零点极点分析
- 格式:ppt
- 大小:3.78 MB
- 文档页数:101
关于放大器极、零点与频率响应的初步实验1.极零点的复杂性与必要性一个简单单级共源差分对就包含四个极点和四个零点,如下图所示:图1 简单单级共源全差分运放极零点及频率、相位响应示意图上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。
后面将要详细讨论各个极零点对运放的频率响应的影响。
正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:图2 folded-cascode with gain-boosting and bandgap all-poles details图3 folded-cascode with gain-boosting and bandgap all-zeros details从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。
但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。
同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。
可以看到46个极点中基本都为左半平面极点(负极点)而仿真器特别标出有一个正极点(RHP )。
由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。
(具体原因现在还不明,可能存在问题的方面:1。
推测是主放大器的CMFB 的补偿或者频率响应不合适。
2。
推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。
另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。
以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要进行一系列实验。
滤波器设计中的零点和极点的选择和分布在滤波器设计中,零点和极点是重要的概念。
它们决定了滤波器的频率响应和特性。
选择合适的零点和极点,并合理地分布它们,对于实现所需的滤波效果至关重要。
一、零点和极点的概念和作用零点和极点是滤波器传递函数的根。
在设计滤波器时,我们通常使用有理函数来表示传递函数,其中的零点和极点是函数的根。
零点相当于系统的输入抑制点,可以在一定的频率上消除或抑制信号。
而极点则可以增益或衰减信号。
选择合适的零点和极点可以实现所需的滤波特性,比如低通、高通、带通或带阻滤波。
通过合理布置零点和极点的数量、位置和分布,我们可以调节滤波器的截止频率、通带范围、阻带范围和陷波深度,从而满足不同的滤波需求。
二、零点和极点的选择原则1. 频率响应要求:根据滤波器的频率响应要求,选择合适的零点和极点。
比如,若需要实现低通滤波器,则应选择极点在通带范围内,零点在阻带范围内;若需要实现高通滤波器,则应选择零点在通带范围内,极点在阻带范围内。
2. 系统稳定性:对于连续时间滤波器,系统稳定性要求其极点均在左半平面;而对于离散时间滤波器,则要求其极点在单位圆内。
在选择零点和极点时,需确保系统满足稳定性要求。
3. 设计难度和复杂度:通常情况下,选择较少的极点和零点可以简化滤波器的设计和实现过程。
因此,在设计时要考虑到滤波器的实际应用、硬件资源和算法复杂度等因素。
三、零点和极点的分布合理的零点和极点分布可以控制滤波器的频率响应和滤波特性。
以下是常见的零点和极点分布方式:1. 零点和极点交替分布:即零点和极点交替排列在频率轴上。
这种分布方式常用于全通滤波器,可以实现频率响应的平坦性。
2. 零点和极点聚集分布:将零点和极点集中在某些频率附近,可以实现谐振和共振效应。
这种分布方式常用于带通或带阻滤波器,以加强或抑制特定频率的信号。
3. 零点和极点均匀分布:将零点和极点均匀地分布在频率轴上,可以实现频率响应的平衡性。
这种分布方式常用于对不同频率信号的均衡处理。
滤波器零点极点和单位圆1.引言1.1 概述在滤波器设计和信号处理领域中,零点和极点是非常重要的概念。
它们是描述滤波器频率响应和滤波器性能的关键参数。
零点和极点的分布直接影响着滤波器的幅频特性、相频特性以及相位延迟等方面的表现。
因此,深入理解和掌握零点和极点的定义、特点以及对滤波器性能的影响非常重要。
零点,顾名思义,是指滤波器的频率响应函数在某些频率上为零的点。
也就是说,当信号的频率达到零点时,滤波器不对该频率的信号进行响应,从而实现了信号的抑制或者消除。
零点可以在复平面上表示为一个点,其位置和数量多样化。
不同的零点分布方式将产生不同的滤波器特性。
与零点相对的是极点,极点指的是滤波器的频率响应函数在某些频率上发散的点。
极点是滤波器最重要的特性之一,它们决定了滤波器的幅频特性、相频特性以及相位延迟等。
极点可以分布在复平面的任意位置,并且可以是实数或者复数。
在本文中,我们将重点讨论单位圆在滤波器中的应用。
单位圆是代表单位频率的一个圆,它在复平面上的位置为半径为1的圆周。
单位圆的内部和外部分别代表了滤波器对低频和高频信号的响应。
单位圆上的点将直接决定了滤波器的频率响应,因此对于滤波器的设计和性能评估来说,单位圆是一个关键参考标准。
最后,我们还将探讨零点和极点对于滤波器性能的影响。
零点和极点的位置、数量以及分布方式将直接影响滤波器的频率响应特性。
通过合理的选取和调整零点和极点,可以实现不同的滤波器响应,如低通、高通、带通和带阻等。
因此,深入理解和掌握零点和极点对滤波器性能的影响将对滤波器设计和应用产生重要的指导作用。
在接下来的章节中,我们将详细阐述滤波器概念和作用,零点和极点的定义和特点,以及单位圆在滤波器中的应用。
我们还将通过具体的案例和实例,展示零点和极点对滤波器性能的影响。
这将有助于读者更好地理解和应用滤波器零点极点理论。
1.2文章结构文章结构部分的内容应该包括对整篇文章的组织和结构进行介绍。
以下是一个参考的内容:文章结构:本文主要分为引言、正文和结论三个部分。
电路中的零极点如何能直接看出来呢?不知不觉,环路内容已经写了7节了,以理论分析为主,下面来说说兄弟们都很关心的内容——零点和极点。
前面几节内容,我们已经将传递函数的来源,推导过程说明白了。
有了传递函数,我们就能够画出波特图,就能够分析系统到底稳不稳定。
但是问题来了,假如我们得到的波特图表明这个系统是不稳定的,那么该如何调整呢?该修改什么器件呢?或者说一个原本稳定的系统,但是我们想修改其中某个元件,会不会造成系统不稳定?总不至于每次修改一个器件,然后画出传递函数看看长什么样子,不行就接着改?这种鸟枪法总归不好。
鸟枪法不行,自然有更好的法子,那就是找到一些特殊点进行分析。
这些特殊点,就是零点和极点,零点和极点可以帮助我们调整电路。
关于零点和极点,结合我自己的经验,我觉得以下几个问题是值得思考一下的。
1、传递函数中,让分母为0的频率点叫极点,既然分母为0,那算出来的值不是无穷大吗?增益无穷大?这也能出现?2、老是看到说增加一个(电容),就增加了一个极点,增加一个电阻,就增加了一个零点,这到底是怎么回事?其中的道理又是为什么?3、拿到具体的电路,那个零极点如何能直接看出来呢?这一节就来看看上面这几个问题吧。
零点和极点的定义先来复习一下概念,什么是零点和极点,一般教材上面给出的定义大致是这样的:极点上面这个很好理解,清晰明了,但是一个大坑也就随之而来了。
如果从数学公式的角度看,这定义没啥好说的,该咋样咋样。
但是一放到电路里面去,就尴尬了,H(s)的物理意义不是输出除以输入吗?那极点的意思不就是使输出为无穷大的点,既然输出无穷大了,那么系统肯定是不稳定的,那么我们常说的极点又到底是什么?比如下面是从网上找的别人写的零点和极点的物理意义,难道自己写的时候不懵吗?那怎么理解我上面这个问题呢?结合实际的情况,系统的传递函数算出来的根多是负数,而现实世界中是没有负频率的,貌似都是直接把负号去掉之后称为极点。
比如下面的低通(滤波器)的传递函数的极点:假如R=1Khz,C=1uF,那么极点是s=-1000,但是我们通常说极点是1000,理由貌似是自然界中没有负频率,所以对s求了个模,频率w=|s|=1000,我们把这个求模后的值也还是叫极点,并没有重新取名字。
电路中极点与零点的产生与影响请问电路中极点与零点的产生与影响一、电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗?它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过这两条之路后可以互相抵消还是什么??极点又就是怎么产生的呢?就是由于意见反馈吗?那极点对电路的影响又就是什么?产生震荡还是什么??恳请大家指教一下。
1.(不能这么简单的理解其实电路的每个node都存有一个极点只是大部分的极点相对与所关心的频率范围太大而忽略了图夫尔中我们通常关心开环的0db频宽那么>10*频宽频率的极点我们就不管了因为它们对增益裕度贡献太小而被忽略;只要输入和输出之间有两条通路就会产生一个零点:同样的高于所关心频率范围的零点也不用管一个在所关心频率范围内的零点须要看看就是左半平面还是右半平面的左半平面的零点有助于环路平衡右半平面的则有利具体的看拉扎维的书吧写的还是蛮详细的看不懂就多看几遍自己做个电路仿下)2.不好问题,期望全盘介绍的人认真答疑。
我也同样困惑。
但是我总真的极点,零点并无法单单是的说道就是由于线性网络,意见反馈,或者串联并联一个电容产生的。
产生的原因还是和具体内容的电路结构相关联的。
比如一个h(s)的系统和一个电容并联或串联在输入输出之间,谁能说他一定产生一个极点或零点呢?这因该和h(s)的具体形式有关。
大多书上说道的必须大多针对的就是图夫尔结构,它的结构具备特殊性。
具备以点砌全系列的前科。
还恳请超过人细说。
3.一般的说,零点用于增强增益(幅度及相位),极点用于减少增益(幅度及相位),电路中一般零点极点是电容倒数的函数(如1/c)。
当c变小小时,比如说对极点来说,可以向原点方向变化,导致增益增加大力推进(幅度及增益)~通常运振动路的米勒效应电容就是这个原理,当增益快速上升好像-3db时,其他的零点极点都还没对系统增益起著啥促进作用(或促进作用不大,忽略了),电路即使七窍通了六窍半了~你就可以根据自己的须要迁调上频宽,多少多小的裕度就ko 了极点是由于结点和地之间有寄生电容造成的,零点是由于输入和输出之间有寄生电容造成的,一般输入和输出之间的零极点考虑多一点,主要是因为输入输出有较大的电阻,造成了极点偏向原点.4.个人的一点认知极点决定的是系统的自然响应频率,通常在电路中就是对地电容所看进去的r和对地电容c共同决定的。
环路控制零点和极点的关系
环路控制中的零点和极点之间存在着密切的关系。
在控制系统中,零点和极点是传递函数的重要特征,它们对系统的稳定性、动态响应和性能都有着重要的影响。
首先,让我们来了解一下零点和极点的概念。
在控制系统中,传递函数是描述输入和输出之间关系的数学表达式。
传递函数通常可以表示为一个分子多项式除以一个分母多项式的形式。
在这个分数形式的传递函数中,分子多项式的根被称为零点,而分母多项式的根则被称为极点。
零点和极点对系统的性能和稳定性有着重要的影响。
首先,极点决定了系统的稳定性。
一个系统是稳定的,当且仅当其所有的极点具有负实部。
因此,通过调整控制系统的极点位置,可以实现对系统稳定性的控制。
另外,极点的位置也影响着系统的动态响应特性,如超调量、上升时间和峰值时间等。
而零点则影响系统的传递特性。
当输入信号的频率等于零点的频率时,传递函数会出现零点,导致系统的增益减小或者甚至失去控制。
因此,控制系统设计中需要考虑如何处理这些零点,以确保
系统的稳定性和性能。
在环路控制中,零点和极点的位置对系统的稳定性和性能有着重要的影响。
通过合理地设计控制器,可以调整传递函数的零点和极点位置,从而实现对系统的稳定性和性能的控制。
因此,在环路控制系统设计中,需要充分考虑零点和极点的影响,以实现对系统的有效控制。
零极点的概念
在信号系统分析中,零极点是指系统函数的零点和极点,它们通过传递函数的值来刻画。
零点是指系统函数的分子多项式的根,也是系统函数的零点。
而极点是指分母多项式的根,也是系统函数的极点。
在复平面上,零点用“o”表示,极点用“×”表示,通过这些符号可以标出系统的零极点位置,形成系统的零极点图。
零极点的概念在信号系统中具有重要意义,可以从以下几个方面来理解:
1. 零极点可以确定系统的时域响应特性。
特别是单极点的情况下,极点的实部决定了时域响应指数衰减或增长的快慢,而虚部决定了振荡的快慢。
2. 零极点可以确定系统的频率响应。
3. 零极点可以确定系统的稳定性以及其他特性。
总之,系统函数的零极点对于理解系统的特性以及进行系统设计非常重要。
电路波特图怎么看?极点、零点是什么从放大器失调电压、偏置电流、共模抑制比,电源抑制比到开环增益,在直流或者低频率范围内,影响放大器信号调理的参数已经介绍完成。
期间没有单独介绍基础理论,默认诸位工程师已经掌握同相、反相等基础放大电路,“虚短、虚断”等放大器基础特性,以及基尔霍夫、诺顿等电路分析基础。
但是在介绍增益带宽积、相位裕度与增益裕度,输入阻抗特性、输出阻抗特性、容性负载驱动能力等参数之前,笔者考虑再三决定增加本篇内容,回顾分析这些参数的方式——波特图。
以及极点与零点在波特图中的性质。
后续相关参数的解析中将直接使用本篇内容的零点、极点的特性。
交流信号处理电路中,信号的频率范围较宽,从赫兹级到千赫兹,甚至兆赫兹级,信号增益涵盖几十倍到千、万倍。
此时常常使用波特图缩短坐标扩大视野,方便数据分析。
波特图由幅频波特图、相频波特图两部分组成。
幅频波特图表示电压增益随频率的变化情况,其中Y轴为电压增益的对数形式(20lgG),X轴为频率或者频率的对数形式lgf。
相频波特图是相位(θ)随频率的变化情况。
Y轴是相位,X 轴为频率。
以直流增益为100dB的单极点系统为例,幅频波特图如图2.89(a),X轴是Hz为单位的频率,Y轴是以dB为单位的增益。
信号频率小于100Hz时,电路增益为常数100dB,信号频率高于100Hz时,电路增益随信号频率增加而下降,速度为-20dB/十倍频,或者-6dB/倍频。
在100Hz处电压增益出现转折该处称为极点。
极点处的增益下降3dB。
图2.89 100dB增益单极点系统波特图示例如图2.89(b),相频波特图:X轴是以Hz为单位的频率,Y轴是以度为单位的相位。
初始相位是0°,极点fp处的相位是-45°。
在0.1倍fp至10倍fp范围内,相位从-5.7°变为-84.3°,变化速度为-45°/十倍频。
频率高于10KHz的相位是-90°。
2。
判断极点
就是看使分母为零的数,
比如sinz/z这道题0就是他的极点
再比如,sinz/z的4次幂0是分母的4阶极点,但是同时也是分子的1阶,所以0是分式的3阶极点~~~
当0是分母的三级零点,不是分子的零点时,0是函数的三级极点。
这是极点的定义。
当0是分母的三级零点,而且是分子的一级零点,那么0是函数的二级极点。
这是结合极点与可去齐点的定义而得到的。
判断零点
f(z)=(z-zo)^mΦ(z)/[(z-zo)^nψ(z)](条件m,n>=1,Φ(z),ψ(z)在zo处解析,那么:
①m>n,zo是f(z)的m-n阶零点
②m=n,zo是f(z)的可去奇点
③m<n,zo是f(z)的阶极点
至于证明,可用零点和极点的定义。
字比较多,符号也不好打,希望你翻书查,我这里就不列举了啊。
上面是自的符号说明:zo表示z零,^n表示n次方,上面的结论是正确的,你可以通过做题去验证,这也是除了定义法和极限法外判定极点的一种有效的方法。
零点z的阶数就是使得前k-1阶导数为0,k阶导数不为0的那个k 比如f(z)=z^2+1, f(i)=0, f'(i)=2i,所以1阶导数非0,k=1。
滤波器的零点和极点分析对于滤波器的设计和分析,了解其零点和极点的特性是至关重要的。
零点和极点是滤波器传递函数的根,可以直接影响滤波器的频率响应和滤波效果。
本文将深入介绍滤波器的零点和极点分析,解释它们的物理意义以及对滤波器性能的影响。
一、滤波器的零点和极点是什么?滤波器的零点和极点是指其传递函数在复平面上的根。
在频域中,传递函数可以表示为一个多项式的比值。
这个比值的分子和分母中的根称为零点和极点。
零点可以看作是使传递函数为零的输入信号的频率,而极点是使传递函数无穷大的输入信号的频率。
换句话说,零点是传递函数的归零频率,极点是传递函数的失效频率。
零点和极点的位置和数量直接决定了滤波器的频率响应。
在复平面上,零点和极点可以是实数或者复数,它们共同定义了滤波器的特性。
在滤波器分析中,我们通常将零点和极点画在一个虚轴上,以线的形式表示。
二、零点和极点的物理意义1. 零点的物理意义零点决定了滤波器对不同频率信号的传递特性。
如果输入信号的频率等于零点的频率,则传递函数为零,表示输出信号被完全屏蔽。
零点的存在可以抵消输入信号的某些频率分量,从而改变信号的频率分布。
以低通滤波器为例,其传递函数可表示为H(s) = K(s-s₀)/(s-p₁)(s-p₂)...(s-pn),其中s₀为零点,p₁到pn为极点。
当输入信号的频率为零点时,传递函数变为H(s) = K,即输出信号与输入信号完全相等。
这意味着低通滤波器通过了低频信号,但屏蔽了高频信号。
2. 极点的物理意义极点决定了滤波器对不同频率信号的信号增益和相位延迟。
当输入信号的频率等于极点的频率时,传递函数会出现无穷大的增益,这会导致输出信号的失真。
在滤波器设计中,我们通常希望极点的位置位于左半平面,以确保系统的稳定性。
而极点位于右半平面可能导致系统不稳定甚至发生振荡。
三、零点和极点对滤波器性能的影响零点和极点的位置和数量直接决定了滤波器的频率特性和滤波效果。
它们可以影响滤波器的增益、带宽、群延迟等性能指标。
零点和极点详解一、引言零点和极点是复变函数中非常重要的概念,它们在数学中的应用非常广泛,包括电路分析、信号处理、控制系统等领域。
本文将详细介绍零点和极点的定义、性质以及在实际应用中的意义。
二、零点的定义与性质1. 零点的定义设f(z)是一个复变函数,z0是复平面上的一个复数,如果f(z0)=0,则称z0为f(z)的一个零点。
2. 零点的性质(1)零点是函数图像与x轴交点处。
(2)如果f(z)在z0处有一个k阶零点,则f(z)在z0处可以表示为:f(z)=(z-z0)^k g(z)其中g(z)是在z=z0处不为0且解析的函数。
(3)如果f(z)有无穷多个不同的零点,那么f(z)必须恒等于0。
三、极点的定义与性质1. 极点的定义设f(z)是一个复变函数,z0是复平面上的一个复数,如果满足以下条件:(1)存在某个正整数k使得g(z)=(z-z0)^kf(z)在z=z0处解析;(2)当z趋近于z0时,|f(z)|趋近于无穷大;则称z0为f(z)的一个k阶极点。
2. 极点的性质(1)极点是函数图像在z0处的奇异点,也就是说,函数在z0处没有定义。
(2)如果f(z)在z0处有一个k阶极点,则可以表示为:f(z)=h(z)/(z-z0)^k其中h(z)是在z=z0处不为0且解析的函数。
(3)如果f(z)有无穷多个不同的极点,那么f(z)必须恒等于无穷大或者恒等于零。
四、零点与极点之间的关系1. 零点与极点之间的关系如果f(z)在z0处既有零点又有极点,那么它们之间存在以下关系:(1)当k>0时,称z0为可去奇异点。
此时,当我们把这个可去奇异点消去后,就得到了一个新的解析函数g(z),它在原来的可去奇异点处具有一个正常的值g(z0)=lim_(z→z_0)f(z),并且g(z)和f(z)在其他地方完全相同。
(2)当k<0时,称z0为本性奇异点。
此时,它是一个真正意义上的奇异点。
如果f(z)在z0的某个邻域内解析,那么称z0为孤立奇异点。
在电流中,零点和极点是用来描述电路特性的重要概念。
零点通常指的是电压或电流为零的点。
在某些情况下,零点处的电压或电流可能不是完全为零,而是相对于某个基准值来说非常接近零。
极点则通常指的是在特定频率下,电路的电压增益或相位响应发生转折的点。
例如,在波特图(幅频波特图和相频波特图)中,极点通常出现在电压增益发生转折的地方,也就是电压增益从常数值变为其他值的点。
在单端口电路中,如果施加的信号是电压V(s),响应是电流I(s),那么Z(s)的零点现在成为1/Z(s)的极点。
换句话说,当电流为零时,即使施加的电压不为零,单端口电路也会呈现出开路的状态。
而在Z(s)的极点处,即使施加的电压为零,单端口电路也会呈现出通路的状态。
这些概念对于理解电路的频率响应和稳定性非常重要。