scs模型
- 格式:pdf
- 大小:215.84 KB
- 文档页数:14
基于深度学习的显著性检测方法模型——SCS张洪涛;路红英;刘腾飞;张玲玉;张晓明【期刊名称】《计算机与现代化》【年(卷),期】2018(000)004【摘要】提出一种基于深度学习的图像显著性区域检测方法,该方法对2种视觉注意机制所涉及的低级对比特征和高级语义特征分别进行提取,并结合2类特征进行模型训练最终得到基于分类思想的图像显著性区域检测模型——SCS检测模型.通过对比实验得出:该方法训练得到的检测模型在检测准确度上具有显著的优势.%In this paper,we propose a method of saliency detection based on deep learning.This method extracts the low-level contrast features and high-level semantic features involved in the two visual attention mechanisms,and combines both of them to obtain a classification-based saliency detection model SCS.Through the comparison experiment,it is concluded that the proposed detection model has significant advantages in the accuracy of saliency detection.【总页数】8页(P48-55)【作者】张洪涛;路红英;刘腾飞;张玲玉;张晓明【作者单位】北京交通大学计算机与信息技术学院,北京100044;北京交通大学计算机与信息技术学院,北京100044;北京交通大学计算机与信息技术学院,北京100044;北京交通大学计算机与信息技术学院,北京100044;北京交通大学计算机与信息技术学院,北京100044【正文语种】中文【中图分类】TP391【相关文献】1.一种基于词袋模型的新的显著性目标检测方法 [J], 杨赛;赵春霞;徐威2.一种基于显著性和部件模型的无约束条件人脸检测方法 [J], 孔英会;高超;车辚辚3.基于深度学习的GPR B-SCAN图像双曲线检测方法 [J], 王辉;欧阳缮;廖可非;晋良念4.基于MRDMD模型的噪声图像显著性检测方法 [J], 付优;任芳5.基于深度学习的显著性目标检测方法综述 [J], 罗会兰;袁璞;童康因版权原因,仅展示原文概要,查看原文内容请购买。
SCS模型中CN值的优化率定方法——以天山北坡云杉森林为例李伯騛;常顺利;张毓涛【期刊名称】《中国农村水利水电》【年(卷),期】2018(0)8【摘要】利用SCS模型可以计算出已知CN值流域的径流量,但由于地形条件、降水特性存在差异,适用于不同流域的CN值较难获取。
以乌鲁木齐河流域板房沟林场为试验区,利用2009-2014年的各类径流观测小区降水-径流量观测数据反算出CN值范围,然后以理论产流曲线与实测降水-产流曲线的拟合度对CN值进行优化筛选,最后以留一交叉验证法对CN值进行率定,从而得到各林分条件下径流观测小区的最优CN值。
结果表明:(1)天山林区不同林分条件下的径流观测小区CN值都大于74;(2)CN值与林分郁闭度显著相关(P<0.05)。
提出了一种获取干旱区山地林区CN值的改进型方法,此方法将有助于SCS模型及CN值在我国的应用。
【总页数】5页(P72-76)【关键词】SCS模型;CN值;径流观测小区;云杉森林;天山【作者】李伯騛;常顺利;张毓涛【作者单位】新疆大学资源与环境科学学院绿洲生态教育部重点实验室;新疆林科院森林生态研究所【正文语种】中文【中图分类】TV121【相关文献】1.径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定 [J], 张钰娴;穆兴民;王飞2.SCS-CN模型中C N值的空间移用效果研究 [J], 余娇娇;王加虎;王冬;梁菊平;赵永超3.淮河上游流域SCS_CN模型初损取值与CN值确定方法的研究 [J], 黄兆欢;刘阳;张银雪;曾天;王欣;张友静4.黄土丘陵区不同盖度生物结皮对坡面产流及SCS-CN模型CN值的影响 [J], 谷康民;杨凯;赵允格;高丽倩;孙会;郭雅丽5.SCS-CN径流模型中CN值确定方法研究 [J], 符素华;王向亮;王红叶;魏欣;袁爱萍因版权原因,仅展示原文概要,查看原文内容请购买。
文章编号:1006—2610(2020)06—0057—04基于SCS模型的资料缺乏地区小流域设计洪水计算方法研究戴荣,王琦(中国电建集团西北勘测设计研究院有限公司,西安710065)摘要:文章利用ArcGIS软件,依据数字高程模型(DEM)、土地利用、土壤类型等遥感数据确定SCS模型产、汇流参数,根据设计暴雨资料对研究流域设计洪水进行模拟,并用地区综合法进行结果验证。
结果表明:SCS模型计算结果可靠,对解决资料缺乏地区小流域设计洪水计算具有参考价值。
关键词:SCS模型;设计暴雨;设计洪水;资料缺乏中图分类号:TV122+.3文献标志码:A DOI:10.3969/j.issn.1006-2610.2020. 06. 012Study on Calculation Method of Design Flood for Small River Basinin Areas Lacking Hydrological Data based on SCS ModelDAI Rong,WANG Qi(PowerChina Northwest Engineering Corporation Limited,Xi'an710065,China)Abstract:The article adopts ArcGIS software to determine the output and confluence parameters of the SCS model based on remote sensing data such as digital elevation model(DEM),land use and soil type,simulates the design flood in the study basin based on the design rainstorm data,and uses the regional comprehensive method to verify the results.The results show that the calculation results of the SCS model are reliable and are of reference value for design flood calculation of small river basin in areas with insufficient data.Key words:SCS model;design storm;design flood;lack of hydrological data0前言水利水电工程附近经常分布有小流域,这些小流域常会突发暴雨洪水,该类洪水具有陡涨陡落,汇流时间短等特点,对工程危害性极大,因此,必须进行设计洪水计算,修建防洪工程。
SCS模型的基本原理
SCS模型综合考虑了流域降雨、土壤类型、土地利用方式及管理水平、前期土壤湿润状况与径流间的关系。
它基于集水区的实际入渗量(F)与实际径流量(Q)之比等于集水区该场降雨前的潜在人渗量(S)与潜在径流之比的假定基础上建立的,即:
式中:假定潜在径流量为降雨量(P)与由径流产生前植物截流、初渗和填洼蓄水构成集水区初损量Ia的差值,即:
实际入渗量为降雨量减去初损和径流量,即:
由(1),(2),(3)式可得出:
为简化计算,假定集水区该场降雨的初损为该场降雨前潜在入渗量的2/10,即:
则式(4)可写为:
由此可以看出:集水区的径流量取决于降雨量与该场降雨前集水
区的潜在入渗量,而潜在入渗量又与集水区的土壤质地、土地利用方式和降雨前的土壤湿度状况有关,SCS模型通过一个经验性的综合反映上述因素的参数CN来推求S值的。
由式(6)可以看出,欲求径流量,只需知道参数CN。
在实际条件下,CN值在30 ~ 100之间变化。
根据土壤特性,将土壤划分为A,B,C,D 四种类型,根据CN值表可以查得不同土地利用条件下,不同土壤类型的CN值。
然后将土壤湿润状况根据径流事件发生前5天的降雨总量(即前期降雨指数API)划分为湿润、中等湿润和干旱三种状态,再调节由查表获得的CN值[1]。
前期土壤湿润程度等级(AMC等级)
前五天总雨量(mm)
休眠季节生长季节
AM CⅠ<12.7 <35.56 AM CⅡ12.7 ~27.94 35.56~53.34 AM CⅢ>27.94 >53.34。
SCS模型及其研究进展一、本文概述随着信息技术的快速发展,供应链管理(Supply Chn Management,SCM)在现代企业中扮演着越来越重要的角色。
供应链复杂性、不确定性和动态性的增加,使得对供应链管理的理论研究和实践应用提出了更高的要求。
在此背景下,供应链协同管理(Supply Chn Coordination,SCC)作为一种新型的管理模式,逐渐受到学者和企业的广泛关注。
本文旨在探讨供应链协同管理(SCC)的核心模型——供应链协同模型(Supply Chn Synchronization Model,SCS)及其研究进展。
我们将首先介绍SCS模型的基本概念、特点和应用场景,然后综述国内外学者在SCS模型研究方面取得的主要成果和进展,包括模型构建、优化方法、实证分析等方面。
我们将展望SCS模型未来的研究方向和应用前景,以期为供应链协同管理领域的理论研究和实践应用提供参考和借鉴。
通过本文的阐述,我们期望能够帮助读者全面了解SCS模型的基本理论和方法,掌握其最新研究动态和发展趋势,为供应链协同管理的实践提供理论支持和实践指导。
二、SCS模型理论基础SCS模型,全称为Surface-Conduit-Storage模型,是一种用于描述和模拟水文过程的数学模型。
其理论基础主要源于水文学、水力学和生态学等多个学科领域的知识融合,旨在为水文学家和生态学家提供一个统一且有效的工具,以理解和预测自然界中的水文过程和生态响应。
SCS模型的理论框架主要包括三个核心组件:地表径流(Surface)、渠道流(Conduit)和储存(Storage)。
地表径流描述的是降雨后直接在地表形成的流动水体,其大小受到地表覆盖、土壤渗透性等多种因素的影响。
渠道流则指的是降雨后通过地表径流汇集到河流或溪流中的水体,其动态变化受到地形、地貌和河网结构等因素的控制。
储存部分则涵盖了地表和地下的水体储存,包括土壤水分、地下水等,是维持水文循环和生态系统稳定的关键环节。
第3期 2018年6月水利水运工程学报H Y D R O-S C IE N C E A N D E N G IN E E R IN GN o.3Jun. 2018D O I:10.16198/j.c n k i.1009-640X.2018.03.005徐赞,吴磊,吴永祥,等.S C S-C N模型改进及其径流预测[J].水利水运工程学报,2018(3):32-39. (X U Z a n,W U L e i,W UY o ng xia ng, et al. Im provem ent and ru n o ff p re d ictio n o f SCS-CN m odel [J].H ydro-S cience and E n g in e e rin g,2018(3):32-39. (i nC h in e s e))S C S-CN模型改进及其径流预测徐赞\吴磊2,吴永祥\徐荣碟1(1.南京水利科学研究院,江苏南京210029; 2.西北农林科技大学水利与建筑工程学院,陕西杨凌712100)摘要:黄土高原的土壤侵蚀与水土流失程度都很严重,对其进行水土流失的预报有着重要的生态意义和经济意义。
利用S C S-C N(s o il conservation service curve n u m b e r)模型进行地表产流预测。
针对黄土高原特定的气候及下垫面条件,以陕西省榆林市绥德韭园沟典型小流域为研究区域,借助韭园沟流域次降雨径流资料,优化影响降水产流关系的相应参数(初损率和降雨强度)。
结果表明:①使用反算法来优化初损率,确定初损率为0. 075,模型效率系数为0. 208;②使用M A T L A B结合粒子群算法来进一步优化初损率,确定初损率为0. 13,模型效率系数为0.504,相比于反算法提高了142%,模型预报精度得到了很大提高;③在黄土丘陵沟壑区引人雨强因子修正降雨量函数,改进后模型效率系数为0. 652,确定性系数为0. 753,利用雨强修正函数后的S C S模型相比于标准S C S模型,确定性系数和模型效率系数分别提高了101%和534%。
集雨面积的计算公式
集雨面积的计算公式因不同的模型而异,其中,SCS模型是美国农业部Soil Conservation Service研制的一种计算降雨径流的模型,其集雨面积计算公式为:A= (1000/CN-10)×P(+),其中,A表示集雨面积,CN为时至最大的坡面覆盖系数,P为降雨量,在此公式中取为24小时降雨量,单位为mm。
另一种集雨面积的计算公式为:集雨面积 = 排水沟面积× 降水量。
请注意,不同的计算方法适用于不同的降雨类型和地形条件,选择合适的计算方法对于准确计算集雨面积至关重要。
同时,集雨面积的计算还需要考虑地表、建筑等可接受雨水的面积。
以上内容仅供参考,建议咨询水文学专家或查阅专门文献资料获取更全面和准确的信息。
scs水文模型例题水文模型在自然资源管理、环境保护和灾害预防等领域中发挥着重要的作用。
SCS水文模型是一种基于土壤保持的水文模拟方法,广泛应用于水文学研究和工程实践中。
本文将通过一个SCS水文模型的例题,介绍该模型的基本原理和应用方法。
例题背景:某市位于河流上游,面临洪水风险。
为了评估可能的洪水情况,需要使用SCS水文模型来模拟降雨径流过程。
假设该市面积为100平方公里,降雨事件为10年一遇的设计降雨,模型参数已知如下:土壤类型:A植被类型:森林坡度:10%河道长度:10千米通过该例题,我们将逐步展示SCS水文模型的运用方法。
1. 降雨分析:首先,我们需要对设计降雨事件进行分析和处理。
设计降雨通常以单位时间内降水量的形式给出。
根据降雨数据,我们可以计算得到降雨量为100毫米。
假设时间间隔为1小时,我们可以得到单位时间内的降水量为10毫米。
2. SCS曲线:SCS曲线是SCS水文模型的核心部分,它反映了时间和降雨的关系。
曲线的形状由土壤类型、植被类型和坡度等参数决定。
根据给定的参数,我们可以查找SCS手册,找到与之相对应的SCS曲线。
3. 整体时段单位线:整体时段单位线是单位面积产流深度与单位时间内产流过程之间的关系曲线。
它是根据SCS曲线和土地利用数据计算得出的。
在这个例题中,我们可以利用给定的土壤类型和植被类型,结合降雨数据,计算得到整体时段单位线。
4. 普通单位线:普通单位线是单位时间内径流量与单位面积产流深度之间的关系曲线。
它是整体时段单位线的缩放版本。
通过对整体时段单位线进行缩放,我们可以得到普通单位线。
5. 非线性产流:在SCS水文模型中,产流过程被分为初期产流和延时产流两个部分。
初期产流是指在雨水刚降落后,由于土壤无法迅速吸收水分而形成的产流。
延时产流是指在降雨结束后,土壤逐渐释放积水,导致的产流过程。
6. 延时过程:延时过程是指从降雨结束到开始出现流量峰值之间的过程。
它与土地利用、土壤类型和地形等因素有关。
Chapter 2ProceduresPart 630National Engineering HandbookProceduresChapter 2Issued April 1999The United States Department of Agriculture (USDA) prohibits discrimina-tion in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation,and marital or family status. (Not all prohibited bases apply to all pro-grams.) Persons with disabilities who require alternate means for communi-cation of program information (Braille, large print, audiotape, etc.) should contact the USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW,Washington, DC 20250-9410, or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity employer.Chapter 2, Procedures, was originally prepared by Victor Mockus (retired) in 1964. It was reprinted with minor revisions in 1972. This version was prepared by the Natural Resources Conservation Service under the guid-ance of Donald E. Woodward, national hydraulic engineer, Washington, DC.Part 630National Engineering HandbookProceduresChapter 2Contents:630.0200Introduction2–1630.0201Work outline plan and schedule relationship2–1(a)Data collection..............................................................................................2–1(b)Computations................................................................................................2–1(c)Analyses.........................................................................................................2–1630.0202Hydrologic evaluation process2–2(a)Work sequence..............................................................................................2–2(b)Analysis methods..........................................................................................2–4630.0203Design hydrology2–6Figures Figure 2–1General process hydrology of watershed project2–3evaluation with streamflow and rainfall data availableFigure 2–2General process hydrology of watershed project2–5evaluation with streamflow or rainfall data not availableFigure 2–3Design hydrology for storage and spillways2–7in floodwater retarding structures630.0200Introduction Hydrology for the evaluation of watershed projects is a major concern in part 630 of the National Engineering Handbook. The evaluation is a detailed investigation of present (no project) and future (with project) condi-tions of a watershed to determine whether given objectives will be met. It is the basis on which recom-mendations for or against the project are founded. A summary of the evaluation is included in a work plan, which is the official document for carrying out, main-taining, and operating the project. The hydrology is not difficult, but it is complex. The procedures de-scribed in this chapter serve both as a guide to hydrol-ogy studies and as a unifying introduction to succeed-ing chapters of part 630.A project evaluation begins with a preliminary investi-gation (PI), which is a brief study of a potential project to estimate whether a detailed investigation is justified (see chapter 3). If it is, information from the PI is used in writing a work outline that gives the desired scope, intensity, and schedule of the planning study; its estimated cost; the personnel needed; and the comple-tion date for a work plan.An important part of the planning study is the hydro-logic evaluation, in which data collection, computa-tion, and analysis are equally important divisions of work. Availability governs the collection of data. Size or cost of project influences the choice of computa-tional and analytical methods (see chapter 1). National Resources Conservation Service (NRCS) policy deter-mines the number and kind of analyses. Nevertheless, the basic evaluation procedure does not vary. It is flexible because some tasks can be done simulta-neously or in a preferred sequence and nearly all tasks can be done by a preferred method, but the general plan is invariable. The work outline schedule follows the plan in principle. The plan, schedule, and chapters in part 630 are related as shown in the following sec-tions.630.0201Work outlineplan and schedule relation-ship(a)Data collectionBase maps, project area maps (chapter 3), rainfall data (chapter 4), and runoff data (chapter 10) are collected early in the study. Field surveys provide stream cross sections and profiles (chapter 6) and dam site maps. Interviews with local NRCS personnel provide data on hydrologic soil-cover complexes (chapters 7, 8, and 9) and runoff curve numbers (chapter 10).(b)ComputationsStorm runoffs (chapter 10), snowmelt runoffs (chapter11), special effects of land use and treatment (chapter12), and the relations of stream stages to inundation (chapter 13) and discharge (chapter 14) are computed early in this phase of the study. Travel times and lags (chapter 15) are computed for use in hydrograph construction (chapter 16) and flood routing (chapter17). Runoff or peak discharge frequencies (chapter18), transmission losses (chapter 19), and watershed yield (chapter 20) are computed only if they are re-quired in the study.(c)AnalysesFour conditions of a watershed are studied in accor-dance with NRCS policy. In order of study they are:1.Present—Condition of the watershed at the timeof the survey; and the base to which the pro-posed project is added.2.Future with no project—Expected future condi-tion of the watershed with no project actiontaken.3.With future land use and treatment measures—Proposed land use and treatment measures areadded to the first condition. The measures aredescribed in the National Watershed Manual.4.With future land use and treatment measures andstructures—Watershed protection and floodprevention structures are added to the thirdcondition. The structures are described in theNational Watershed Manual.Part 630National Engineering HandbookProceduresChapter 2This order makes the analysis fall into a natural se-quence in which measures that are first to affectrunoff are first to be evaluated. Flood routings for the present condition give the discharges from which present flood damages are computed in the economic evaluation. The routings are modified (chapter 12) to give discharges for determining the effects of land use and treatment. New routings or further modifications (chapter 17) are made for the third condition to give discharges for determining the effects of structures.Generally, it is the third condition that is studied at great length because an optimum number and location of structures are desired. Final design of individual structures is made late in the investigation or after the work plan is approved. The hydrology and NRCS hydrologic criteria for design are given in chapter 21,TR60, and section IV of the Field Office Technical Guide (FOTG).630.0202Hydrologic evaluation processIn both the computational and analytical phases, use of hydrologic and hydraulic computer models can substanially reduce the work time. Such models can estimate runoff hydrographs; route hydrographs through reservoirs, lakes, channels, and flood plains;combine hydrographs as necessary; and determine stage/discharge/acres flooded relationships. Twofrequently used NRCS computer models include Tech-nical Release 20 (Project Formulation - Hydrology,1983) and Part 630, chapter 31, Computer Program for Water Surface Profiles (1994). The Corps of Engineers also have several hydrologic and hydraulic models that can be useful in project analyses.(a)Work sequenceThe sequence of work in the hydrologic evaluation is shown in figure 2–1. The forms of maps, graphs, and tables are simplified representations of the various standard forms used in the different States. The pre-liminary investigation, which precedes the evaluation,is described in chapter 3. The design hydrology comes later, and details are given in chapter 21.After evaluation for the present conditions (the first condition) is completed, the early steps of the evalua-tion process do not always need to be repeated for the remaining conditions. Evaluations for future condi-tions should include one that considers the future with no project measures and that accounts for expected future land use changes without any project. Depend-ing on the nature of these expected changes, the hydrologic soil-cover complexes and corresponding runoff curve numbers would be altered, affecting the runoff hydrographs. The condition with the future land use and treatment measures would start the evaluation process at the hydrologic soil-cover complexes step.At this step the soil-cover complexes would be modi-fied to reflect different land use/treatment conditions,which would ultimately again be reflected in the flow hydrographs. Finally, the condition with future land use and treatment measures plus structural measures would start the evaluation process at the unit hydro-graph step by modifying the unit hydrograph to reflect the structures being in place.Part 630National Engineering HandbookProceduresChapter 2Figure 2–1General process hydrology of watershed project evaluation with streamflow and rainfall data availablePart 630National Engineering HandbookProceduresChapter 2Of the basic data needed in the evaluation, only the historical rainfall and streamflow data are likely to be unavailable; the rest are obtainable from field cking rainfall and runoff data, the procedure goes as shown in figure 2–2. The rainfall-frequency data shown in the figure are from U.S. Weather Bureau, National Weather Service, and NOAA publications (see part 630, chapter 4). Direct checks on runoff cannot be made, but indirect checks can be made if nearby watersheds are gaged (see table 5–2).Some steps in the procedures of figures 2–1 and 2–2are taken in an entirely different way in the methods for regional analysis.(b)Analysis methods(1)Regional analysis methodThis method estimates the magnitudes and frequencies of peak discharges or runoff volumes for ungaged watersheds by using relationships from nearby gaged watersheds. Some of the hydraulic work, construction of hydrographs, and flood routing are reduced or eliminated from the evaluation, but not from the design hydrology. The method in its simplest form is as follows:Step 1Select nearby gaged watersheds that are climatically and physically similar to the ungagedwatershed. These watersheds compose the region that gives the method its name.Step 2Construct frequency lines (chapter 18) for peak discharges or runoff volumes of the gaged water-sheds.Step 3Plot peak discharges or runoff volumes for selected frequencies (only the 2- and 100-year frequen-cies if the frequency lines are straight) of each gaged watershed against its drainage area size. Use log-log paper for the plotting, and make straight-line relation-ships for each frequency. A simple regression between log (drainage area) and log (discharge or runoff vol-ume) aids in estimating this best fit straight line through the data.Step 4Construct the frequency line for the ungaged watershed (or any of its subdivisions). To do this,enter the plot with drainage area, find the magnitudesat each line of relationship, plot the magnitudes at their proper places on probability paper, and draw the frequency line through the points.Step 5Apply the frequency lines of step 4 in the procedure for present conditions. Discharges or vol-umes for with-project conditions are obtained by use of auxiliary relationships described in chapters 12 and 17In practice the method is more complex, but generally only in step 3. In this step variables in addition todrainage area are related to the peaks or volumes. The variables include one or more of the following, alone or in combination, directly or by means of index numbers:•type of climate•mean annual precipitation or rainfall or snowfall •mean seasonal precipitation or rainfall or snow-fall•maximum or minimum average monthly rainfall •storm pattern •storm direction•x-year frequency, y-hour duration rainfall•mean number of days with rainfall greater than x inches•mean annual number of thunderstorm days•mean annual or seasonal or monthly temperature •maximum or minimum average monthly tem-perature•orographic effects •aspect•stream density •stream pattern•length of watershed•length to center of gravity of watershed •length of main channel •average watershed width •altitude•watershed rise•main channel slope •land slope•depth or top width of main channel near outlet for x-year frequency discharge •time of concentration •lag•time to peak•percentage of area in lakes or ponds •extent or depth of shallow soils •extent of major coverFigure 2–2General process hydrology of watershed project evaluation with streamflow or rainfall data not available•hydrologic soil-cover complex •geologic region •infiltration rate •mean base flow •mean annual runoff •watershed shapeCombinations of these variables are used as single variables in the analysis, one such combination being the product of watershed length and length to center of gravity divided by the square root of the main chan-nel slope. Index numbers (chapter 18) are used for variables, such as geologic region, not ordinarily defined by numerical values.Multiple regression methods (chapter 18) must be used if more than one variable appears in the relation-ship. The only adequate measure of the accuracy of the relationship (therefore of the regional analysis) is the standard error of estimate in arithmetic putation of the error is illustrated in chapter 18.(2)USGS regional regression equations Another source for determining relative effects of watershed characteristics on discharge is United States Geological Survey (USGS) regional regression equations. The USGS has performed multiple regres-sion analyses on gaged watersheds for each state.They correlated such watershed characteristics as drainage area, climatic region, watershed slope, water-shed storage, and others to peak discharge. The re-gression equations can be useful for transferring datafrom gaged watersheds to the watershed of interest.630.0203Design hydrologyThe storage and spillway capacities of floodwater retarding structures are determined as shown by the flowchart in figure 2–3. Chapter 21 gives details of the various steps and provides the NRCS criteria of the design hydrology. That chapter also contains design hydrology in outline form for channel improvement,levees, and minor project or onfarm structures.Figure 2–3Design hydrology for storage and spillways in floodwater retarding structures。