l 1 v
• j1 n
(s Pk ) (s pi )
k 1
i 1
R(s)
v Ak k1 s pk
n Ai i1 s pi
r(t ) L1 R(s) n Ai e pi t u(t) v Ak e pk t u(t )
i 1
k 1
自由响应分量 +强制响应分量
X
四、结论
a 0, 在右实轴上 , h(t) e at u(t),a 0, 指数增加
H(s) s2 2 ,
p1 j , 在虚轴上
h(t) sintu(t),等幅振荡
H(s)
(s
)2
2
,
p1 j , p2 j , 共轭根
当 0,极点在左半平面,衰减振荡
当 0,极点在右半平面,增幅振荡
1. 信号
k ke pt u t
s p
F(s)
f(t)
n1
i0
ki s p
i
n1 ki t ie pt u i0 i !
t
F(s)极点直接决定了f(t)时间系统的系统函数H(s)是 s的有理多
项式分式,即
H(s)
N(s) D(s)
bm sm bm1sm1 ansn an1sn1
59s域零极点分布与时域特性域零极点分布与时域特性的关系的关系北京航空航天大学电子信息学院201241信号与系统系统线性时不变连续时间系统的系统函数hs是s的有理多项式分式即1
信号与系统
§5.9 s域零极点分布与时域特性 的关系
北京航空航天大学电子信息学院 2021/8/4
一、极点分布决定时域特性
X
三.由H(s)的零极点确定系统响应
激励: