平面与平面垂直的判定
- 格式:ppt
- 大小:2.21 MB
- 文档页数:34
证明两个平面垂直的方法
线面垂直到面面垂直,直线a垂直于平面1,直线a平行于或包含于平面2,所以平面1垂直于平面2。
平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面2。
通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的。
面面垂直判定定理
定理
如果一个平面与另一个平面的垂线相交,则这两个平面相互垂直。
推论1
如果一个平面的垂线平行于另一个平面,那么这两个平面相互垂直。
推论2
如果两个平面的垂线互相垂直,那么这两个平面互相垂直。
(可以理解为法向量垂直的平面互相垂直)
面面垂直性质定理
定理1
如果两个平面互相垂直,那么在一个平面上垂直于它们的交点的直线就垂直于另一个平面。
定理2
如果两个平面互相垂直,那么垂直于第二个平面并通过第一个平面中的一点的直线在第一个平面中。
定理3
如果两个相交的平面垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个成对垂直平面的相交是成对垂直的。
定理4
如果两个平面互相垂直,那么一个平面的垂线平行于另一个平面。
(判定定理的推论1的逆定理)
推论:如果两个平面互相垂直,那么垂直于这两个平面的两条垂线互相垂直。
(判定定理的推论2的逆定理)。
§2.3.2 平面与平面垂直的判定 【学习目标】 1. 理解和掌握二面角和二面角的平面角的相关概念; 2. 掌握平面与平面垂直的判定定理. 【重点难点】 1.二面角的平面角; 2.面面垂直的判定定理. [自主感知] 1. 二面角及其相关定义? 2. 两个平面互相垂直的判定定理: 文字语言:若一个平面过另一个平面的 ,则这两个 平面 .简称:若线面垂直,则面面垂直 符号语言:若_______________________________,则 . [深入探究] 探究一:二面角大小的表示往往利用二面角的平面角例 2 如图所示,已知三棱锥D ABC -中,满足A B A C D B ==DC == 2,BC DA ==,求二面角A B C D --的大小. 探究二:面面垂直判定定理的考察 例1 如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC PBC ⊥平面.……………………………………装…………………………………订…….…………………………………线……….………………………………...................................…[拓展运用]例3 如图,在正方体''''ABCD A B C D-中,求证:平面''ACC A⊥平面'A BD.【课堂小结】1.二面角的平面角;2.面面垂直的判定定理.【当堂检测】1.已知直线l⊥平面α,则经过l且和平面α垂直的平面有()A.1个B.2个C.有无数个D.不存在2.正方体A1B1C1D1-ABCD中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于()A.33B.22C. 2D. 33.直线l是平面α的斜线,则经过l且和平面α垂直的平面有个.4.四边形ABCD是矩形,P为平面ABCD外一点,P A⊥平面ABCD,且P A=AB,则二面角P—BC—D的大小为.【课下作业】复习导学案,并完成相应学科练.【预习指导】请同学们提前预习下一节课课本内容和导学案.。
平面与平面垂直的判定[新知初探]1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角(如图).直线AB叫做二面角的棱,半平面α和β叫做二面角的面.记法:α-AB-β,在α,β内,分别取点P,Q时,可记作P-AB-Q;当棱记为l时,可记作α-l-β或P-l-Q.(2)二面角的平面角:①定义:在二面角α-l-β的棱l上任取一点O,如图所示,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.②直二面角:平面角是直角的二面角.[点睛]二面角的平面角的定义是两条“射线”的夹角,不是两条直线的夹角,因此,二面角θ的取值范围是0°≤θ≤180°.2.平面与平面垂直(1)面面垂直的定义①定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:记作:α⊥β.(2)两平面垂直的判定定理:①文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.②图形语言:如图.③符号语言:AB⊥β,AB∩β=B,AB⊂α⇒α⊥β.[点睛]定理的关键词是“过另一面的垂线”,所以应用的关键是在平面内寻找另一个面的垂线.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若l⊥α,则过l有无数个平面与α垂直()(2)两垂直的平面的二面角的平面角大小为90°()答案:(1)√(2)√2.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案:D3.对于直线m,n和平面α,β,能得出α⊥β的一组条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂βC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β解析:选C A与D中α也可与β平行,B中不一定α⊥β,故选C.面面垂直的判定[典例]如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.证明:平面AEC⊥平面AFC.[证明]如图,连接BD,设BD∩AC于点G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=2 2.在Rt△FDG中,可得FG=6 2.在直角梯形BDFE中,由BD=2,BE=2,DF=2 2,可得EF=32 2.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,所以EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(1)证明平面与平面垂直的方法:①利用定义:证明二面角的平面角为直角;②利用面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(2)根据面面垂直的定义判定两平面垂直,实质上是把问题转化成了求二面角的平面角,通常情况下利用判定定理要比定义简单些,这也是证明面面垂直的常用方法,即要证面面垂直,只要转证线面垂直,其关键与难点是在其中一个平面内寻找一直线与另一平面垂直.[活学活用]1.如图,已知PA⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对解析:选D∵DA⊥AB,DA⊥PA,∴DA⊥平面PAB.同理BC⊥平面PAB,又AB⊥平面PAD,∴DC⊥平面PAD,∴平面PAD⊥平面AC,平面PAB⊥平面AC,平面PBC⊥平面PAB,平面PAB⊥平面PAD,平面PDC⊥平面PAD,共5对.2.如图,四边形ABCD是边长为a的菱形,PC⊥平面ABCD,E是PA的中点,求证:平面BDE⊥平面ABCD.证明:连接AC,设AC∩BD=O,连接OE.因为O为AC中点,E为PA的中点,所以EO是△PAC的中位线,所以EO∥PC.因为PC⊥平面ABCD,所以EO⊥平面ABCD.又因为EO⊂平面BDE,所以平面BDE⊥平面ABCD.二面角的求法[典例](1)如图,在正方体ABCD-A′B′C′D′中:①二面角D′-AB-D的大小为________.②二面角A′-AB-D的大小为________.(2)如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.[解析] (1)①在正方体ABCD-A′B′C′D′中,AB⊥平面AD′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′AB-D的平面角.在Rt△D′DA中,∠D′AD=45°,所以二面角D′AB-D的大小为45°.②因为AB⊥平面AD′,所以AB⊥AD,AB⊥AA′,因此∠A′AD为二面角A′AB-D的平面角,又∠A′AD=90°,所以二面角A′AB-D的大小为90°.[答案]①45°②90°(2)解:如图,在平面α内,过O作OD⊥BC,垂足为点D,连接AD,设CO=a.∵AO⊥α,BC⊂α,∴AO⊥BC.又AO∩OD=O,∴BC⊥平面AOD.而AD⊂平面AOD,∴AD⊥BC,∴∠ADO是二面角A-BC-O的平面角.由AO⊥α,OB⊂α,OC⊂α,知AO⊥OB,AO⊥OC.∵∠ABO=30°,∠ACO=45°,CO=a,∴AO=a,AC=2a,AB=2a.在Rt△ABC中,∠BAC=90°,∴BC=AC2+AB2=6a,∴AD=AB·ACBC=2a·2a6a=233a.在Rt△AOD中,sin∠ADO=AOAD=a233a=32.∴∠ADO=60°,即二面角A-BC-O的大小是60°.(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.[活学活用]如图,把等腰直角三角形ABC沿斜边AB旋转至△ABD的位置,使CD=AC.(1)求证:平面ABD⊥平面ABC.(2)求二面角C-BD-A的余弦值.解:(1)证明:取AB的中点O,连接OD,∵△ABD是等腰直角三角形,∴DO⊥AB,且DO=22AD.连接OC,同理得CO⊥AB,且CO=22AC,∵AD=AC,∴DO=CO=22AC.∵CD=AC,∴DO2+CO2=CD2,∴△CDO为等腰直角三角形,DO⊥CO,又AB∩CO=O,∴DO⊥平面ABC.又∵DO⊂平面ABD,∴平面ABD⊥平面ABC.(2)取BD的中点E,连接CE,OE.∵△BCD为等边三角形,∴CE⊥BD.又∵△BOD为等腰直角三角形,∴OE⊥BD.∴∠OEC为二面角C-BD-A的平面角.由(1)可证得OC⊥平面ABD,∴OC⊥OE.∴△COE为直角三角形.设BC=1,则CE=32,OE=12,∴cos∠OEC=OECE=33,即二面角C-BD-A的余弦值为3 3.折叠问题[典例]如图,在矩形ABCD中,AB=2,BC=2,E为BC的中点,把△ABE和△CDE分别沿AE,DE折起,使点B与点C重合于点P.(1)求证:平面PDE⊥平面PAD;(2)求二面角P-AD-E的大小.[解](1)证明:由AB⊥BE,得AP⊥PE,同理,DP⊥PE.又∵AP∩DP=P,∴PE⊥平面PAD.又PE⊂平面PDE,∴平面PDE⊥平面PAD.(2)如图所示,取AD 的中点F ,连接PF ,EF ,则PF ⊥AD ,EF ⊥AD , ∴∠PFE 就是二面角P -AD -E 的平面角. 又PE ⊥平面PAD ,∴PE ⊥PF . ∵EF =AB =2,PF =(2)2-1=1, ∴cos ∠PFE =PF EF =22.∴二面角P -AD -E 的大小为45°.折叠问题,即由平面图形经过折叠成为立体图形,在立体图形中解决有关问题.解题过程中,一定要抓住折叠前后的变量与不变量.[活学活用]如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N , 连接A ′M ,A ′N ,MN , 则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN , 又∵MN ∩A ′M =M ,∴CD ⊥平面A ′MN ,∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又∵A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又∵A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .层级一 学业水平达标1.从空间一点P 向二面角α-l -β的两个面α,β分别作垂线PE ,PF ,E ,F 为垂足,若∠EPF=60°,则二面角α-l-β的平面角的大小是()A.60°B.120°C.60°或120°D.不确定解析:选C若点P在二面角内,则二面角的平面角为120°;若点P在二面角外,则二面角的平面角为60°.2.如果直线l,m与平面α,β,γ满足:β∩γ=l,l∥α,m⊂α和m⊥γ,那么必有() A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ解析:选A B错,有可能m与β相交;C错,有可能m与β相交;D错,有可能α与β相交.3.已知直线a,b与平面α,β,γ,下列能使α⊥β成立的条件是()A.α⊥γ,β⊥γB.α∩β=a,b⊥a,b⊂βC.a∥β,a∥αD.a∥α,a⊥β解析:选D由a∥α,知α内必有直线l与a平行.而a⊥β,∴l⊥β,∴α⊥β.4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:选D由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,∴CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ABC⊥平面ADC.5.在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值为()A.32 B.22C. 2D. 3解析:选C如图所示,连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD,∴∠A1OA为二面角A1-BD-A的平面角.设AA1=1,则AO=2 2.∴tan∠A1OA=122= 2.6.如果规定:x=y,y=z,则x=z,叫作x,y,z关于相等关系具有传递性,那么空间三个平面α,β,γ关于相交、垂直、平行这三种关系中具有传递性的是________.解析:由平面与平面的位置关系及两个平面平行、垂直的定义、判定定理,知平面平行具有传递性,相交、垂直都不具有传递性.答案:平行7.在正方体ABCD-A1B1C1D1中,E是CC1的中点,则平面EBD与平面AA1C1C的位置关系是________.(填“垂直”“不垂直”其中的一个)解:如图,在正方体中,CC1⊥平面ABCD,∴CC1⊥BD.又AC⊥BD,CC1∩AC=C,∴BD⊥平面AA1C1C.又BD⊂平面EBD,∴平面EBD⊥平面AA1C1C.答案:垂直8.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA =6,那么二面角P-BC-A的大小为________.解析:如图,取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP=OA=3,PA=6,所以△POA为直角三角形,∠POA=90°.答案:90°9.如图,在圆锥PO中,AB是⊙O的直径,C是A B上的点,D为AC的中点.证明:平面POD⊥平面PAC.证明:如图,连接OC,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面ABC,AC⊂底面ABC,所以AC⊥PO.因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.又AC⊂平面PAC,所以平面POD⊥平面PAC.10.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.解:∵E为SC中点,且SB=BC,∴BE⊥SC.又DE⊥SC,BE∩DE=E,∴SC⊥平面BDE,∴BD⊥SC.又SA⊥平面ABC,可得SA⊥BD.又SC∩SA=S,∴BD⊥平面SAC,从而BD⊥AC,BD⊥DE,∴∠EDC为二面角E-BD-C的平面角.设SA=AB=1.在△ABC中,∵AB⊥BC,∴SB=BC=2,AC=3,∴SC=2.在Rt△SAC中,∠DCS=30°,∴∠EDC=60°,即二面角E-BD-C为60°.层级二应试能力达标1.(浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.() A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确.2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系为()A.相等B.互补C.相等或互补D.不确定解析:选D反例:如图,在正方体ABCD-A1B1C1D1中,E,F分别是CD,C1D1的中点,二面角D-AA1-E与二面角B1-AB-D的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补,故选D.3.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折的过程中,可能成立的结论是()A.①③B.②③C.②④D.③④解析:选B对于①,因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,故①不可能成立;对于②,如图,设点D的在平面BCF上的射影为点P,当BP⊥CF时,有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,故②可能成立;对于③,当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,故③可能成立;对于④,因为点D的射影不可能在FC上,故④不可能成立.故选B.4.如图,在四面体P-ABC中,AB=AC,PB=PC,D,E,F分别是棱AB,BC,CA的中点,则下列结论中不一定成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDF⊥平面ABC解析:选D因为D,F分别为AB,AC的中点,则DF为△ABC的中位线,则BC∥DF,依据线面平行的判定定理,可知BC∥平面PDF,A成立.又E为BC的中点,且PB =PC,AB=AC,则BC⊥PE,BC⊥AE,依据线面垂直的判定定理,可知BC⊥平面PAE.因为BC∥DF,所以DF⊥平面PAE,B成立.又DF⊂平面PDF,则平面PDF⊥平面PAE,C成立.要使平面PDF⊥平面ABC,已知AE⊥DF,则必须有AE⊥PD或AE⊥PF,由条件知此垂直关系不一定成立,故选D.5.正四棱锥的侧棱长为23,侧棱与底面所成角为60°,则该四棱锥的高为__________.解析:如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.答案:36.如图,二面角α-l-β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是________.解析:如图,作AO⊥β于O,AC⊥l于C,连接OB,OC,则OC⊥l.设AB与β所成的角为θ,则∠ABO=θ,由图得sin θ=AOAB=ACAB·AOAC=sin 30°·sin 60°=3 4.答案:3 47.已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图.(1)当a=2时,求证:AO⊥平面BCD.(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.解:(1)证明:在△AOC中,AC=a=2,AO=CO= 2.∴AC2=AO2+CO2,∴AO⊥CO.∵AO⊥BD,BD∩CO=O,∴AO⊥平面BCD.(2)折叠后,BD⊥AO,BD⊥CO,∴∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=2,∴AC= 6.如图,过点A作CO的垂线交线段CO的延长线于点H.∵BD⊥CO,BD⊥AO,CO∩AO=O,∴BD⊥平面AOC.∵AH⊂平面AOC,∴BD⊥AH.又∵CO⊥AH,CO∩BD=O,∴AH⊥平面BCD.∴AH⊥BC.过点A作AK⊥BC,垂足为K,连接HK.∵AK∩AH=A,∴BC⊥平面AHK.∵HK⊂平面AHK,∴BC⊥HK.∴∠AKH为二面角A-BC-D的平面角.在△AHO中,AH=62,OH=22,∴CH=CO+OH=2+22=322.在Rt△CKH中,HK=22CH=32.在Rt△AHK中,tan∠AKH=AHHK=6 2 3 2=6 3.∴二面角A-BC-D的正切值为6 3.8.如图,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成45°角,点E是PD的中点.(1)求证:BE⊥PD.(2)求二面角P-CD-A的余弦值.解:(1)证明:连接AE.∵PA⊥底面ABCD,∴∠PDA是PD与底面ABCD所成的角,∴∠PDA=45°.∴PA=DA.又∵点E是PD的中点,∴AE⊥PD.∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB.∵∠BAD=90°,∴BA⊥DA.又∵PA∩AD=A,∴BA⊥平面PDA.又∵PD⊂平面PDA,∴BA⊥PD.又∵BA∩AE=A,∴PD⊥平面ABE.∵BE⊂平面ABE,∴BE⊥PD.(2)连接AC.在直角梯形ABCD中,AB=BC=1,AD=2,∴AC=CD= 2.∵AC2+CD2=AD2,∴AC⊥CD.又∵PA⊥底面ABCD,CD⊂底面ABCD,∴PA⊥CD.∵AC∩PA=A,∴CD⊥平面PAC.又∵PC⊂平面PAC,∴PC⊥CD,∴∠PCA为二面角P-CD-A的平面角.在Rt△PCA中,PC=PA2+AC2=22+(2)2= 6.∴cos ∠PCA=ACPC=26=33.∴所求的二面角的余弦值为3 3.。
2.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.如图,∠P AO就是斜线AP与平面α所成的角.(2)当直线AP与平面垂直时,它们所成的角是90°.(3)当直线与平面平行或在平面内时,它们所成的角是0°.(4)线面角θ的范围:0°≤θ≤90°.1列说法中正确的个数是()①如果直线l与平面α内的两条相交直线都垂直,则l⊥α;②如果直线l与平面α内的任意一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l 垂直.A.0B.1 C.2 D.32.下列说法中,正确的是()A.若直线l与平面α内无数条直线垂直,则l⊥αB.若直线l垂直于平面α,则l与平面α内的直线可能相交,可能异面,也可能平行C.若a∥b,a⊂α,l⊥α,则l⊥b D.若a⊥b,b⊥α,则a∥α3如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.求证:AD⊥平面A1DC1.6.如图所示,若斜线段AB是它在平面α上的射影BO的2倍,则AB与平面α所成的角是()A.60°B.45°C.30° D.120°7.在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC的距离是()A. 5 B.25C.3 5 D.459.)正方体ABCD-A1B1C1D1中,面对角线A1B与对角面BB1D1D所成的角为________.10.如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为点N.求证:AN⊥平面PBM.11如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.13.如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.14.如图所示,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是()A.平行B.垂直相交C.垂直但不相交D.相交但不垂直16.如图,正方体ABCD-A1B1C1D1的棱长为2.(1)求证:AC⊥B1D;(2)求三棱锥C-BDB1的体积.17.如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.19.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心;(2)若P A ⊥PB ,PB ⊥PC ,PC ⊥P A ,则点O 是△ABC 的________心.21..在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则( )A.MN ∥C 1D 1B.MN ⊥BC 1C.MN ⊥平面ACD 1D.MN ⊥平面ACC 122.如图,已知P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数为________.23.如图所示,已知六棱锥P -ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥AD B .平面P AB ⊥平面PBCC .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45°24.直角三角形ABC 所在平面外有一点S ,且SA =SB =SC ,点D 为斜边AC 的中点.(1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC ..平面与平面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号语言:,l l αβαβ⊥⊂⇒⊥(1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. (2)图形语言:(3)符号语言: ⎭⎪⎬⎪⎫α⊥βα∩β=la ⊂αa ⊥l ⇒a ⊥β.(4)作用:①面面垂直⇒线面垂直;②作面的垂线. 特征:线面垂直⇒面面垂直要点四:求点线、点面、线面距离的方法(1)若P 是平面α外一点,a 是平面α内的一条直线,过P 作平面α的垂线PO ,O 为垂足,过O 作OA ⊥a ,连接PA ,则以PA ⊥a .则线段PA 的长即为P 点到直线a 的距离(如图所示).(2)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离叫直线与平面的距离.(3)求点面距离的常用方法:①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形来求解.②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.③体积法:利用三棱锥的特征转换位置来求解.1.三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC .求证:平面ABC ⊥平面SBC .2.如图所示,在四棱锥S -ABCD 中,底面四边形ABCD 是平行四边形,SC ⊥平面ABCD ,E 为SA 的中点.求证:平面EBD ⊥平面ABCD .3..如下图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,AC=BC ,D 是AB 的中点。
平面垂直平面的判定定理在几何学中,平面是欧几里德几何的基本概念之一。
我们常常需要判定两个平面是否垂直,因为这关系到平面的相互位置和几何关系。
在这方面,有一个重要的定理,即平面垂直平面的判定定理。
平面垂直平面的判定定理是指:如果两个平面的法向量正交(即两个法向量的点积为零),则这两个平面垂直。
要理解这个定理,首先需要了解什么是平面的法向量。
平面可以由一个点和一个法向量来确定。
具体而言,给定一个平面上的点P和平面上的一条直线AB,通过点P沿着直线AB方向移动一段距离,我们可以得到一个平行于平面的平面。
这个平面与原始平面相交于一条直线CD,直线CD就是平面的法线。
法向量是指这条直线CD的方向向量,一般用符号n表示。
法向量的方向垂直于平面,模长为1。
现在我们来看一个具体的例子来说明平面垂直平面的判定定理。
假设有两个平面,平面A和平面B。
平面A可以表示为Ax + By + Cz+ D1 = 0,平面B可以表示为Ex + Fy + Gz + D2 = 0。
我们需要判定这两个平面是否垂直。
首先,我们需要找到平面A和平面B的法向量。
由于平面A的方程是Ax + By + Cz + D1 = 0,我们可以看出法向量n1 = (A, B, C)。
同理,平面B的法向量为 n2 = (E, F, G)。
接下来,我们需要计算这两个法向量的点积。
点积可以通过对应坐标相乘再求和的方式得到。
根据平面垂直平面的判定定理,如果点积为零,则两个平面垂直。
点积计算公式如下:n1·n2 = A*E + B*F + C*G我们计算得到点积n1·n2 = A*E + B*F + C*G如果点积n1·n2 = 0,则平面A和平面B垂直;如果点积n1·n2 ≠ 0,则平面A和平面B不垂直。
这个定理具有重要的实际应用价值。
例如,在计算机图形学中,我们常常需要判定两个平面是否相交,以确定物体的可见性。
通过判断两个平面的法向量是否垂直,我们可以快速判定它们是否相交。
2.3.2平面与平面垂直的判定【学习目标】1.理解二面角的有关概念,会作二面角的平面角,能求简单二面角平面角的大小.2.了解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系.3.熟悉线线垂直、线面垂直的转化.【学习重难点】重点:平面与平面垂直的判定;难点:如何度量二面角的大小【预习指导】1.判断(正确的打“√”,错误的打“×”)(1)一个平面绕着这个平面内的一条直线旋转而成的图形叫二面角.( )(2)二面角的平面角有且只有一个.( )(3)过平面的一条垂线的平面与已知平面垂直.( )(4)经过平面的一条垂线的平面与已知平面垂直的平面有且只有一个.( ) 2.对于直线m,n和平面α,β,能得出α⊥β的一个条件是( )A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β3.过空间一点的三条直线两两垂直,则由它们确定的平面中互相垂直的有( )A.0对B.1对C.2对D.3对图23134.如图2313三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V -AB -C 的大小为________.【合作探究】1.二面角(1)半平面平面内的一条直线把平面分成两部分,这两部分通常称为半平面.(2)二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle ).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(3)二面角的求法与画法,棱为AB 、面分别为α、β的二面角记作二面角AB αβ--. 有时为了方便,也可在,αβ内(棱以外的半平面部分)分别取点P 、Q ,将这个二面角记作二面角P – AB – Q .如果棱记作l ,那么这个二面角记作二面角l αβ--或P – l – Q .2.二面角的平面角如图(1)在二面角c αβ--的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.(2)二面角的平面角的大小与O 点位置无关.(3)二面角的平面角的范围是[0,180°](4)平面角为直角的二面角叫做直二面角.二、平面与平面垂直1.平面与平面垂直的定义,记法与画法.一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.两个互相垂直的平面通常画成此图的样子,此时,把直立平面的竖边画成与水平平面的横边垂直.平面α与β垂直,记作α⊥β.2.两个平面互相垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直.例3 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BC在α内,所以PA⊥BC.因为点C是圆周上不同于A、B的任意一点,AB是⊙O的直径,所以,∠BCA是直角,即BC⊥AC.又因为PA与AC是△PAC所在平面内的两条直线.所以BC⊥平面PAC.又因为BC在平面PBC内,所以,平面PAC⊥平面PBC.【巩固练习】如图,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。