《直线及平面垂直的判定[一]》_说课稿[非常优秀]
- 格式:doc
- 大小:109.00 KB
- 文档页数:7
2.3.1《直线与平面垂直的判定》--第1课时(说课稿)一、大家好,我是李振良,来自四师一中,说课的题目是《直线与平面垂直的判定》!选自人教A版必修2 中2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。
线面垂直是线面相交的特殊情况,既是线线垂直的拓展,又是面面垂直的基础,同时为我们学习线面角、二面角、空间点面距离等内容做好了铺垫,因而它是点、线、面位置关系的核心概念之一.二、根据《高考大纲要求》,考虑到学生的接受能力和容量,确定了本节课的教学目标:(一)知识与技能:1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理.3.能对定义和判定定理做初步运用。
(二)过程与方法:借助图片、实例引导学生直观感知,通过动手实验,操作确认,再到定义、定理的抽象概括,有助于学生对知识进行主动建构,有利于突破重点,解决难点!突出“问“和”动”!(三)情感态度与价值观:在探究过程中进一步培养学生的空间想象能力,发展学生的合情推理能力和逻辑论证能力,提高学生使用符号语言表达的能力!增强学习数学的兴趣。
三、根据《课程标准》对判定定理的传统证明不做要求,(今后选修中可用空间向量来证明)这样降低了难度。
因而,我将本节课的教学重点确立为:直观感知,操作确认并抽象概括出线面垂直的定义和判定定理。
同时这也是本节课的难点。
四、学生已经学习了线面平行、面面平行的定义、判定定理、性质以及空间直线异面垂直的位置关系,有了初步的空间想象能力和抽象概括能力,可以适当类比!在本节线面垂直的定义中“任一条直线”指的是“所有直线”,但在判定定理中,为何又只需两条相交直线呢?,这种用“有限”代替“无限”的过程会导致学生理解上的障碍.运用时可能无法下手或者不知如何选择平面内的两条相交直线.为了有更好教学的效果,课前要求学生查阅了有关线面垂直的图片资料,自备了三角板、笔、三角形纸片等,同时本人也做了精心准备。
五、下面介绍一下整个教学过程设计。
1.2.3直线与平面垂直的判定说课稿尊敬的各位评委:大家上午好!我今天说课的内容是人教B版高中数学必修2第一章第二节《直线与平面垂直》的第一课时。
下面我将按照教材分析、学情分析、目标分析、教法与学法、过程分析、效果分析和板书设计七个部分对本节内容进行阐述。
一、教材分析1、教材的地位和作用:本节课主要学习的是线面垂直的定义、判定定理及其初步应用。
“直线与平面垂直”是直线与平面相交中的一种特殊情况,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!因此线面垂直是空间垂直关系间转化的重心,在教材中起到了承上启下的作用。
2、教学重点和难点学生对空间几何体的学习有了一段时间,已经具备了基本的图形识别能力,初步形成了运用文字语言和符号语言进行推理论证的能力,因此本节课将:教学重点确立为:直线与平面垂直的定义和判定定理的探究。
教学难点确立为:操作确认并概括出直线与平面垂直的定义和判定定理。
二、学情分析学生通过对点、线、面位置关系的学习,初步理解了空间中点、线、面及位置关系,但学生的抽象概括能力和空间想象能力还有待提高。
三、目标分析结合《课程标准》及考虑到学生的接受能力和课容量,本节课只要求学生在建构线面垂直定义的基础上探究线面垂直的判定定理。
因此我将本节课的教学目标确立为:知识与技能:理解直线与直线垂直的概念;理解直线与平面垂直的概念和判定定理;能够初步运用线面垂直的定义和判定定理证明简单命题。
过程与方法:在学生现有的基础上引导学生运用类比、观察、联想、概括、归纳的方法去探究空间中线面垂直的位置关系,概括出线面垂直的定义和判定定理,把握研究问题的一般方法和步骤,体验数形结合的思想方法。
情感、态度与价值观:为学生营造一个熟悉的问题情景,让学生亲身经历对问题的研究,调动学生研究问题的兴趣、增强学生问题解决的信心、挖掘学生问题处理的创新意识、提高学生问题总结概括的能力、培养学生研究问题的合作精神。
四、教法与学法教法:自主、探究式学习。
直线与平面垂直的判定说课稿一、教材分析:直线和平面的垂直关系上承线线垂直,下启面面垂直,贯穿于角、距离、体积等应用之中。
所以直线和平面垂直关系的判定不仅是本大节的一个重点,也是立体几何的重点。
具体到本节课的内容:直线和平面垂直的概念的理解,判定定理的发现、证明及简单应用。
重点是引导学生如何发现判定定理,难点则是判定定理的证明。
在不断探索的过程中培养学生的空间想象能力和逻辑思维能力,对培养学生思维的批判性、深刻性及探索精神和创新能力都有着重要意义。
二、教学方法:自主、探究式学习。
定理的发现过程、证明方法的探求过程本身就是数学思想方法最好的范例,而数学思想方法不可能通过灌输获得,它需要一个长期渗透的过程,如春雨无声地滋润;它更需要一种问题情景,让学生在探索中感受、体验。
三、学法指导:让学生体验知识的形成过程,通过积极主动地去探索、辨别、创新,培养科学精神。
培养学生关注参与学习活动的过程,注重在学习过程中所获得的直接体验,并将这种体验升华为数学思想方法。
四、程序设计:1.提出问题:对直线和平面的位置关系进行简单的回顾之后,用书的脊背和各页与桌面的交线作为模型,形象地给出直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,则这条直线和这个平面垂直。
先对定义进行简单的剖析:①概念:平面的垂线,直线的垂面,有且只有一个(利用模型形成直观感觉),垂足;②语言:图形语言,画法。
符号语言:a是平面α内任意一条直线,直线l⊥a,则直线l⊥平面α。
直线l⊥平面α,直线a在平面α内,则直线l⊥直线a。
然后提出问题:在具体实践中判定直线和平面垂直如何操作?设计意图:开门见山,突出矛盾。
通过对概念的分析,不但为本节课的学习进行了铺垫,而且通过分析,产生疑惑,激发学生进一步研究的兴趣。
2.分析问题:探索的方向:直线a在平面α内,则l⊥a是l⊥α的必要条件,也就是说判定直线和平面垂直,需要通过判定这条直线和平面内的哪些直线垂直。
《直线与平面垂直的剖断》说课稿李凯帆本节课是人教版《通俗高中课程尺度实验教科书·数学(A 版)》必修2第三节“直线与平面垂直的剖断”的第一课时.下面,我将分离从教材剖析.学情剖析.教法与学法剖析.教授教养进程设计.教授教养反思五个方面临本节课进行解释.一.教材剖析1.内容.地位与感化直线与平面垂直是直线和平面订交中的一种特别情况,是空间中直线与直线垂直地位关系的拓展,又是平面与平面垂直的基本,是空间中垂直地位关系间转化的重心,同时又是直线和平面所成的角等内容的基本,因而它是空间点.直线.平面间地位关系中的焦点概念之一.本节课是在进修了空间点.直线.平面之间的地位关系和直线与平面平行的剖断及其性质之落后行的,其重要内容是直线与平面垂直的界说.直线与平面垂直的剖断定理及其应用.个中,线面垂直的界说是线面垂直最根本的剖断办法和性质,它是探讨线面垂直剖断定理的基本;线面垂直的剖断定理充分表现了线线垂直与线面垂直之间的转化,它既是后面进修面面垂直的基本,又是衔接线线垂直和面面垂直的纽带!学好这部分内容,对于学生树立空间不雅念.实现从熟习平面图形到熟习立体图形的飞跃,是异常重要的.2.教授教养目标《数学课程尺度》指出本节课进修目标是:经由过程直不雅感知.操纵确认,归纳出线面垂直的剖断定理;能应用剖断定理证实一些空间地位关系的简略命题.斟酌到本校学生的接收才能和课容量,本节课只要肄业生在构建线面垂直界说的基本上探讨线面垂直的剖断定理,并进行定理的初步应用.故而确立以下教授教养目标:(1)常识与技巧经由过程直不雅感知.操纵确认,懂得线面垂直的界说,归纳线面垂直的剖断定理,并能应用界说和定理证实一些空间地位关系的简略命题.(2)进程与办法经由过程线面垂直界说及定理的探讨进程,感知几何直不雅才能和抽象归纳分解才能,领会转化思惟在解决问题中的应用.(3)情绪.立场与价值不雅经由过程线面垂直界说及定理的探讨,让学生亲自阅历数学研讨的进程,体验摸索的乐趣,加强进修数学的兴致.3.教授教养重点和难点依据教授教养大纲的请求以及学生的实际情况,肯定如下:重点:经由过程操纵归纳分解直线与平面垂直的界说和剖断定理难点:操纵确认直线与平面垂直的剖断定理二.学情剖析进修本课前,学生已经经由过程直不雅感知.操纵确认的办法,进修了直线与平面平行的剖断定理,对空间概念树立有必定基本.但是,学生的抽象归纳分解才能.空间想象力还有待进步.线面垂直的界说比较抽象,平面内看不到直线,要让学生去领会“与平面内所有直线垂直”就有必定艰苦;同时,线面垂直剖断定理的发明具有必定的隐藏性,学生不轻易想到.高二年级的学生,已具有必定的想象才能和剖析问题.解决问题的才能,但尽管思维活泼,迅速,但却缺少沉着.思虑,因而单方面,不敷严谨.仍需依附必定的具体形象的经验材料来懂得抽象的逻辑关系.三.教法与学法剖析本节课内容是学生空间不雅念形成的症结时代,教室上充分应用实际情境,学生经由过程感知.不雅察,提炼直线与平面垂直的界说;进一步,在一个具体的数学问题情景中假想,并在教师指点下,着手操纵,不雅察剖析,自立摸索等运动,切实感触感染直线与平面垂直剖断定理的形成进程,领会蕴含在个中的思惟办法.采取启示式.引诱式.介入式的教授教养办法,引诱学生进行自立测验测验和探讨;引诱学生采取自立摸索与互相协作相联合的进修方法.四.教授教养进程设计环节教授教养进程及内容设计意图温习引入提问:1. 直线和平面具有哪些地位关系?2. 在我们的身边有没有能反应出直线和平面垂直地位关系的实际例子呢?(经由过程课件给出几个实际生涯中线面垂直的例子)问题1温习线面的地位关系;问题2由实例到图片,直不雅感知线面垂直的地位关系,树立初步印象,为下面临线面垂直界说的探讨做预备探讨1:直线与平面垂直的界说(1)创设情境—感知概念1.旗杆地点直线与地面地点平面垂直,那么旗杆与其在地面的影子有何地位关系?2.将书打开竖立于桌面,不雅察书脊与桌面的地位关系,书脊与每一册页下边沿有何地位关系?3.一条直线与一个平面垂直,那么这条直线与平面内的直线有什么样的地位关系?经由过程实例让学生直不雅感知线面垂直的地位关系,引诱学生不雅察这条直线与平面内直线的地位关系,将线面垂直问题转化为考核直线和平面内直线的关系,为得出线面垂直的界说作预备.(2)不雅察归纳—形成概念(引诱学生本身归纳直线与平面垂直的界说)假如一条直线l和一个平面α内的随意率性一条直线都垂直,我们就说直线l 和平面α互相垂直.记作:l ⊥αl 叫做α的垂线, α叫做l 的垂面,l 与α的独一公共点P叫做垂足.充分施展学生的主不雅能动性,进步抽象归纳分解才能,让学生体验成功的喜悦.(3)辨析评论辩论—深化概念下列命题是否准确?为什么?(1)假如一条直线垂直于平面内的很多条直线,那么这条直线与这个平面垂直.(2)假如一条直线与一个平面垂直,那么这条直线垂直于这个平面内的所有直线.通干预干与题的辨析和评论辩论,加深概念的懂得,控制概念的本质.由(1)使学生明白界说中的“随意率性”和“很多”的不合;由(2)使学生明白,线面垂直的界说既是线面垂直的剖断又是基赋性质.探讨2:直线与平面垂直的剖断定理1.黉舍广场上新立一旗杆,如今要磨练它是否与地面垂直,请同窗想想办法?2. 折纸实验:过△ABC的极点A翻折纸片,得到折痕AD,再将翻折后的纸片竖起放置在桌面上(BD.DC与桌面接触).折痕AD与桌面垂直吗?若何翻折才干使折痕AD与桌面地点的平面垂直?问题1让学生明白可以由线面垂直的界说来剖断线面垂直,但是适用性较差.问题2借助学生熟习的生涯中最简略的经验,引诱学生剖析,将“与平面内所有直线垂直”慢慢转化为“与平面内两条订交直线垂直”,并以此为基本,进行合情推理,提出猜测,使学生的思维顺畅,为进一步的探讨做预备.(引诱学生本身归纳直线与平面垂直的剖断定理)一条直线与一个平面内的两条订交直线都垂直,则该直线与此平面垂直.学生叙写剖断定理,给出文字.图形.符号这三种说话的互相转化,练习三种说话互相转化的才能.下列命题是否准确?为什么?假如一条直线与平面内的两条平行直线都垂直,那么该直线垂直与这个平面经由过程辨析,强调定理中“两条订交直线”的前提.定理的初步应用例1.平行四边形ABCD地点平面外有一点P,O是对角线AC与BD的交点,且PA=PC,PB=PD.求证:PO⊥平面例1感触感染若何应用线面垂直的剖 nmmn P ll ml nααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭ABCD例2.如图,已知a∥b,a⊥α.求证:b⊥α.演习:教材P67演习1 断定懂得决问题,明白定理应用的前提和具体步调,造就学生严谨的逻辑推理. 例2感触感染线面垂直的界说与剖断定理的分解应用,展现了平行与垂直之间的转化和接洽,给出断定线面垂直的一种间接办法.教室小结1.经由过程本节课的进修,你学会了哪些断定直线与平面垂直的办法?各是什么?用数学说话论述.2.在证实线面垂直时应留意哪些问题?经由过程小结使本节课的常识体系化,使学生深入懂得数学思惟办法在解题中的地位和应用,造就学生卖力总结的进修习惯.功课安插五.教授教养反思在这节课停止之后,我实时对教授教养进程进行回想,总结出自以为的成功之处和缺少之处.成功之处:达到了预期目标,学生能懂得线面垂直的界说及剖断定理,并能进行一些简略的应用;把进修的主动权还给学生,让学生自立阅历发明问题.研讨问题.解决问题的进修进程,使数学教室活泼起来,师生之间的真挚互动凸现出平易近主协调.在学生已经直不雅感知直线与平面垂直的基本上让学生亲自着手实验,探讨.体验,使其阅历常识的形成进程.在操纵运动中,勉励学生进行合理的想象和猜测,探讨直线与平面垂直的前提,感触感染获得新常识的愉悦,使之达到自立介入.自发发明.自我完美.自行控制常识的目标,并且对数学产生了亲热感,进步了摸索问题的积极性,从而感触感染到数学的伟大魅力,造就了学生的数学应用意识和实践才能.缺少之处:①温习引入稍嫌过快,回想线面的各类地位关系时应当响应给出生涯实例,以便形成比较,加深学生对线面各类地位关系的直不雅感知.②探讨进程中,未做到完整让学生亲自着手.比方,作折纸实验时,因为放心时光控制不好,是由我拿着纸片,由学生不雅察.猜测,而我按照学生的设法主意实行,最后由学生总结.③定理的初步应用中,例1的消失稍显突兀,因为学生的具体情况,空间想象才能很有限,不克不及较轻易的得出线线垂直.所以,应当再拔取一道更为直接的例题,直接有线线垂直情况的,先对剖断定理有一个直接的应用.。
直线与平面垂直的说课稿一、教学目标理解直线与平面垂直的定义及判定定理;能够运用直线与平面垂直的判定定理解决简单的几何问题;培养学生的空间想象能力和逻辑推理能力。
二、教学内容和方法定义:如果一条直线与一个平面垂直,那么这条直线与该平面内的任何一条直线都垂直。
判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么这条直线与这个平面垂直。
应用:运用直线与平面垂直的判定定理解决简单的几何问题,如证明某条直线与某个平面垂直等。
三、教学过程导入:通过观察生活中的实例,引出直线与平面垂直的概念。
比如,教室的墙角和地面的交线与地面内的任何一条直线都垂直,因此它与地面垂直。
讲解:通过直观的图形和实例,引导学生理解直线与平面垂直的定义和判定定理。
可以借助多媒体课件或实物模型进行演示。
练习:让学生自己动手解决一些简单的几何问题,如证明某条直线与某个平面垂直等。
通过练习加深对知识的理解和掌握。
归纳:总结直线与平面垂直的定义和判定定理,强调其在几何问题中的重要性。
同时,让学生思考生活中还有哪些实例可以用来解释直线与平面垂直的概念。
四、教学评价知识掌握情况:通过提问和练习,了解学生对直线与平面垂直的定义和判定定理的掌握情况。
应用能力:让学生运用所学知识解决一些实际问题,如证明某条直线与某个平面垂直等,了解学生的应用能力。
学习态度和学习习惯:观察学生的学习态度和习惯,如是否积极参与课堂讨论、是否认真完成作业等。
五、教学反思针对学生掌握情况,对教学方法和内容进行反思和调整;思考如何进一步激发学生的学习兴趣和积极性;总结本节课的收获和不足之处,为今后的教学提供参考。
2.3.1《直线与平面垂直的判定(一)》说课稿各位领导、老师,大家晚上好!我说课的内容是直线与平面的判定;现就教材分析、学情分析、教学重难点、教学目标、教学方法手段、教学过程以及课后反思等方面展开说课,恳请各位老师批评指正。
一、教材分析1、本节内容让学生学会使用数学语言表述线、面的垂直关系,培养学生的逻辑思维能力;2、由“直线与直线垂直”类比,得出“直线与平面垂直”这一内容,同时也为后面学习“平面与平面垂直”做好铺垫。
3、本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”、“无限转化为有限”、“线线垂直与线面垂直相互转化”等数学思想。
二、学情分析1、学生整体基础较弱,部分学生没有形成自主探究的学习习惯,对本节内容的学习有一定影响;2、学生已有的认知基础是日常生活中的具体直线与平面垂直的直观形象,但还没有形成成熟的空间观念。
三、教学重难点重点:1、直线与平面垂直的定义;2、对直线与平面垂直判定定理的探究。
难点:1、理解直线与平面垂直的定义;2、直线与平面垂直判定定理的应用。
四、教学目标1、知识与技能通过图片观察和折纸实验,使学生理解直线与平面垂直的定义,归纳和确认直线与平面垂直的判定定理,并能简单应用定义和判定定理。
2、过程与方法通过学生合作探究及学生的实际操作得出结论,培养学生的几何直观能力,使他们在直观感知、操作确认的基础上学会归纳,概括结论。
3、情感态度与价值观在体验数学几何美的过程中激发学生的学习兴趣,从而培养学生勤于思考、勤于动手的良好品质,培养学生学会从“感性认识”到“理性认识”过程中获得新知。
五、教学方法手段教学方法:互动式讨论、探索式研究、启发式小结;教学手段:借助多媒体、用折纸进行实物展示;学习方法:自主学习、合作探究。
六、教学过程(一)教学设计思想本节内容教学设计的思路是:遵循“直观感知——操作确认——思维论证——实践应用”的认知过程;以自主学习为出发点,通过合作探究等方法,由感性思维到理性思维,掌握本节内容;通过练习巩固,使理论在实践中得到升华。
《直线与平面垂直的判定》说课稿一、教材分析直线与平面垂直是直线与平面相交中的一种特殊情况.它既是线线垂直的拓展,也是学习面面垂直的基础,同时它也为研究线面角、二面角、点到平面的距离、直线到平面的距离、两个平行平面间的距离等内容进行了必要的知识准备.因此它不仅是连接线线垂直和面面垂直的纽带,也是空间中点、线、面位置关系的核心内容.本节课主要研究了直线与平面垂直的定义、判定定理以及它们初步应用,并在此过程中渗透了类比、猜想、归纳等方法,让学生从中体会将空间问题转化为平面问题,将无限转化为有限,将线面垂直转化为线线垂直的化归思想.二、教学目标分析根据新课标的教学要求和学生的认知水平,确定如下的教学目标:在知识与技能方面:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;在过程与方法方面:通过对定义总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;在情感态度与价值观方面:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.三、教学分析及相应教学策略分析1、学生对直线与平面垂直的现象是很容易有“感觉”的,但是如果你要问他们什么是直线与平面垂直,他们却往往不知道怎么回答.所以如何让学生对线面垂直的认识由感性上升到理性是本节课的一个教学难点.这里我没有直接告诉学生定义的内容,而是把它放到了具体的情境中让学生自己去感受和体会.按说定义是不需要这样的分析和探究的,但是通过对旗杆和它在地面内影子的位置关系的观察,通过对旗杆所在直线l和地面所在平面α内不经过点B﹙点B 是直线l和平面α的交点﹚的直线的位置关系的思考,让学生亲自参与定义的构建,就使原本干巴巴的定义在学生心中变得具体生动,有血有肉.再通过对定义中的“任意一条直线”能否换成“无数条直线”问题的探讨,使学生对定义的认识经一步深化.考虑到学生的空间想象能力和语言表达能力的参差不齐,这里可以根据学生在课堂上的反应进行适当的启发引导,也对到讲台上进行演示讲解同学的答案进行补充和完善.2、虽然在新课程中对判定定理是通过试验确认并不需要严格证明的,但如何将线面垂直转化成线线垂直,如何提出“如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面是否垂直的问题”是本节课的另一个教学难点.不少老师在这里都进行了有益的尝试.但是考虑到学生的认知水平,我并没有采取通过引导观察现实生活中的实例,进行猜想,从而提出问题的方法.因为一百个人心中就有一百个哈姆雷特,不同的人看同一幅图的感受可能是千差万别的,采用这种方法可能更多的时候是老师在进行引导,对学生认知的帮助不大.所以这里我仍然采用了类比猜想的方法,从学生已有的知识出发,通过合情推理最终提出上面的问题.然后通过试验探究总结出线面垂直的判定定理.其实通过试验并不能直接得出直线与平面垂直的判定定理,这里我会引导学生对“如果直线l与平面α内的两条相交直线m、n都垂直,但不经过它们的交点,那么直线l还与平面α垂直吗?”这个问题进行探究.一方面是因为这个问题难度并不大,与新课程中的降低判定定理部分的难度并不违背,另一方面通过对这个问题的研究也培养了学生严谨细致的作风,提高了学生的抽象概括能力和逻辑思维能力.3、在直线与平面垂直的判定这部分的题目中往往要进行多次线面垂直和线线垂直之间的转化而且有时还需要添加辅助线,而这些都是学生感觉比较棘手的问题.所以本节课中我会对例1进行透彻的分析,从而让学生掌握分析此类问题的方法和步骤,然后通过几道有梯度的练习题让学生逐步对定义和判定定理能够进行灵活运用,并不断增强学生的空间感.四、教学方法分析法无定法,本节并没有简单的只使用某一种教学方法,而是根据学生情况和教材特点同时进行了多方面的尝试.在定义的构建中通过创设情景,使学生对定义的总结水到渠成.在判定定理的构建中,通过小组合作增强了数学学习的氛围,也使学生在交流中互相学习共同进步.对直线与平面垂直的画法这样会用就行的问题直接传授,而对折纸试验中提出的问题却给学生留出充足的时间进行讨论,并根据情况进行适时的启发引导.总之一句话,所有的教学活动都要以学生的可持续发展为根本出发点,以学生在知识、能力和情感的提高和进步为根本出发点.《直线与平面垂直的判定》教学设计【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.【教学重点及难点】教学重点:直线与平面垂直的定义、判定定理以及它们的初步应用.教学难点:对直线与平面垂直的定义的理解和对判定定理的探究.【教学方法】教法:启发诱导式学法:合作交流、动手试验【教具准备】计算机、多媒体课件、三角形卡纸【教学过程】一、直线与平面垂直定义的构建1、联系生活——提出问题在复习了直线与平面的三种位置关系后,给出几幅现实生活中常见的图片,让学生思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?设计意图:使学生意识到直线与平面垂直是直线与平面相交中的一种特殊情况并引出本节课的课题.另外这样设计也吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.2、创设情境——分析感知 播放动画,引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l 与地面所在平面α内经过点B 的直线都是垂直的.进而提出问题:那么直线l 与平面α内不经过点B 的直线垂直吗?设计意图:在具体的情境中,让学生去体会和感知直线与平面垂直的定义.3、总结定义——形成概念 由学生总结出直线与平面垂直的定义,即如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直.引导学生用符号语言将它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?设计意图:让学生通过思考和操作(用三角板和笔在桌面上比试),加深对定义的认识.二、直线与平面垂直判定定理的构建1、类比猜想——提出问题 根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析.2、动手试验——分析探究 演示试验过程:过△ABC 的顶点A 翻折纸片,得到折痕AD ,再将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触).问题一:同学们看,此时的折痕AD 与桌面垂直吗?又问:为什么说此时的折痕AD 与桌面不垂直?设计意图:让学生从另一个角度来理解直线与平面垂直的定义——只要直线A BD C αB A D Cl 与平面α内有一条直线不垂直,那么直线l 就与平面α不垂直.问题二:如何翻折才能让折痕AD 与桌面所在平面α垂直呢?﹙学生分组试验﹚设计意图:通过分组讨论增强数学学习氛围,让学生在交流中互相学习,共同进步.问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD 还经过BD 、CD 的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?又问:如果直线l 与平面α内的两条相交直线m 、n 都垂直,但不经过它们的交点,那么直线l 还与平面α垂直吗?设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风.3、提炼定理——形成概念 给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言: m l ⊥,n l ⊥,α⊂m ,α⊂n ,A n m = ⇒l α⊥.三、初步应用——深化认识1、 例题剖析: 例1 已知:b a //,α⊥a .求证:α⊥b .分析过程:AB DC α(①②③表示分析的顺序)证明:在平面α内作两条相交直线m ,n .因为直线a α⊥,根据直线与平面垂直的定义知,a m a n ⊥⊥.又因为b ∥a所以m b ⊥,n b ⊥.又因为α⊂m ,α⊂n ,m ,n 是两条相交直线,所以α⊥b . 设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成. 另外,例1向我们透漏了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.2、随堂练习练习1 如图,在三棱锥V-ABC 中,VA=VC ,AB=BC .求证:VB⊥AC.证明:取AC 中点为K ,连接VK 、BK ,∵ 在△VAC 中,VA =VC ,且K 是AC 中点,∴ VK ⊥AC . A VB C K a αbm nα⊥a α⊥b ⎩⎨⎧⊥⊥n a m a ⎩⎨⎧⊥⊥n b m b b a //⇒⇒⇒①②同理 BK ⊥AC .又 VK ⊂平面VKB ,BK ⊂平面VKB ,VK∩BK=K,∴ AC⊥平面VKB .∵ VB ⊂平面VKB ,∴ VB ⊥ AC .设计意图:用展台展示部分学生的答案,督促学生规范化做题. 变式引申 如图,在三棱锥V-ABC 中,VA=VC ,AB=BC ,K是AC 的中点.若E 、F 分别是AB 、BC 的中点,试判断直线EF与平面VKB 的位置关系.解:直线EF 与平面VKB 互相垂直.∵ 在△VAC 中,VA=VC ,且K 是AC 中点,∴ VK ⊥AC .同理 BK ⊥AC .又 VK ⊂平面VKB ,BK ⊂平面VKB ,VK ∩BK=K ,∴ AC ⊥平面VKB .又 E 、F 分别是AB 、BC 的中点,∴ EF ∥AC∴ EF ⊥平面VKB .设计意图:在定义和判定定理之外,例1又给出了第三种证明直线与平面垂直的方法,构造这道变式引申题的目的就是让学生在用中将其内化.练习2 如图,PA 垂直圆O 所在平面,AC 是圆O 的直径,B 是圆周上一点,问三棱锥P-ABC 中有几个直角三角形?解:在三棱锥P-ABC 中有四个直角三角形,分别是:△ABC 、△PAB 、△PAC 和△PBC .设计意图:通过练习1和练习2培养学生熟练地进行线线垂直和线面垂直之间的转化,从而使他们能够对定义和判定定理进行灵活应用.四、总结回顾——提升认识线面垂直的定义 A C E F K V BB C五、布置作业——巩固认识必做题:习题2.3 B组2,4.选做题:如图SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F.求证:AF⊥SC.探究题:课本66页的探究题.SBA CFE。
人教版高一数学必修二《直线、平面垂直的判定及其性质》说课稿一、教材分析《直线、平面垂直的判定及其性质》是人教版高一数学必修二的一个重要章节。
本章主要介绍了判定直线与平面之间是否垂直的方法及其相关性质。
通过学习本章,学生可以理解垂直的概念,掌握垂直的判定方法,进一步加深对直线、平面垂直关系的认识。
本章的学习内容对于学生的几何思维能力和推理能力的培养有着重要的意义。
二、教学目标本节课的教学目标主要有以下几个方面: - 理解直线与平面垂直的概念; - 掌握直线与平面垂直的判定方法; - 运用垂直的性质解决相关问题; - 培养学生的几何思维能力和推理能力。
三、教学重点和难点本节课的教学重点主要有: - 垂直概念的理解; - 垂直的判定方法的掌握; - 垂直的性质的应用。
教学难点主要有: - 判定直线与平面是否垂直的方法; - 运用垂直性质解决问题的能力培养。
四、教学方法本节课将采用以下教学方法: - 课堂讲授与板书相结合的方法,通过示例引导学生理解概念; - 组织学生进行小组讨论,加深对判定方法的掌握; - 引导学生进行思维导图、图示等形式的辅助表达,培养学生的几何思维能力。
五、教学内容及思路1. 垂直概念的引入通过一个简单的生活场景引入本节课的内容,如:如何判断一根竖直的木杆?引导学生讨论与垂直有关的情景,从而引出垂直的概念。
2. 直线与平面垂直的判定方法•方法一:直线斜率与平面法向量的关系:通过讲解直线的斜率和平面的法向量的概念,引导学生思考斜率与法向量的关系,进而得到直线与平面垂直的判定方法。
•方法二:直线的方向向量与平面的法向量的关系:通过讲解直线的方向向量和平面的法向量的概念,引导学生思考方向向量与法向量的关系,进而得到直线与平面垂直的判定方法。
3. 垂直的性质与应用通过讲解垂直的性质,如:垂直平分线的性质、垂直平行线的性质等,引导学生理解并应用这些性质解决相关问题。
同时,鼓励学生提出自己的思考,发散思维。
直线与平面垂直度的测定(一)尊敬的评委和老师们:大家好!今天,我演讲的主题是“决心”“直线和平面的垂直度”五个部分被解释(分析)模块1:教材分析1地位和角色:本节是本节的第一个课时人教版高中数学第二卷第九章第四节直线与平面的定义、确定及应用垂直度。
线平面垂直度的定义是线平面垂直度的最基本判断方法定定理反映了直线的变换垂直度和线平面垂直度。
学习这个好的,让学生树立空间观念,实现目标从平面图形的理解到三个飞跃-三维(空间)图形起着非常重要的作用。
2教学目标:按三维新课程目标体系,本课的教学目标如下:1)知识与技能:抽象与概括定义与方法直线与平面垂直度的判定定理生活中熟悉的东西,并用它来数学语言表达;2)方法和过程:确定直线和直线的判定定理操作时的平面垂直度,培养学生的空间观念;3)情感态度和价值观:让学生体验数学研究与探索过程(研究)提高学习数学的兴趣。
三。
重点与难点:本课重点教学就是让学生总结定义和判断直线和平面垂直度定理,教学的难点在于操作和确认判断直线与平面垂直度定理及其应用。
二板学术现状分析初中几何的学生学过线垂直,并对垂直线有直接的了解。
我班上学生思维活跃,实践能力强能力强,能根据演示积极思考实物和模型,归纳概括,类比直线垂直,积极主动探索线面垂直判断定理。
但是学习呢一学生抽象概括能力与空间想象需要改进,所以我们应该尽最大的努力让学生有机会通过这一节的教学很好的理解新的飞跃。
三个板块的教学方法分析新课程理念指导下的教学模式是以教为主导,以学为主体对学生来说,学数学更重要。
在这个第二节课,我利用多媒体课件探讨了在自主操作、合作学习过程中存在的问题沟通,探究结论,学生解决问题思维问题碰撞培养了质疑、推测和大胆的精神创新。
模块4教学过程设计我们知道“求知是过程,不是结果”。
这个在教学中必须有求知的过程在这个想法的支持下,我设计的教学过程是具体如下:第一级段落:场景介绍,构建垂直定义为了激发学生的学习兴趣,我设置了以下场景:(1)使用多媒体课件展示生活中的一组图片:(火箭、电视塔、摩天大楼),boyata),让学生直观地感知垂直线和飞机。
《直线与平面垂直的判定》说课稿(一)教材内容教材选自:人教版《普通高中课程标准实验教科书•数学(A版)》必修2,第二章第三节的第一课时。
本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。
直线与平面垂直的是直线与平面相交中的一种特殊情况,它既是空间中线线垂直位置关系的拓展,又是后面学习面面垂直的根底,是连接线线垂直和面面垂直的纽带!因此线面垂直是空间垂直位置关系间转化的重心,在教材中起到了承上启下的作用。
(二)学情分析在本节课之前学生已学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质,具备了学习本节课所需的知识。
同时已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定根底。
但是,对于我们广平一中的学生而言,他们的抽象概括能力、空间想象力还有待提而。
(三)教学重、难点重点:直线与平面垂直的定义和判定定理的探究。
难点:操作确认并概括出直线与平面垂直的定义和判定定理。
二、教学目标《课程标准》把本节课学习目标概括为:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题。
我将本节课的教学目标确立为,知识与技能:(1)经历对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;(2)通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;过程与方法:(1)在探索直线与平面垂直判定定理的过程中开展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限''等化归的数学思想∙(2)尝试用数学语言(文字、符号、图形语言)对定义和定理进行准确表述和合理转换.情感、态度与价值观:经历线面垂直的定义和定理的探索过程,提高严谨与求实的学习作风,形成锲而不舍的钻研精神和科学态度.三、 说教法、学法采用“启发一探究”的教学方法。
《直线与平面垂直的判定(一)》说课教案一、教材分析1、教材的地位与作用地位:前面已经研究了线在面内,线面平行这两种线面位置关系,在此基础上研究线面垂直是对空间线面位置关系的延续与完善;同时线面垂直又是连接线线垂直与面面垂直的纽带,是空间中垂直关系间转化的重心。
作用:通过对线面垂直位置关系的研究,能帮助学生进一步认识客观世界,进而能够解决“数学中的空间几何问题”。
2、学情分析学习本节课前,学生已初步感知部分空间线面位置关系,但学生的抽象概括能力、空间想象能力还有待提高,对研究空间元素位置关系的思维脉络尚未成形,力求通过本节教学让学生有一个新的飞跃。
3、重点与难点教学重点:直线与平面垂直的定义、判定定理及简单应用;教学难点:①判定定理的探索与归纳;②判定定理及定义在解决垂直问题中的交互与转化。
二、教学目标分析(1)知识与技能目标:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。
(2)过程与方法目标:通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。
(3)情感、态度与价值观目标:通过创设情境让学生亲身经历数学研究的过程,通过判定定理的探索过程,提高学生动手、观察、分析、归纳的能力,激发学生的学习热情,培养学生探索发现的学习习惯。
三、教法、学法分析依据“教师主导,学生主体”的新课程理念,我采用的教学方法是:教师设置情境,引领分析,总结归纳;学法是学生探究,感悟,归纳。
四、教学过程设计教学流程设计如下:(一)情境创设,学生活动【教师活动】首先借助问题情境从线面平行的研究流程入手,寻找知识的最近发展区,让学生明确这节课将“怎样研究”,然后通过多媒体观看神十发射现场,引导学生观察,如果把运载火箭抽象成一条直线,它与地面的位置关系是什么,再结合天安门广场的旗杆与地面的垂直关系,直观感知线面垂直,然后请同学们举出生活中线面垂直的例子,如教室内的墙角线与地面,路灯与地面等,当学生的学习热情被充分调动起来以后,引导学生进入下一环节。
2.3.1《直线与平面垂直的判定》——第一课时(说课稿)一、教材分析1、教材的地位和作用:《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。
其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。
2. 教学目标根据大纲要求,考虑到学生的接受能力和课容量,确定了本次课的教学目标:A、知识与技能:通过直观感知、操作确认,理解线面垂直的定义,归纳线面垂直的判定定理;并能运用定义和定理证明一些空间位置关系的简单命题。
B、过程与方法:通过线面垂直定义及定理的探究过程,感知几何直观能力和抽象概括能力,体会转化思想在解决问题中的运用。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点根据《课程标准》,线面垂直判定定理的证明在本节课中不做要求,这样降低了难度。
因而,我将本节课的教学重点确立为:重点:操作确认并概括出直线与平面垂直的定义和判定定理。
由于学生的抽象概括能力、空间想象力还有待提高,而线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到,因此我把操作确认并概括出直线与平面垂直的判定定理及初步运用作为本节课的难点。
二:教法分析在高中学生对空间概念建立有一定基础,学生可通过直观感知、操作确认的方法,,来学习本课。
(1)“引导—探究式”教学方法。
在线面垂直定义的建构中,先引导学生观察实例和图片直观感知概念,再通过演示形成概念,然后引导学生对概念进行抽象概括;而在判定定理的探究过程中,先借助学生熟悉的长方体模型和生活中简单的经验引导学生对定理进行猜想,再引导学生通过动手操作折纸实验和演示来确认定理,最后引导学生对定理进行归纳总结。
直线和平面垂直一等奖说课稿1、直线和平面垂直一等奖说课稿一、教材分析(1)教材的地位和作用“直线和平面垂直”是人教版高中《数学》其次册(下)第九章第四节的内容,是直线和平面相交中的一种特别状况;是实际生活中常见的一种位置关系;是从现实世界中抽象并概括出来的数学概念。
直线和平面垂直是两条直线垂直的进展,是平面与平面垂直的根底,所以是立体几何中承上启下的关键内容。
同时还是空间对称性的根底。
(2)教学目标学问目标:理解直线与平面垂直的定义,感知并确认直线和平面垂直的判定定理,会用线面垂直的定义和判定定理证明简洁命题;力量目标:培育类比、转化、归纳力量,进一步进展空间想象力量、合理推断力量和运用图形语言进展沟通的力量;情感目标:在线面垂直关系的讨论中,培育自主探究、合作沟通的精神。
(3)教学重点、难点及关键教学重点:线面垂直的定义和线面垂直的判定定理的理解。
教学难点:线面垂直定义的理解;线面垂直判定定理的理解。
教学关键:类比转化数学思想的应用。
二、教学方法与手段1.教学方法本节主要采纳观看发觉、问题引导、类比探究相结合的教学方法;以学生为主体,问题为主线,启发、引导学生积极的思索同时对学生的思维进展调控,帮忙学生优化思维过程。
2.教学手段教具教学及多媒体技术帮助教学教具教学使数学图形与几何模型和生活实际结合起来。
能培育学生的空间想象力量;多媒体技术的应用为师生供应更为丰富和直观的教学材料。
同时还可适当分解空间想象的难度,提高课堂教学效率,激发学生的学习兴趣。
三、学法指导观看、概括、总结、归纳、类比联想是学法指导的重点。
让学生观看、思索后,总结、概括、归纳的学问更有利于学生把握;为了加深学问理解、把握和更敏捷地运用,运用类比联想去主动的发觉问题、解决问题,从而更系统地把握所学学问,形成新的认知构造和学问网络,让学生真正地体会到在问题解决中学习,在沟通中学习。
这样,可以增进喜爱数学的情感,应用数学的自信念和形成新的学习动力。
关于“直线与平面垂直的判定”的说课稿尊敬的评委各位老师:您们好!今天我要为大家讲的课题是:直线与平面垂直的判定首先,对本节教材进行一些分析:一、教材分析1、教材内容包含了线面垂直的定义,判定定理及其简单运用,其中,定义是线面垂直最基本的判定方法和性质,是探究线面垂直判定定理的基础,判定定理充分体现了线线垂直与线面垂直之间的转化,它是后面学习面面垂直的基础,是连接线线垂直和面面垂直的纽带2、教学重难点《课程标准》对本节课的要求是,通过直观感知、操作确认,归纳出线面垂直的判定定理,能运用定理证明空间位置关系的简单命题。
而判定定理的严格证明安排在选修系列2中进行,这样降低了难度,符合学生的认知规律重点:操作确认并概括出直线与平面垂直的定义和判定定理。
难点:操作确认并概括出直线与平面垂直的定义和判定定理。
二、学情分析学生已掌握了平面内证明线线垂直的方法,学习了直线,平面平行的判定定理,具备了类比学习的基础,但学生的抽象概括能力和空间想象力还比较薄弱,动手实践与合作探究的能力不强。
三、目标设计根据实际情况,认知规律和课标要求及课时容量,确立本课教学目标如下:知识目标:(1)通过对图片,实例的观察,抽象概括出线面垂直的定义,并正确理解定义。
(2)通过操作,确认,探究实验,归纳直线与平面垂直的判定定理,并运用定理证明一些简单命题,进一步加强学生的空间观念。
能力目标:(1)提高学生空间想像力抽象概括能力几何直观能力及数学表达和交流能力(2)发展数学应用意识和创新意识情感目标:让学生经历数学研究的过程,体验探索的乐趣,发展学生的合情推理能力和空间想象力,增强学习数学的兴趣, 培养锲而不舍的钻研精神。
四、教学方法和手段:1. 教学方法:新课标强调数学教学是数学活动的教学,而教师是活动的组织者,引导者,合作者,要体现以学生为中心。
让他们在在生生合作,师生互动中,成为知识的发现者和探究者。
所以,教学方法采用:引导探索;问题探究 。
《直线与平面垂直的判定(一)》尊敬的各位评委,老师们:大家好!今天我说课的题目是《直线与平面垂直的判定》,我将从以下五个板块进行说明(分析):板块一:教材分析1、地位和作用:本节是人教版高中数学第二册下第九章第四节的第一课时,介绍实现从认识平面图形到立体(空间)图形的飞跃有(着)非常重要的作用。
21数学语言表述;23的乐趣,增强学习数学的兴趣。
3、重点与难点:本课中,重点,而教学的难点板块二学情分析学生在初中几何中已学过线线垂直,并对线面垂直有直观的认识。
我班学生思维活跃,动手能力强,能根据实物与模型的演示,积极地思考,归纳与概括,并能类比线线垂直积极的探索线面垂直的判定定理。
但是学生的抽象概括能力、空间想象力还有待提高,力求通过本节教学让学生有一个新的飞跃。
板块三教法和学法分析板块四教学过程设计我们知道,“所谓求知是过程,不是结果”。
求知的过程必须在教学中得以实现,(正是)在这一理念支撑下,我设计的教学过程如下:(1)利用多媒体课件展示生活中一组图片:(火箭、电视塔、摩天大厦、博雅塔),让学生直观感知线面垂直。
之后,设置学生活动:请举出校园生活中的线面垂直的例子。
学生踊跃发言,举出很多例子,(打开的书脊,教室内两墙的交线,大厅里的柱子,校园彩灯的灯柱,操场的旗杆等)学生的兴趣被调动起来,老师及时提出问题,怎么用数学语言抽象表述线面垂直这种位置关系呢?让我们先看一个演示实验:】(2)多媒体演示:旗杆与它在地面上影子的位置关系。
【动画1AB所在直线与过点B的直线都垂直,动画2AB所在直线与地面内任意一条不过点B的直线g也垂直,进而引导学生用数学语言归纳线面垂直的定义。
学生分小组讨论,由小组代表回答,不完善的地方由老师补充。
】(课件展示定义)(3)学生归纳,形成概念定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作:l ⊥α.直线 l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫做垂足。
《直线与平面垂直的判定(一)》
尊敬的各位评委,老师们:
大家好!今天我说课的题目是《直线与平面垂直的判定》,我将从以下五个板块进行说明(分析):
板块一:教材分析
1、地位和作用:本节是人教版高中数学第二册下第九章第四节的第一课时,介绍
实现从认识平面图形到立体(空间)图形的飞跃有(着)非常重要的作用。
2
1
数学语言表述;
2
3
的乐趣,增强学习数学的兴趣。
3、重点与难点:本课中,重点,
而教学的难点
板块二学情分析
学生在初中几何中已学过线线垂直,并对线面垂直有直观的认识。
我班学生思维活跃,动手能力强,能根据实物与模型的演示,积极地思考,归纳与概括,并能类比线线垂直积极的探索线面垂直的判定定理。
但是学生的抽象概括能力、空间想象力还有待提高,力求通过本节教学让学生有一个新的飞跃。
板块三教法和学法分析
板块四教学过程设计
我们知道,“所谓求知是过程,不是结果”。
求知的过程必须在教学中得以实现,(正是)在这一理念支撑下,我设计的教学过程如下:
(1)利用多媒体课件展示生活中一组图片:(火箭、电视塔、摩天大厦、博雅塔),让学生直观感知线面垂直。
之后,设置学生活动:请举出校园生活中的线面垂直的例子。
学生踊跃发言,举出很多例子,(打开的书脊,教室内两墙的交线,大厅里的柱子,校园彩灯的灯柱,操场的旗杆等)学生的兴趣被调动起来,老师及时提出问题,怎么用数学语言抽象表述线面垂直这种位置关系呢?让我们先看一个演示实验:】
(2)多媒体演示:旗杆与它在地面上影子的位置关系。
【动画1AB所在直线与过点B的直线都垂直,动画
2AB所在直线与地面内任意一条不过点B的直线g也垂直,进而引导学生用数学语言归纳线面垂直的定义。
学生分小组讨论,由小组代表回答,不完善的地方由老师补充。
】(课件展示定义)
(3)学生归纳,形成概念
定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作:l ⊥α.直线 l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫做垂足。
用符号语言表示为:
【教学过程中,充分发挥学生的主动性,让他们去发现,总结,归纳,成功地解决了线面垂直的定义。
定义法是线面垂直最基本的判定方法,这是教学的重点,但用定义直接检验线面垂直是困难的。
引导学生,想想看,
】
为解决上述疑问,我们先来探究两个问题:
(1)问题探究
探究1:如果一条直线与平面内的一条直线垂直,这条直线是否与这个平面垂直呢?
【学生经过短暂思考,得出结论,不一定垂直
,并且可以举例说明】
探究2这个平面垂直呢?
【学生容易想到两种情况:这两条直线是平行直线,结论也是不一定垂直,也可以举例说明,但是如果这两条直线是相交直线,结果又如何呢?学生似乎有了判定线面垂直的初步想法,下面通过游戏继续探究】
(2) 折纸游戏:
请同学们拿出事先准备的一块三角形纸片,我们一起来做一个游戏:αα⊥⇒⎭
⎬⎫⊥l m l m 内任一直线是平面
(过△ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD 、DC 与桌面接触)
)。
(展示学生折纸的视频)
引导学生观察并思考:
1)折痕AD 与桌面垂直吗?
2)如何翻折才能使折痕AD 与桌面所在的平面垂直?
【游戏中,(打开游戏2)学生出现了垂直和不垂直两种情况,引导这两类学生进行交流,分析“不垂直”的原因;(打开游戏3)经过小组合作交流,学生得出,当且仅当折痕AD 是BC 边上的高时,AD 所在直线与桌面垂直,这时有些学生就发现:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
老师充分肯定学生敏锐的观察能力,并鼓励学生把上述探究的结论,用数学语言表述:
定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
用符号语言表示为: 本环节,通过教师创设探究问题以及学生亲自动手做游戏,在分组合作、讨论、交流之中,学生很容易接受线面垂直判定定理,而理解该定理,教师要强调“两条”、“相交”缺一不可】
为了加强学生对定理的理解和掌握,设置两个例题,用课件出示: (不念)例1、如图,有一根旗杆AB 高8m ,它的顶端A 挂有两
条长10m 的绳子,拉紧绳子并把它的下端放在地面上的两点
ααα⊥⇒⎭
⎬⎫⊥⊥=⋂⊂⊂l n l m l P n m n m ,,, A B C
D
α
(和旗杆脚不在同一条直线上 )C 、D 。
如果这两点都和
旗杆脚B 的距离是6m ,那么旗杆就和地面垂直.为什么?
【本题体现了线面垂直与实际问题的密切联系,可培养学生逻辑思维能力和运用数学语言的能力。
让一个学生板演完成证明过程,其他学生纠正,最后教师展示证明过程,强化规范意识】
证明:在ABD ∆和ABC ∆中,因为8,6,10=====AB BD BA AD AC
所以︒=∠=∠90ABC ABD , 所以BD AB BC AB ⊥⊥,
又B BD AB = ,所以⊥AB 面BCD ,即旗杆和地面垂直。
例2、如图,已知a ∥b ,a ⊥α,求证:b ⊥α。
【此题有一定难度,教师引导学生分析思路,可利用线面垂直的定义证,也可用判定定理证,提示辅助线的画法,强调一题多解,学生练习本上独立完成,老师适时点拨,规范解题步骤】
回顾本节整个教学过程,师生始终在共同探究,那么对于所学知识是否能够掌握,为此提出三个问题:
(1)什么是直线与平面垂直的定义?
(2)你学会了哪些判断直线与平面垂直的方法?
(3)在证明直线与平面垂直时应注意哪些问题?
【学生总结并发言,互相补充,教师点评,总结判断线面垂直的方法,给出框图(投影展示),并鼓励学生认真反思,大胆质疑。
】
第五阶段:作业探究,巩固所学知识
(1)如图,点P是平行四边形ABCD所在平面外一点,O是
对角线AC与BD的交点,且PA=PC,PB=PD.
求证:PO⊥平面ABCD
(2)探究:如图,PA⊥圆O所在平面,AB是圆O的直径,C是圆周上一点,则图中有几个直角三角形?由此你认为三棱锥中最多有几个直角三角形?四棱锥呢?
【第(1)题直接运用线面垂直判定定理,属容易题。
第(2)题是一道开放性题目,有助于培养学生的发散思维,为学有余力的学生准备,这样,使不同程度的学生都有所获,巩固新知识并培养应用意识。
第六阶段:板书设计,重要内容展现
【为使学生对本节所学知识有一个整体认识,教学时我将重要内容进行科学合理板书】
9.4 直线与平面垂直的判定(一)
1、直线与平面
垂直的定义:2、直线与平面垂
直的判定定
理:
例1:
例2:
C
A
B
D
O
P
板块五教学设计说明
今年开始,我省全面进入新课标,为了更好地适应新的变化,在新的理念指导下,我在本节课的处理上作了相应调整,借助多媒体辅助教学,采用“自主、合作、探究”的教学方法。
值得借鉴的地方有四点:
1、本节课借助实例引入课题,激起学生学好数学的信心和决心;
2、教师与学生共同探究,引起学生的好奇心,使学生的思维得到展现;
3、教师在教学过程中始终是一个引导者,学生则始终在思考,并主动探究,在领悟知识的基础上发展了能力。
以上是我对本节课的一些说明,不妥之处,敬请各位专家、老师批评指正,谢谢!。