信号与系统 系统函数的零极点分析
- 格式:ppt
- 大小:1.25 MB
- 文档页数:19
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。
实验三零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。
二、实验原理如果知道信号的Z变换以及系统的系统函数H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。
信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率ω从0变化到2π时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。
另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。
根据这些规律可以定性画出频率响应的幅度特性。
峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ejπ/4,峰值频率近似为π/4,极点愈靠近单位圆,估计法结果愈准确。
本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、零点分布的几何分析法分析频率响应,实验时需要将z=ejω代入信号的Z变换和系统函数中,再在0~2π之间,等间隔选择若干点,并计算它的频率响应。
三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。
1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
a=0.7代码:B=1;a=0.7A=[1,-a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re');ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼');grid on[H,w]=freqz(B,A,'whole');subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('·ùƵÏìÓ¦ÌØÐÔ');axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性a=0.8代码:B=1;a=0.8A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.9代码:B=1;a=0.9A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ay (n -1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1))系统极点z=a ,零点z=0,当B 点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a 越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi 点形成波谷;z=0处零点不影响幅频响应。
信号与系统分析简述题一、简述《信号与系统》的主要研究内容。
《信号与系统》主要是以线性时不变系统作为研究对象,当信号作用与线性时不变系统时,从输入输出描述法和状态变量法来研究系统响应。
当求得系统响应后,根据系统的激励与响应之间的关系求得系统函数,进而根据系统的固有属性来研究系统的内在属性,例如:因果性、稳定性和滤波特性等。
二、输入输出描述法和状态变量分析法的区别。
输入输出描述法:将系统看作一个黑匣子,根据系统的输入和基本属性来求解系统的输出响应,只描述系统单输入和单输出的关系,而不讨论系统内部的结构。
状态变量分析法:通过列些系统的状态方程和输出方程,进而求解得出系统函数和各响应。
不仅揭示了系统的内部特性,还可以用来描述非线性、时变系统和多输入多输出系统。
三、简述常用的输入输出描述法及其优缺点。
常用的输入输出描述法主要包括时域分析和变换域分析。
时域分析法:主要通过系统的微分方程(差分方程)、激励和起始状态,利用经典法、双零法和卷积法等来求解系统响应。
该方法均在时域中进行计算,物理概念清晰,但是计算量大。
变换域分析法:对于连续系统来说主要包括傅里叶变换和拉普拉斯变换;对于离散系统来说,则采用z变换。
变换域求解的计算量小,但是物理意义不清晰,因此常常会进行逆变换,将结果变换成时域的形式。
四、如何判断系统的因果性、稳定性、滤波特性等。
当用系统作用表示时,可通过定义法即响应不得超前激励,有界输入有界输出来判断因果稳定;当用h(t)表示时,则通过u(t)和绝对可积来判断因果稳定;当用系统函数来表示时,对于连续系统,通过系统函数的极点只能分布在s平面的左半开平面来判断,对于离散系统,通过系统函数的极点只能位于单位圆内来判断。
滤波特性则是通过系统函数的零极点分布粗略画出幅频特性曲线,根据幅频特性曲线的走势来判断。
五、连续时间信号、离散时间信号、模拟信号和数字信号有什么区别。
连续时间信号是指时间自变量在其定义的范围内,除若干不连续点以外均是连续的。
大连理工大学实验报告学院(系):电信专业:电子信息工程班级:姓名:学号:组: 实验时间:实验室:创新园C221 实验台: 指导教师签字:成绩:实验四:离散时间LIT 系统分析一、实验结果与分析1.试用MATLAB 命令求解以下离散时间系统的单位冲激响应。
(1)[][][][][]34121y n y n y n x n x n +-+-=+-(2)[][][][]5611022y n y n n x n +-+-= 解:(1)a =[3 4 1];b=[1 1]; n=0:30;impz(b,a,30),grid ontitle('系统单位冲激响应h(n)')(2)a=[2.5 6 10];b=[1]; n=0:30;impz(b,a,30),grid ontitle('系统单位冲激响应h(n)')2.已知某系统的单位冲激响应为[][][]{}7108nh n u n u n ⎛⎫=-- ⎪⎝⎭,试用MATLAB 求当激励信号为[][][]5x n u n u n =--时系统的零状态响应。
解:定义函数conv_m 如下:function [y,ny]=conv_m(x,nx,h,nh)ny1=nx(1)+nh(1);ny2=nx(length(x))+nh(length(h)); ny=[ny1:ny2]; y=conv(x,h) 主程序: nx=-1:6; nh=-2:12;x=heaviside(nx)- heaviside (nx-5);h=(7/8).^nh.*( heaviside (nh)- heaviside (nh-10)); [y,ny]=conv_m(x,nx,h,nh); subplot(311)stem(nx,x,'fill'),grid on xlabel('n'),title('x(n)') axis([-4 16 0 3]) subplot(312)stem(nh,h','fill'),grid on xlabel('n'),title('h(n)') axis([-4 16 0 3]) subplot(313)stem(ny,y,'fill'),grid onxlabel('n'),title('y(n)=x(n)*h(n)') axis([-4 16 0 3])3.试用MATLAB 画出下列因果系统的系统函数零极点分布图,并判断系统的稳定性。
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
目录1.引言 (2)2.虚拟仪器开发软件Labview入门 (3)2.1 Labview简介 (3)2.2 利用Labview编程完成习题设计 (3)3.利用LabVIEW实现系统函数的零极点分布决定时域特性的设计 (20)3.1系统函数的零极点分布决定时域特性的基本原理 (20)3.2系统函数的零极点分布决定时域特性的编程设计及实现 (22)3.3运行结果及分析 (23)4. 总结 (25)5.参考文献 (25)1.引言冲激响应h(t)与系统函数H(s) 从时域和变换域两方面表征了同一系统的本性。
在s 域分析中,借助系统函数在s平面零点与极点分布的研究,可以简明、直观地给出系统响应的许多规律。
系统的时域、频域特性集中地以其系统函数的零、极点分布表现出来。
主要优点:可以预言系统的时域特性;便于划分系统的各个分量(自由/强迫,瞬态/稳态);可以用来说明系统的正弦稳态特性。
2.虚拟仪器开发软件Labview入门2.1 Labview简介LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C 和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。
LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。
传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。
VI指虚拟仪器,是LabVIEW]的程序模块。
LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。
用户界面在LabVIEW中被称为前面板。
使用图标和连线,可以通过编程对前面板上的对象进行控制。
§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。