使有意义的x的取值范围是x≥2.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.12.(2分)化简:=π﹣3.【解答】解:==π﹣3.故答案是:π﹣3.13.(2分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.14.(2分)若x、y为实数,且满足|x﹣3|+=0,则()2=1.【解答】解:由题意得,x﹣3=0,y+3=0,解得x=3,y=﹣3,所以,()2=()2=1.故答案为:1.15.(2分)一个正数的两个平方根分别是2m﹣1和4﹣3m,则m=3.【解答】解:根据题意得:2m﹣1+4﹣3m=0,解得:m=3,故答案为:316.(2分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.(2分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13 cm.【解答】解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.18.(2分)如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是2.【解答】解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,故答案为:2.三、解答题(共10小题,满分64分)19.(6分)计算:(1)|﹣4|﹣22+;(2)(﹣2)3×+(﹣1)2013﹣.【解答】解:(1)原式=4﹣﹣4+3=3﹣;(2)原式=﹣8×﹣1﹣=﹣45﹣.20.(6分)求下列各式中的x:①(x+2)2=16②8(x3+1)=﹣56【解答】解:①x+2=±4,x1=﹣2+4=2,x2=﹣2﹣4=﹣6,∴x1=2,x2=﹣6;②(x3+1)=﹣7,x3=﹣8,x=﹣2.21.(6分)化简求值已知x=2﹣,y=2+,求下列各式的值.(1)x2﹣y2;(2)x2+xy+y2.【解答】解:∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,xy=4﹣3=1,(1)x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8;(2)x2+xy+y2=(x+y)2﹣xy=42﹣1=15.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为3,4,5;(3)在图3中以格点为顶点画一个三角形,使三角形三边长分别为2,,.【解答】解:如图所示:23.(5分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.24.(5分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.25.(6分)已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D 为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=,CD=1,求ED的长.【解答】(1)证明:∵∠EAC+∠CAD=∠EAD=90°,∠CAD+∠DAB=∠BAC=90°,∴∠EAC=∠DAB,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS);(2)解:∵△ACE≌△ABD,∴EC=BD,∠ACE=∠B=45°,∴∠ECD=∠ACE+∠ACB=90°,∵等腰直角△ABC中,AC=,∴BC=AC=4,∴EC=BD=BC﹣CD=3,∴在RT△ECD中,DE==.26.(6分)如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC 为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,DC=AB=8,∠B=∠D=∠C=90°,∵沿AE折叠时,顶点D落在BC边上的点F处,∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=5,即CE的长为3.27.(8分)将两个全等的直角三角形(△ABC≌△DCE,∠A=∠D=90°)摆放成如图①的形式,使点A、C、D成一直线,我们称之为“K形图”(1)证明:BC⊥CE;(2)如图②,连结BE,取BE中点F,连结AF、CF、DF,试判断并证明△AFD 的形状.【解答】(1)证明:∵△ABC≌△DCE,∠A=∠D=90°,∴∠B=∠DCE,∠ACB+∠B=90°,∴∠ACB+∠DCE=90°,∴∠BCE=180°﹣90°=90°,∴BC⊥CE.(2)△AFD是等腰直角三角形,理由是:延长AF交DE延长线于M,∵∠BAC=∠CDE=90°,∴∠BAC+∠CDE=180°∴AB∥DE,∴△ABF∽△MEF,∴==,∵F为BE中点,∴BF=EF,∴AB=EM,AF=FM,∵△ABC≌△DCE,∴AC=DE,DC=AB=EM,∴AD=DM,∵∠ADM=90°,∴DF⊥AM,DF=AF=FM,即△AFD是等腰直角三角形.28.(10分)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB 的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值,2,4﹣,4+.【解答】(1)证明:∵∠ABC=90°,点D是AC的中点,∴BD=AD=AC,∵DE是∠ADB的角平分线,∴DE⊥AB,又∵∠ABC=90°,∴DE∥BC;(2)解:∵AE=3,AD=5,DE⊥AB,∴DE===4,∵DE⊥AB,AD=BD,∴BE=AE=3,①DE=EP时,BP==,②DP=EP时,BP=DE=×4=2,③DE=DP时,过点D作DF⊥BC于F,则DF=BE=3,由勾股定理得,FP==,点P在F下边时,BP=4﹣,点P在F上边时,BP=4+,综上所述,BP的值为,2,4﹣,4+.故答案为:,2,4﹣,4+.。
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
2014-2015学年江苏省苏州市昆山市八年级(上)期中数学试卷一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.(3分)下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个 B.2个 C.3个 D.4个2.(3分)在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是()A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b23.(3分)下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.4.(3分)如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°6.(3分)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 等于()A.4 B.3 C.2 D.17.(3分)已知,则的值是()A.457.3 B.45.73 C.1449 D.144.98.(3分)等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm9.(3分)在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为()A.24 B.24πC.D.10.(3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.(3分)2的平方根是.12.(3分)若的值在两个整数a与a+1之间,则a=.13.(3分)如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD 折叠后,点C落在C′的位置上,那么BC′为.14.(3分)如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个).15.(3分)如图,AB∥CD,AD∥BC,则图中共有全等三角形对.16.(3分)如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是cm.17.(3分)△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为.18.(3分)等腰三角形一腰长为5,一边上的高为3,则底边长为.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(6分)求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.20.(6分)求下列各式的值(1)(2).21.(5分)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.(5分)已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.23.(6分)如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.24.(7分)已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.25.(7分)某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?26.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.27.(8分)如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.28.(8分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.29.(10分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.2014-2015学年江苏省苏州市昆山市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.(3分)下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有()个.A.1个 B.2个 C.3个 D.4个【解答】解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选:B.2.(3分)在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是()A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b2【解答】解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选:C.3.(3分)下列四个数中,是负数的是()A.|﹣2|B.(﹣2)2C.﹣D.【解答】解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、==2,是正数,故本选项错误.故选:C.4.(3分)如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13【解答】解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选:D.5.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.6.(3分)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD 等于()A.4 B.3 C.2 D.1【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.7.(3分)已知,则的值是()A.457.3 B.45.73 C.1449 D.144.9【解答】解:∵==100,而=1.449,∴=1.449×100=144.9.故选:D.8.(3分)等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm【解答】解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.9.(3分)在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为()A.24 B.24πC.D.【解答】解:在Rt△ABC中,AC=6,BC=8,AB===10,S阴影=π()2+π()2+×6×8﹣π()2=+8π+24﹣=24.故选:A.10.(3分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.(3分)2的平方根是±.【解答】解:2的平方根是±.故答案为:±.12.(3分)若的值在两个整数a与a+1之间,则a=2.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.13.(3分)如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD 折叠后,点C落在C′的位置上,那么BC′为2.【解答】解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BDC′=60°,故△BDC′为等边三角形,即可得BC′=BD=BC=2.故答案为:2.14.(3分)如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)∠B=∠D或∠C=∠E或AC=AE.【解答】解:∵AB=AD,∠1=∠2∴∠BAC=∠DAE∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE若添加AC=AE可以利用SAS判定△ABC≌△ADE故填空答案:∠B=∠D或∠C=∠E或AC=AE.15.(3分)如图,AB∥CD,AD∥BC,则图中共有全等三角形4对.【解答】解:∵AB∥CD,AD∥BC,∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,又∵AC、BD为公共边,∴△ACD≌△CAB、△BAD≌△DCB(ASA);∴AD=BC,AB=CD,∴△AOD≌△COB、△AOB≌△COD(ASA).所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD ≌△DCB,共4对;故答案是:4.16.(3分)如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.【解答】解:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB==10cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB==10cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为:100cm.17.(3分)△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+DF.【解答】解:BN=DE+DF,证明如下:连接AD,=S△ABD+S△ACD,∵S△ABC∴AC•BN=AB•DE+AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.18.(3分)等腰三角形一腰长为5,一边上的高为3,则底边长为8或或3.【解答】解:如图所示:当等腰三角形为锐角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD==4,∴BD=AB﹣AD=5﹣4=1,在Rt△BDC中,CD=3,BD=1,根据勾股定理得:BC==;当等腰三角形为钝角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD==4,∴BD=AB+AD=5+4=9,在Rt△BDC中,CD=3,BD=9,根据勾股定理得:BC==3;当AD为底边上的高时,如图所示:∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AD=3,AB=5,根据勾股定理得:BD==4,∴BC=2BD=8,综上,等腰三角形的底边长为8或或3.故答案为:8或或3三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(6分)求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.【解答】解:(1)(x﹣1)2=25,解得:x=6或﹣4.(2)﹣8(2﹣x)3=27,解得:x=20.(6分)求下列各式的值(1)(2).【解答】解:(1)原式=2﹣+2﹣1=1+;(2)原式=4+4+3=11.21.(5分)已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.22.(5分)已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.23.(6分)如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.【解答】解:①AB=AC=5,DE垂直平分AB,故BD=AD.BD+CD=AD+CD=5.△BCD的周长为8⇒BC=3;②∵BC=4,BD+CD=5,∴△BCD=BD+CD+BC=9.24.(7分)已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.【解答】解:全等三角形有三对:△ABC≌△ADC,△ABE≌△CDF,△EBC≌△FDA.在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DCA,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF,∵AE=CF,∴AF=CE,在△EBC和△FDA中,,∴△BCE≌△DAF(SSS).25.(7分)某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?【解答】解:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DAC=90°,S四边形ABCD=S△BAC+S△DAC=•BC•AB+D C•AC,=×4×3+×12×5=36.所以需费用36×100=3600(元).26.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.27.(8分)如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.【解答】证明:连接AD、BD,∵,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.28.(8分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.【解答】解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.29.(10分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【解答】解:(1)AC+CE=+;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2014-2015学年江苏省苏州市景范中学八年级(上)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)下面的图形中,不是轴对称图形的是()A.B.C.D.2.(2分)下列计算正确的是()A.B.C.D.3.(2分)如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的4.(2分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和55.(2分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm6.(2分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°7.(2分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2等于()A.9 B.35 C.45 D.无法计算8.(2分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(共10小题,每小题2分,满分20分)9.(2分)的算术平方根是,﹣64的立方根是.10.(2分)已知分式,当x=2时,分式无意义,则a=.11.(2分)5.6048(保留三个有效数字),近似数7.02×105精确到位.12.(2分)已知,则=.13.(2分)若等腰三角形的一个外角是110°,则其底角为.14.(2分)如果b<0,那么化简|b﹣|的结果是.15.(2分)如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD的面积是.16.(2分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.17.(2分)把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.18.(2分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为.三、解答题(共9小题,满分64分)19.(6分)计算:(1)+﹣(﹣)2(2)||+|1﹣|+(1﹣)20.(6分)先化简,再求值:,其中x是不等式组的整数解.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为;(3)四边形ACBB′的面积为;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.22.(6分)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.23.(6分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC 交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.24.(6分)如图,已知直线m⊥直线n于点O,点A到m、n的距离相等,在直线m或n上确定一点P,使△OAP为等腰三角形.试回答:(1)符合条件的点P共有个;(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.25.(7分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.26.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,E 是边CA上任意一点,DF⊥DE,交BC于F点.G为EF的中点,连接CG并延长交AB于点H.(1)说明:AE=CF;(2)连接DG,说明:CG=GD;(3)若AE=1,CH=4,求边AC的长.27.(10分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2014-2015学年江苏省苏州市景范中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)下面的图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.2.(2分)下列计算正确的是()A.B.C.D.【解答】解:A、==,故本选项正确;B、==,故本选项错误;C、=0.5,故本选项错误;D、没有意义,故本选项错误;故选:A.3.(2分)如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【解答】解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.4.(2分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选:C.5.(2分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选:B.6.(2分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选:A.7.(2分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2等于()A.9 B.35 C.45 D.无法计算【解答】解:在RT△ABD和RT△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在RT△BDM和RT△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=45.故选:C.8.(2分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.二、填空题(共10小题,每小题2分,满分20分)9.(2分)的算术平方根是,﹣64的立方根是﹣4.【解答】解:的算术平方根是,﹣64的立方根是﹣4;故答案为:,﹣4.10.(2分)已知分式,当x=2时,分式无意义,则a=6.【解答】解:∵当x=2时,分式无意义,∴x2﹣5x+a=22﹣5×2+a=0,解得a=6.故答案为:6.11.(2分)5.6048(保留三个有效数字) 5.60,近似数7.02×105精确到千位.【解答】解:5.6048≈5.60(保留三个有效数字);近似数7.02×105精确到千位.故答案为5.60;千.12.(2分)已知,则=.【解答】解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.13.(2分)若等腰三角形的一个外角是110°,则其底角为70°或55°.【解答】解:当110°外角为底角的外角时,则其底角为:180°﹣110°=70°;当110°外角为顶角的外角时,则其顶角为:70°,则其底角为:=55°,故答案为:70°或55°.14.(2分)如果b<0,那么化简|b﹣|的结果是﹣2b.【解答】解;b<0,|b﹣|=|b﹣(﹣b)|=b+b|=﹣2b,故答案为:﹣2b.15.(2分)如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD的面积是5.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.16.(2分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.17.(2分)把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【解答】解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.18.(2分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠BAC,∴点D到AC的距离也等于DE,=×3•DE+×4•DE=×3×4,∴S△ABC解得DE=,∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE=,∴BE=3﹣=,在Rt△BDE中,BD===.故答案为:.三、解答题(共9小题,满分64分)19.(6分)计算:(1)+﹣(﹣)2(2)||+|1﹣|+(1﹣)【解答】解:(1)原式=11﹣3﹣5=3;(2)原式=﹣+﹣1+1﹣=0.20.(6分)先化简,再求值:,其中x是不等式组的整数解.【解答】解:(﹣)÷=[﹣]•=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣2,∴不等式组的解集为﹣4<x<﹣2,其整数解为﹣3,当x=﹣3时,原式==2.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为4+2+2;(3)四边形ACBB′的面积为7;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【解答】解:(1)如图:△AB′C′即为所求;(2)∵AC′=AC==2,BC=BC′==,BB′=2,∴五边形ACBB′C′的周长为:2×2+2×+2=4+2+2;故答案为:4+2+2;(3)如图,S=S梯形AEFB﹣S△AEC﹣S△BCF=×(1+2)×4﹣×2×2﹣×2×1=3,△ABCS△ABB′=×2×4=4,=S△ABC+S△ABB′=3+4=7.∴S四边形ACBB′故答案为:7;(4)如图,点B′是点B关于l的对称点,连接B′C,交l于点P,此时PB+PC的长最短,∴PB=PB′,∴PB+PC=PB′+PC=B′C==.故答案为:.22.(6分)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).23.(6分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC 交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.【解答】(1)证明:∵DE⊥BC,∴∠DEB=90°,∵AD∥BC,∴∠ADE+∠DEB=180°,∴∠ADE=90°,∵G为AF的中点,∴DG=AG,∴∠DAF=∠ADG,∴∠DGC=∠DAF+∠ADG=2∠DAC,∵AD∥BC,∴∠ACB=∠DAC,∵∠ACD=2∠ACB,∴∠DGC=∠DCA,∴DC=DG;(2)解:∵在Rt△DEC中,∠DEC=90°,DG=DC=5,CE=2,∴由勾股定理得:DE==.24.(6分)如图,已知直线m⊥直线n于点O,点A到m、n的距离相等,在直线m或n上确定一点P,使△OAP为等腰三角形.试回答:(1)符合条件的点P共有8个;(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.【解答】解:(1)如图所示.故答案为:8个;(2)如图所示:22.5°,90°,67.5°,45°.25.(7分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.【解答】(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS);(2)解:过点C作CH⊥BQ于H,∵△ABC是等边三角形,AO是角平分线,∴∠DAC=30°,∵△ACD≌△BCE,∴∠PBC=∠DAC=30°,∴在Rt△BHC中,CH=BC=×8=4,∵PC=CQ=5,CH=4,∴PH=QH=3,∴PQ=6.26.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,E 是边CA上任意一点,DF⊥DE,交BC于F点.G为EF的中点,连接CG并延长交AB于点H.(1)说明:AE=CF;(2)连接DG,说明:CG=GD;(3)若AE=1,CH=4,求边AC的长.【解答】解:(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵CD为AB边上的中线,∴CD⊥AB,AD=CD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCB,即∠A=∠DCF,∵DF⊥DE,∴∠ADE+∠EDC=90°,∠CDF+∠EDC=90°,∴∠ADE=∠CDF,在△AED和△CFD中,∴△AED≌△CFD(ASA),∴AE=CF;(2)∵∠ACB=90°,G为EF的中点,∴CG=EF,∵DF⊥DE,G为EF的中点,∴GD=EF,∴CG=GD;(3)∵AC=BC,CD是AB边上的中线,∴CD⊥AB,∴∠CDA=90°,∴∠CHD+∠DCH=90°,∠CDG+∠HDG=90°,∵CG=DG,∴∠CDG=∠GCD,∴∠GDH=∠GHD,∴DG=GH,∴CG=GH=CH=2,∵G为EF的中点,∴DG=EF,∴EF=4,∵AE=1,∴CF=AE=1,在Rt△ECF中,由勾股定理得:CE=,∴AC=CE+AE=+1.27.(10分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或10.8s 时△BCP为等腰三角形;(3)当P点在AC上,Q在AB上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.。
2015学年苏科版八年级上期中考试练习试卷及答案(考试时间100分钟,试卷总分100分)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列图形中,不是..轴对称图形的是( )2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .6,8,10C .2,3,4D .1,1,23.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .20 C .16或20 D .18 4.9的平方根是( )A .3B .±3C .9D .±95.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定....△ABC ≌△ADC 的是( )A .∠B =∠D =90° B .CB =CDC .∠BAC =∠DACD .∠BCA =∠DCA 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .ASAC . SASD .AAS7.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③ BC =AD ; ④CD =OD .正确的有( )A .1个B .2个C .3个D .4个8.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为 E , S △ABC =8,DE =2,AB =5,则AC 长是( ) A .6 B .5C .4D .3二、填空题(本大题共10小题,每小题2分,共20分) 9.=__________. 10_______ 12. A .BD .C .ACBD(第5题图)AEBC (第8题11.若等腰三角形的一个角是80°,则其底角为_ .12.如图,长方形OABC 中,OC =2,OA =1.以原点O 为圆心,对角线OB 长为半径画弧交数轴于点D ,则数轴上点D 表示的数是 .13.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x = .14.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△C OB .你补充的条件是_____________ .(填写一个即可)15.如图,AD 是△ABC 的中线,∠ADC =60°,BC =4,把△ABC 沿直线AD 折叠后,点C 落在C ’的位置上,那么BC ’的长为 .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD =6,DE =5,则CD 的长等于 .17.把一张长方形纸片按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,则重叠部分△DEF 的面积是 ___ cm 2.18.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,在直线AC 上找一点P ,使△ABP是等腰三角形,则∠APB 的度数为__________.三、解答题(本大题共6小题,每小题6分,共36分) 19.求下列各式中的x :(1) 2510x = (2)()3464x +=-20.计算:(1)(-3)2; (2(π-3)0-1AD OCBCBA(第12题A BCFEA ′ (B ')D21.已知:如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF ,∠ACB =∠DFE .证明:AB ∥ED .22.已知:如图,AB =AC ,BE =CE ,点D 在AE 的延长线上.求证:BD =CD .23.如图,锐角三角形ABC 的两条高BD 、CE 相交于点O ,且OB =OC .(1)证明:AB =AC ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.DEECBAOEC DBA24.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?四、操作与探究(本大题共3小题,第25题8分,其余各题10分,共28分)25.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.26.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A —C —B 向点B 运动,设运动时间为t 秒(t >0),(1)在AC 上是否存在点P ,使得P A =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 恰好在△ABC 的角平分线上,请直接..写出t 的值.27.如图(1),凸四边形ABCD ,如果点P 满足∠APD =∠APB =α.且∠BPC =∠CPD=β,则称点P 为四边形ABCD 的一个半等角点.(1)在图(2)正方形ABCD 内画一个半等角点P ,且满足α≠β;(2)在图(3)四边形ABCD 中画出一个半等角点P ,保留画图痕迹(不需写出画法); (3)若四边形ABCD 有两个半等角点P 1、P 2(如图(4)),证明线段P 1P 2上任一点也是它的半等角点.2015-2016学年度第一学期期中练习卷八年级数学参考答案评分标准二、填空题(本大题共10小题,每小题2分,共20分)9.-4.10.﹥.11.50°或80°.12..13.20.14.AB≒CD 等. 15.2. 16.8. 17.5.1 . 18.15°或30°或75°或120°三、解答题(本大题共6小题,每小题6分,共36分)x=……1分(2)解:∵x+4是-64的立方根…1分19.(1)解:22∴x是2的平方根…2分∴x+4=-4 …2分∴x=……3分即x=-8 ……3分-++…2分20.(1)解:原式=9-9+3 …2分(2)解:原式=11(1=3 ……3分=1……3分21.证明:∵FB=CE∴FB+FC=CE+FC即BC=EF…………………………1分在△ABC和△DEF中BC=EF∠ACB=∠DFEAC=DF∴△ABC≌△DEF………………5分∴MD=ME………………………6分22.证明:连接BC∵AB=AC∴点A在BC的垂直平分线上…………1分同理:点E也在BC的垂直平分线上………2分∴直线AE是BC的垂直平分线………4分∵点D在直线AE上∴BD=CD………6分23.(1)证明:∵OB=OC∴∠OBC=∠OCB…………1分∵BD 、CE 是△ABC 的高 ∴∠ABC =90°-∠OCB ∠ACB =90°-∠OBC∴∠ABC =∠ACB ……2分∴AB =AC ………………3分(2)解:点O 在∠BAC 的平分线上 ……4分在△BOE 和△COD 中∠BOE =∠COD∠BEO =∠CDO =90°BO =CO∴△BOE ≌△COD ………………5分∴EO =DO又∵BD ⊥AC ,CE ⊥AB∴点O 在∠BAC 的平分线上 ………………6分24.解:根据题意:AB =DE =2.5;BC =0.7;CD =2 在Rt △ABC 中 :222AC BC AB += 即 2220.7 2.5AC +=∴AC =2.4 …………2分在Rt △DCE 中 :222CE CD DE +=即 2222 2.5CE +=∴CE =1.5 …………4分∴AE =AC -CE =2.4-1.5=0.9 …………5分 答:梯子顶端A 下滑了0.9米. …………6分25.解:(1)如图所示(要有痕迹). …………2分 (2)如图,过点A 、C 作AD ⊥3l 、CF ⊥3l ,垂足分别为D 、F ∵△ABC 是等腰直角三角形∴∠ABC =90°;AB =BC …………3分 ∵AD ⊥3l 、CF ⊥3l∴∠ADB =∠CFB =90°∵∠DAB +∠ABD =90°;∠ABD +∠CBF =90°∴∠DAB =∠CBF 在△ABD 和△BCF 中 ∠DAB =∠CBF ∠ADB =∠CFBAB =BC∴△ABD ≌△BCF ………………5分 ∴AD =BF =2;CF =BD =3 …………6分∴在Rt △BCF 根据勾股定理:BC∴在Rt △ABC 根据勾股定理:AC ………8分 26.(1)解:AC 存在这样的点P .在Rt △ABC 根据勾股定理:AC =4 ∵PA =PB =2t ∴PC =4 - 2t在Rt △PBC 根据勾股定理:()()2224232t t -+= ………3分解得: 2516t =………4分 (2)分类讨论:①当点P 在点C 、点B 时2t =、 3.5t =…………6分 ②当点P 在∠B 、∠A 的角平分线上时54t =、83t = …………………10分27.(1)所画的点P 在AC 上且不是AC 的中点和AC 的端点; ……2分 (2)画点B 关于AC 的对称点B ’,延长DB ’交AC 于点P ,点P 为所求……4分 (3)连P1A 、P 1D 、P 1B 、P 1C 和P 2D 、P 2B ,根据题意,∠AP 1D =∠AP 1B ,∠DP 1C =∠BP 1C , ∴∠AP 1B +∠BP 1C =180°.∴P 1在AC 上,同理,P 2也在AC 上. …………6分 在△DP 1P 2和△BP 1P 2中,∠DP 2P 1=∠BP 2P 1, ∠DP 1P 2=∠BP 1P 2, P 1P 2=P 1P 2∴△DP 1P 2≌△BP 1P 2. …………8分 ∴DP 1=BP 1,DP 2=BP 2, ∴B 、D 关于AC 对称.设P是P1P2上任一点,连接PD、PB,由对称性,得∠DPA=∠BPA,∠DPC=∠BPC,∴点P是四边形的半等角点.…………10分。
苏教版八年级数学上册期中考试题(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )A .2%B .4.4%C .20%D .44%7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
苏科版2014-2015学年八年级上学期期中数学试题时间120分钟满分120分2015.9.18一、填空题(共10小题,每小题2分,满分20分)1.已知:△ABC≌△DEF,若∠ABC=75°,则∠DEF=.2.如图,点B、E、C、F在一条直线上,∠B=∠DEF,AB=DE,BE=CF,AC=6,则DF=.3.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=°.4.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.5.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.6.已知等腰三角形的一个内角等于50°,则它的底角是°.7.如果一个直角三角形的两边长分别为3和4,第三边长为a,那么a2=.8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.9.已知等腰△ABC的周长为13,且各边长均为整数,那么符合条件的等腰△ABC有个.10.如图,已知在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边BC上的任意一点,以AD为折痕翻折△ABD,使点B落在点E处,连接EC,当△DEC为直角三角形时,BD 的长为.二、选择题(共8小题,每小题3分,满分24分)11.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.直角三角形的三边长是连续偶数,则三边长分别是()A.2,4,6 B.4,6,8 C.6,8,10 D.8,10,1213.如图,∠A=∠D,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.∠F=∠C14.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=8,ED是边AB的垂直平分线,则△ACE 的周长等于()A.16 B.14 C.12 D.1016.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中有一个边长为4的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条17.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是△ABC的角平分线,若P,Q分别是AD和AC边上的动点,则PC+PQ的最小值是()A.B. 2 C.D.三、解答题(共3小题,每小题6分,满分18分)19.已知:如图,点A、B、C、D在同一条直线上,AC=DB,∠ABE=∠DCF,BE=CF,求证:AE∥DF.20.已知:如图,AB=AC,DB=DC,点E在AD上,求证:EB=EC.21.已知:如图,AB=CD,∠A=∠D,点M是AD的中点.求证:∠ABC=∠DCB.四、解答或证明下列各题(共5小题,满分38分)22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要多少cm?23.如图,D是∠MAN内部一点,点B是射线AM上一点,DE⊥AM于E,DF⊥AN于F,且DE=DF,在射线AN上取一点C,使得DC=DB,问∠ABD与∠ACD有什么数量关系?请说明理由.24.(10分)(2014秋•安陆市期末)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.25.如图,已知点D、F分别是△ABC的边BC上两点,点E是边AC上一点,∠BFE=∠FEA,AB=13,AD=12,BD=5,AE=10,DF=4.(1)求证:AD⊥BC;(2)求△ABC的面积.26.已知:如图,Rt△ABC中,∠ACB=90°°,AC=3,BC=4.(1)求AB的长;(2)在直线AC、BC上分别取一点M、N,使得△AMN≌△ABN,求CN的长.参考答案一、填空题(共10小题,每小题2分,满分20分)1.已知:△ABC≌△DEF,若∠ABC=75°,则∠DEF=75°.考点:全等三角形的性质.专题:计算题.分析:根据全等三角形的对应角相等求解.解答:解:∵△ABC≌△DEF,∴∠DEF=∠ABC=75°.故答案为75°.点评:本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.2.如图,点B、E、C、F在一条直线上,∠B=∠DEF,AB=DE,BE=CF,AC=6,则DF= 6.考点:全等三角形的判定与性质.分析:先证明BC=EF,然后根据SAS证明△ABC≌△DEF,即可得到AC=DF=6.解答:证明:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF,∵AC=6,∴DF=6.故答案为:6.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.4.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.考点:等腰三角形的性质.专题:几何图形问题.分析:运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.解答:解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.点评:本题主要考查等腰三角形的性质,一定要熟练掌握等腰三角形中的三线合一.5.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.考点:勾股定理;直角三角形斜边上的中线.专题:计算题.分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.解答:解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.6.已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.考点:等腰三角形的性质.分析:等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.解答:解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.点评:本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.7.如果一个直角三角形的两边长分别为3和4,第三边长为a,那么a2=7或25.考点:勾股定理.分析:分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.解答:解:分为两种情况:①斜边是4,有一条直角边是3,由勾股定理得:a2=42﹣32=7;②3和4都是直角边,由勾股定理得:a2=42+32=25;综上所述,a2的值是7或25.故答案是:7或25.点评:本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论.8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.考点:角平分线的性质.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.已知等腰△ABC的周长为13,且各边长均为整数,那么符合条件的等腰△ABC有3个.考点:等腰三角形的性质;三角形三边关系.分析:由已知条件,根据三角形三边的关系,任意两边之和大于第三边,任意两边之差小于第三边,结合边长是整数进行分析.解答:解:∵等腰△ABC的周长为13,∴边长为整数的等腰三角形的边长只能为:3,5,5;或4,4,5;或6,6,1,共3个.故答案为:3.点评:本题考查了等腰三角形的判定;所构成的等腰三角形的三边必须满足任意两边之和大于第三边,任意两边之差小于第三边.解答本题时要进行多次的尝试验证.10.如图,已知在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是边BC上的任意一点,以AD为折痕翻折△ABD,使点B落在点E处,连接EC,当△DEC为直角三角形时,BD 的长为3或6.考点:翻折变换(折叠问题).分析:在Rt△ABC中,∠ABC=90°,AB=6,BC=8,根据勾股定理求得AB==10,根据翻折的性质得AE=AB=6,DE=BD,∠AED=∠B=90°.①如图1,当∠DEC=90°时,推出点E在线段AC上,设BD=DE=x,则CD=8﹣x,根据勾股定理即可得到结果;②如图2,当∠EDC=90,于是得到∠BDE=90°,求得∠BDA=∠ADE=45°,于是得到△ABD是等腰直角三角形于是得到结果.解答:解:在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∴AB==10,∵△AED是△ABD以AD为折痕翻折得到的,∴AE=AB=6,DE=BD,∠AED=∠B=90°.当△DEC为直角三角形,①如图1,当∠DEC=90°时,∵∠AED+∠DEC=180°,∴点E在线段AC上,设BD=DE=x,则CD=8﹣x,∴CE=AB﹣AE=4,∴DE2+CE2=CD2,即x2+42=(8﹣x)2,解得:x=3,②如图2,当∠EDC=90,∴∠BDE=90°,∵∠BDA=∠ADE,∴∠BDA=∠ADE=45°,∴∠BAD=45°,∴AB=BD=6.综上所述:当△DEC为直角三角形时,BD的长为3或6.故答案为:3或6.点评:本题考查了翻折变换=折叠问题,勾股定理,等腰直角三角形的判定和性质,分类讨论思想的应用是解题的关键.二、选择题(共8小题,每小题3分,满分24分)11.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.12.直角三角形的三边长是连续偶数,则三边长分别是()A.2,4,6 B.4,6,8 C.6,8,10 D.8,10,12考点:一元二次方程的应用;勾股定理.专题:应用题.分析:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x﹣2,x+2根据勾股定理即可解答.解答:解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x﹣2,x+2根据勾股定理,得(x﹣2)2+x2=(x+2)2,x2﹣4x+4+x2=x2+4x+4,x2﹣8x=0,x(x﹣8)=0,解得x=8或0(0不符合题意,应舍去),所以它的三边是6,8,10.故选C.点评:本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.13.如图,∠A=∠D,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.∠F=∠C考点:全等三角形的判定.分析:根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.解答:解:A、添加条件AB=DE,可用SAS判定△ABC≌△DEF;B、添加条件∠B=∠E,可用AAS判定△ABC≌△DEF;C、添加条件EF=BC,仅满足SSA,不能判定两个三角形全等;D、添加条件∠F=∠C,可用ASA判定△ABC≌△DEF.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°考点:等腰三角形的性质.分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解答:解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.点评:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=8,ED是边AB的垂直平分线,则△ACE 的周长等于()A.16 B.14 C.12 D.10考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质得到EA=EB,根据三角形周长公式得到答案.解答:解:∵ED是边AB的垂直平分线,∴EA=EB,△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=12.故选:C.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中有一个边长为4的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条考点:等腰三角形的判定.分析:根据等腰三角形的性质分别利用BC为底以及以AC腰得出符合题意的图形即可.解答:解:如图所示:当BD=DC,AC=EC时,能得到符合题意的等腰三角形.故选D.点评:此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.17.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm考点:轴对称的性质.专题:几何图形问题.分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.解答:解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.点评:此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是△ABC的角平分线,若P,Q分别是AD和AC边上的动点,则PC+PQ的最小值是()A.B. 2 C.D.考点:轴对称-最短路线问题.分析:由轴对称的性质可知:PC=PC′,所以QP+PC=QP+PC′,由垂线段最短可知:当C′Q⊥AC 时,C′Q有最小值,然后利用锐角三角函数的定义即可其肚饿QC′的长.解答:解:如图所示:将△ACD沿AD翻折得到△ADC′,连接DC′,过点C′作C′Q⊥AC.∵AD是∠CAB的角平分线,∴△ACD与△ADC′关于AD对称.∴点C′在AB上.由翻折的性质可知:AC′=AC=3,.PC=PC′.∴QP+PC=QP+PC′.由垂线段最短可知:当C′Q⊥AC时,C′Q有最小值.在Rt△ACB中,AB===5.∴sin∠CAB=.在Rt△AQC′中,sin∠QAC′=,即.∴QC′=.故选:C.点评:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用,锐角三角函数的定义,明确当C′Q⊥AC时,C′Q有最小值是解题的关键.三、解答题(共3小题,每小题6分,满分18分)19.已知:如图,点A、B、C、D在同一条直线上,AC=DB,∠ABE=∠DCF,BE=CF,求证:AE∥DF.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:根据SAS证明△ABE≌△DCF,得到∠A=∠D,运用平行线的判定定理即可得证.解答:证明:∵AC=DB,∴AB=CD,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠A=∠D,∴AE∥DF.点评:本题考查了平行线的判定和全等三角形的性质和判定的应用,注意:全等三角形的对应角相等,内错角相等,两直线平行.20.已知:如图,AB=AC,DB=DC,点E在AD上,求证:EB=EC.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:根据线段的垂直平分线的判定定理可知AD是线段BC的垂直平分线,根据线段的垂直平分线的性质可知EB=EC.解答:解:∵AB=AC,DB=DC,∴AD是线段BC的垂直平分线,∵点E在AD上,∴EB=EC.点评:本题考查的是线段的垂直平分线的性质和判定,掌握线段的垂直平分线上的点到线段的两个端点的距离相等和到线段的两个端点的距离相等的点在线段的垂直平分线上是解题的关键.21.已知:如图,AB=CD,∠A=∠D,点M是AD的中点.求证:∠ABC=∠DCB.考点:全等三角形的判定与性质.专题:证明题.分析:易证△AMB≌△DMC,则MB=MC,∠ABM=∠DCM,根据等边对等角的性质可得∠MBC=∠MBC,即可证明结论.解答:证明:∵点M是AD的中点,∴AM=DM,在△AMB和△DMC中,∴△AMB≌△DMC(SAS),∴MB=MC,∠ABM=∠DCM,∴∠MBC=∠MBC,∴∠ABC=∠DCB.点评:本题考查了全等三角形的判定和性质、等腰三角形的性质,解题的关键是证明△AMB≌△DMC.四、解答或证明下列各题(共5小题,满分38分)22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要多少cm?考点:平面展开-最短路径问题.分析:要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.∴所用细线最短需要10cm.点评:本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.23.如图,D是∠MAN内部一点,点B是射线AM上一点,DE⊥AM于E,DF⊥AN于F,且DE=DF,在射线AN上取一点C,使得DC=DB,问∠ABD与∠ACD有什么数量关系?请说明理由.考点:全等三角形的判定与性质.分析:分两种情况:当点C在线段AF上,Rt△DEB≌Rt△DFC,可证得∠ABD=∠ACD;当点C在线段AF的延长线上时,Rt△DEB≌Rt△DFC,可证得∠ABD+∠ACD=180°.解答:解:∠ABD=∠ACD或∠ABD+∠ACD=180°;分两种情况:①如图1,当点C在线段AF上时,∵DE⊥AM于E,DF⊥AN于F,∴∠DEB=∠DFC=90°,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC,∴∠DBE=∠DCF,∴∠ABD=∠ACD;②如图2,当点C在线段AF的延长线上时,同理可证Rt△DEB≌Rt△DFC,∴∠DBE=∠DCF,∵∠DBE+∠ABD=180°,∴∠ABD+∠ACD=180°.点评:本题主要考查了全等三角形的判定与性质,全面思考问题,意识到有两种情形是正确解答的关键.24.(10分)(2014秋•安陆市期末)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.考点:作图—应用与设计作图;全等三角形的判定与性质;等腰三角形的性质.分析:(1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC.根据图形易得x的值.解答:解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.所以∠C的度数是20°或40°.点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.25.如图,已知点D、F分别是△ABC的边BC上两点,点E是边AC上一点,∠BFE=∠FEA,AB=13,AD=12,BD=5,AE=10,DF=4.(1)求证:AD⊥BC;(2)求△ABC的面积.考点:勾股定理.分析:(1)根据勾股定理的逆定理即可而出结论;(2)由∠BFE=∠FEA得出∠CFE=∠CEF,故CF=CE.设CE=CF=x,根据勾股定理求出x 的值,再由三角形的面积公式即可得出结论.解答:(1)证明:∵AB=13,AD=12,BD=5,∴AB2=BD2+AD2=169,∴∠ADB=90°,∴AD⊥BC.(2)解:∵∠BFE=∠FEA,∴∠CFE=∠CEF,∴CF=CE.设CE=CF=x,∵∠ADC=90°,∴AD2+CD2=AC2,即122+(x+4)2=(10+x)2,解得x=5,∴BC=5+4+5=14,∴S△ABC=BC•AD=84.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.26.已知:如图,Rt△ABC中,∠ACB=90°°,AC=3,BC=4.(1)求AB的长;(2)在直线AC、BC上分别取一点M、N,使得△AMN≌△ABN,求CN的长.考点:勾股定理;全等三角形的判定.分析:(1)由勾股定理求出AB即可;(2)分两种情况:①当∠BAN=∠MAN,且AM=AB时,则BN=MN,且AM=AB=5,求出CM,设CN=x,在Rt△MCN中,由勾股定理得出方程,解方程即可;②当∠BAN=∠MAN,且AM=AB时,则BN=MN,且AM=AB=5,求出CM=8,设CN=x,则BN=MN=x+4,在Rt△MCN中,由勾股定理得出方程,解方程即可.解答:解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB===5;(2)分两种情况:①如图1所示:当∠BAN=∠MAN,且AM=AB时,有△AMN≌△ABN,则BN=MN,且AM=AB=5,∴CM=2,设CN=x,在Rt△MCN中,MC2+CN2=MN2,即22+x2=(4﹣x)2,解得:x=,∴CN=;②如图2所示:当∠BAN=∠MAN,且AM=AB时,有△AMN≌△ABN,则BN=MN,且AM=AB=5,∴CM=8,设CN=x,则BN=MN=x+4,在Rt△MCN中,MC2+CN2=MN2,即82+x2=(4+x)2,解得:x=6,∴CN=6;综上所述:CN的长为或6.点评:本题考查了勾股定理、全等三角形的判定与性质;熟练掌握勾股定理和全等三角形的判定与性质,并能进行推理计算是解决问题的关键.。
2014-2015学年江苏省苏州市景范中学八年级(上)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)下面的图形中,不是轴对称图形的是()A.B.C.D.2.(2分)下列计算正确的是()A.B.C.D.3.(2分)如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的4.(2分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和55.(2分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm6.(2分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°7.(2分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2等于()A.9 B.35 C.45 D.无法计算8.(2分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(共10小题,每小题2分,满分20分)9.(2分)的算术平方根是,﹣64的立方根是.10.(2分)已知分式,当x=2时,分式无意义,则a=.11.(2分)5.6048(保留三个有效数字),近似数7.02×105精确到位.12.(2分)已知,则=.13.(2分)若等腰三角形的一个外角是110°,则其底角为.14.(2分)如果b<0,那么化简|b﹣|的结果是.15.(2分)如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD的面积是.16.(2分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.17.(2分)把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.18.(2分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为.三、解答题(共9小题,满分64分)19.(6分)计算:(1)+﹣(﹣)2(2)||+|1﹣|+(1﹣)20.(6分)先化简,再求值:,其中x是不等式组的整数解.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为;(3)四边形ACBB′的面积为;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.22.(6分)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.23.(6分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC 交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.24.(6分)如图,已知直线m⊥直线n于点O,点A到m、n的距离相等,在直线m或n上确定一点P,使△OAP为等腰三角形.试回答:(1)符合条件的点P共有个;(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.25.(7分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.26.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,E 是边CA上任意一点,DF⊥DE,交BC于F点.G为EF的中点,连接CG并延长交AB于点H.(1)说明:AE=CF;(2)连接DG,说明:CG=GD;(3)若AE=1,CH=4,求边AC的长.27.(10分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2014-2015学年江苏省苏州市景范中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)下面的图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.2.(2分)下列计算正确的是()A.B.C.D.【解答】解:A、==,故本选项正确;B、==,故本选项错误;C、=0.5,故本选项错误;D、没有意义,故本选项错误;故选:A.3.(2分)如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【解答】解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.4.(2分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选:C.5.(2分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选:B.6.(2分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选:A.7.(2分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2﹣MB2等于()A.9 B.35 C.45 D.无法计算【解答】解:在RT△ABD和RT△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在RT△BDM和RT△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=45.故选:C.8.(2分)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,故④错误,综上,正确的个数为3个.故选:C.二、填空题(共10小题,每小题2分,满分20分)9.(2分)的算术平方根是,﹣64的立方根是﹣4.【解答】解:的算术平方根是,﹣64的立方根是﹣4;故答案为:,﹣4.10.(2分)已知分式,当x=2时,分式无意义,则a=6.【解答】解:∵当x=2时,分式无意义,∴x2﹣5x+a=22﹣5×2+a=0,解得a=6.故答案为:6.11.(2分)5.6048(保留三个有效数字) 5.60,近似数7.02×105精确到千位.【解答】解:5.6048≈5.60(保留三个有效数字);近似数7.02×105精确到千位.故答案为5.60;千.12.(2分)已知,则=.【解答】解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.13.(2分)若等腰三角形的一个外角是110°,则其底角为70°或55°.【解答】解:当110°外角为底角的外角时,则其底角为:180°﹣110°=70°;当110°外角为顶角的外角时,则其顶角为:70°,则其底角为:=55°,故答案为:70°或55°.14.(2分)如果b<0,那么化简|b﹣|的结果是﹣2b.【解答】解;b<0,|b﹣|=|b﹣(﹣b)|=b+b|=﹣2b,故答案为:﹣2b.15.(2分)如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD的面积是5.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.16.(2分)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.17.(2分)把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【解答】解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.18.(2分)如图,在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为.【解答】解:如图,过点D作DE⊥AB于E,∵AD平分∠BAC,∴点D到AC的距离也等于DE,=×3•DE+×4•DE=×3×4,∴S△ABC解得DE=,∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE=,∴BE=3﹣=,在Rt△BDE中,BD===.故答案为:.三、解答题(共9小题,满分64分)19.(6分)计算:(1)+﹣(﹣)2(2)||+|1﹣|+(1﹣)【解答】解:(1)原式=11﹣3﹣5=3;(2)原式=﹣+﹣1+1﹣=0.20.(6分)先化简,再求值:,其中x是不等式组的整数解.【解答】解:(﹣)÷=[﹣]•=•=•=,又,由①解得:x>﹣4,由②解得:x<﹣2,∴不等式组的解集为﹣4<x<﹣2,其整数解为﹣3,当x=﹣3时,原式==2.21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)五边形ACBB′C′的周长为4+2+2;(3)四边形ACBB′的面积为7;(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【解答】解:(1)如图:△AB′C′即为所求;(2)∵AC′=AC==2,BC=BC′==,BB′=2,∴五边形ACBB′C′的周长为:2×2+2×+2=4+2+2;故答案为:4+2+2;=S梯形AEFB﹣S△AEC﹣S△BCF=×(1+2)×4﹣×2×2﹣×2×1=3,(3)如图,S△ABCS△ABB′=×2×4=4,∴S=S△ABC+S△ABB′=3+4=7.四边形ACBB′故答案为:7;(4)如图,点B′是点B关于l的对称点,连接B′C,交l于点P,此时PB+PC的长最短,∴PB=PB′,∴PB+PC=PB′+PC=B′C==.故答案为:.22.(6分)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).23.(6分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC 交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)证明:DC=DG;(2)若DG=5,EC=2,求DE的长.【解答】(1)证明:∵DE⊥BC,∴∠DEB=90°,∵AD∥BC,∴∠ADE+∠DEB=180°,∴∠ADE=90°,∵G为AF的中点,∴DG=AG,∴∠DAF=∠ADG,∴∠DGC=∠DAF+∠ADG=2∠DAC,∵AD∥BC,∴∠ACB=∠DAC,∵∠ACD=2∠ACB,∴∠DGC=∠DCA,∴DC=DG;(2)解:∵在Rt△DEC中,∠DEC=90°,DG=DC=5,CE=2,∴由勾股定理得:DE==.24.(6分)如图,已知直线m⊥直线n于点O,点A到m、n的距离相等,在直线m或n上确定一点P,使△OAP为等腰三角形.试回答:(1)符合条件的点P共有8个;(2)若符合条件的点P在直线m上,请直接写出∠OAP的所有可能的度数.【解答】解:(1)如图所示.故答案为:8个;(2)如图所示:22.5°,90°,67.5°,45°.25.(7分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.【解答】(1)证明:∵△ABC与△DCE是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠ECB+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS);(2)解:过点C作CH⊥BQ于H,∵△ABC是等边三角形,AO是角平分线,∴∠DAC=30°,∵△ACD≌△BCE,∴∠PBC=∠DAC=30°,∴在Rt△BHC中,CH=BC=×8=4,∵PC=CQ=5,CH=4,∴PH=QH=3,∴PQ=6.26.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,E是边CA上任意一点,DF⊥DE,交BC于F点.G为EF的中点,连接CG并延长交AB于点H.(1)说明:AE=CF;(2)连接DG,说明:CG=GD;(3)若AE=1,CH=4,求边AC的长.【解答】解:(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵CD为AB边上的中线,∴CD⊥AB,AD=CD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCB,即∠A=∠DCF,∵DF⊥DE,∴∠ADE+∠EDC=90°,∠CDF+∠EDC=90°,∴∠ADE=∠CDF,在△AED和△CFD中,∴△AED≌△CFD(ASA),∴AE=CF;(2)∵∠ACB=90°,G为EF的中点,∴CG=EF,∵DF⊥DE,G为EF的中点,∴GD=EF,∴CG=GD;(3)∵AC=BC,CD是AB边上的中线,∴CD⊥AB,∴∠CDA=90°,∴∠CHD+∠DCH=90°,∠CDG+∠HDG=90°,∵CG=DG,∴∠CDG=∠GCD,∴∠GDH=∠GHD,∴DG=GH,∴CG=GH=CH=2,∵G为EF的中点,∴DG=EF,∴EF=4,∵AE=1,∴CF=AE=1,在Rt△ECF中,由勾股定理得:CE=,∴AC=CE+AE=+1.27.(10分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或10.8s 时△BCP为等腰三角形;(3)当P点在AC上,Q在AB上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t为4或12秒时,直线PQ把△ABC的周长分成相等的两部分.。