L和F模型模拟
- 格式:xlsx
- 大小:25.00 KB
- 文档页数:2
2024高考物理二轮复习80热点模型最新高考题模拟题专项训练模型5定杆和动杆模型最新高考题1..(2023高考湖南卷)如图,光滑水平地面上有一质量为2m 的小车在水平推力F 的作用下加速运动。
车厢内有质量均为m 的A 、B 两小球,两球用轻杆相连,A 球靠在光滑左壁上,B 球处在车厢水平底面上,且与底面的动摩擦因数为μ,杆与竖直方向的夹角为θ,杆与车厢始终保持相对静止假设最大静摩擦力等于滑动摩擦力。
下列说法正确的是()A.若B 球受到的摩擦力为零,则2tan F mg θ=B.若推力F 向左,且tan θμ≤,则F 的最大值为2tan mg θC.若推力F 向左,且tan 2μθμ<≤,则F 的最大值为4(2tan )mg μθ-D.若推力F 向右,且tan 2θμ>,则F 的范围为4(tan 2)4(tan 2)mg F mg θμθμ-≤≤+【参考答案】CD【名师解析】对选项A ,设在水平向右推力F 作用下,整体加速度为a ,F =4ma ,若B 球所受摩擦力为零,对B 球,由tan θ=ma/mg ,联立解得F=4mgtan θ,A 错误;对选项B ,若推力F 向左,整体向左加速运动,F =4ma 。
小球A 所受向左合力最大值为F A =mgtan θ。
设轻杆中弹力为N ,轻杆中弹力的水平分量N x =F A =mgtan θ,N x =ma 。
对小球B ,由于tan θ≤μ,对小球B ,受到向左的合力F B =f-N x =≤μ2mg-N x =2mgtan θ-N x =mgtan θ联立解得F ≤4mg tan θ,即F 的最大值为4mgtan θ,B 错误;对选项C,若推力F 向左,小球A 所受向左合力最大值为F A =mgtan θ。
小球B ,受到向左的合力最大值F Bmax =f-N x =2μmg -mg tan θ,由于tan 2μθμ<≤,则F Bmax =mg tan θ。
专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
或叫“K字模型”。
三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。
常用于构造全等三角形。
中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。
三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
电力系统综合实验(动态模拟实验)一.概述电力系统的研究方法可以概括为理论研究和科学实验研究两种途径。
理论分析是非常重要的,它阐明电力系统的基本原理并探索新的理论和方法。
但是,由于电力系统的复杂性,很多问题仅靠理论分析是不够的,只有把理论分析和科学实验结合起来,才能得到正确的结论。
电力系统的实验研究可在实际的电力系统(一般称原型)上进行,也可在模拟的电力系统(一般称模型)上进行。
在原型上进行实验研究,往往受电力系统的安全、经济运行的限制。
如短路实验等一般不能在原型系统进行;对于发展规划中的一些问题,有时更难以在现有的电力系统上进行。
在模拟系统上进行实验研究,显然没有这些限制,因此模拟实验在电力系统研究工作中占有重要地位。
电力系统模拟方法有数学模拟和动态模拟两种方法。
数学模拟是建立在数学方程式的基础上的一种模拟研究方法。
首先建立原型的数学模型,然后通过求解方程从而得出结论。
随着计算机的快速发展,利用计算机仿真研究电力系统的数学模拟方法有着广阔的前景。
只要能建立相应的数学模型,就可以方便的利用数字计算机进行研究。
这种方法投资小,方案、参数调整方便,且速度快。
但建立数学模型受到诸多因素的影响,其准确与否受到主观限制。
比如某些简化是否合理,某些因素忽略是否正确等,直接影响到建模的正确性和得出的结论。
电力系统动态模拟是电力系统的物理模拟。
是根据相似理论,用和原型系统具有相同物理性质的相似元件建立起来的。
电力系统动态模拟是建立与原型相似的物理模型,通过模拟实验得出结论的方法。
电力系统动态模拟主要由模拟发电机、模拟励磁系统、模拟变压器、模拟输电线路、模拟负荷和有关调节、控制、测量、保护等模拟装置组成。
动态模拟实验物理概念清晰,直观,且能真实反映实际系统的特征。
但建立动态模型投资大,且实验方案、参数调整复杂。
由于数学模拟和动态模拟各具优缺点,互相补充验证,也是目前研究电力系统的重要方法。
二.模拟理论及动态模拟的作用1. 模拟理论根据相似理论,模型和原型的物理现象相似,意味着在模型和原型中,用以描述现象过程的相应参数和变量在整个研究过程中,保持一个不变的、无量纲的比例系数。
风险评价模型是用于评估风险的一种数学模型,其计算公式可以根据不同的风险因素和评估方法而有所不同。
以下是一个简单的风险评价模型计算公式示例:
风险值 = 可能性(L)× 严重程度(S)
其中,可能性(L)表示风险事件发生的可能性,严重程度(S)表示风险事件发生后可能造成的损失或影响的程度。
根据实际情况,可以对风险评价模型进行适当的调整和扩展,例如引入风险因素权重、考虑风险事件的多个可能结果等。
同时,还需要根据具体的评估目的和要求选择合适的风险评价模型和计算方法。
船舶与海洋工程试验研究模型模拟与制作上海交通大学海洋工程国家重点试验室2误差不能超过1毫米。
3海洋平台模型的制作模型物理特性模拟模型试验相似理论要求;海洋平台物理特性的真实模拟和精确测试是实验结果正确与否的重要基础;5模型物理特性约束条件为为模型质心三维坐标的目标6其中,Rxx, Ryy, Rzz分别为模型绕三个坐标轴的惯性半径目标值。
7m模型质量调节质量调节完成后,在专用的船模调节架上进行船模重心位置和刀口10●调节架转动部分的相关已知参数:基准面至刀口转动轴的垂向高度Z O调节架质量W 1调节架重心垂向位置Z G1调节架绕刀口转动轴的惯性半径l 1●船模在调节架中间沿纵向方向放置。
重心和惯量调节装置----船模调节架调节架转动部分的重量W 1、重心垂向位置Z G1、绕刀口转动轴的惯性半径l 1均需要在进行船模参数调节之前进行测量,并作为已知量处理。
刀口形成的转动轴基准面(船底基平面)O z 111213通过纵向倾斜试验获得;14●根据分布质量的单摆振荡原理,惯性矩的定义和平行轴原理151617 1819●根据实际系泊锚链的尺寸(长度和直径)按缩尺比选用模型系泊链的长度和直径。
●对于锚链和钢丝绳,模型选用微型锚链和钢丝绳模拟●对于尼龙缆,模型选用软绳或微型钢丝绳模拟。
系泊缆自身外形的几何相似20210510152025303540非线性弹性的模拟系泊链重块微型钢丝绳弹簧微型锚链单位配重(铅丝)立管的模拟与系泊缆的模拟类似。
立管的模拟Steep-S configuration lazy wave configuration 24带浮子的长立管(Riser)模型25软刚臂系泊系统的制作与模拟三分力仪万向接头软刚臂与吊杆转动机构内含压载以调节重量、重心27及电位器张力腿模型:靠垫模型29跨接软管模型码头模型31长度l4 32重力加速度g底部上表面到刀口距离z12W3323435)方法,即采用足够大的缩尺比λ,如1:200。