新版人教版八年级上册第十一章三角形复习
- 格式:doc
- 大小:96.79 KB
- 文档页数:4
第十一章三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD 是△ABC 的高.2.AD 是△ABC 中BC 边上的高.3.AD ⊥BC 于点D .4.∠ADC =90°,∠ADB =90°.1.AD 是△ABC 的中线.2.AD 是△ABC 中BC 边上的中线.3.BD =DC =12BC 4.点D 是BC 边的中点.1.AD 是△ABC 的角平分线.2.AD 平分∠BAC ,交BC 于点D .3.∠1=∠2=12∠BAC .(或∠ADC=∠ADB=90°)推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.六、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.七、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.八、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n -3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n -2)个三角形.九、多边形内角和n 边形的内角和为(n -2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n- °;十、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形凹多边形03题型归纳题型一三角形的稳定性例题:(23-24七年级下·陕西咸阳·阶段练习)如图,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A.全等性B.对称性C.稳定性D.灵活性巩固训练1.(23-24八年级上·云南昆明·期末)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥的斜拉索,它能拉住桥面,并将桥面向下的力通过钢索传给索塔,确保桥面的稳定性和安全性.那么港珠澳大桥斜拉索建设运用的数学原理是()A.三角形的不稳定性B.三角形的稳定性C.四边形的不稳定性D.四边形的稳定性3.(23-24七年级下·黑龙江哈尔滨·期中)如图,松花江大桥的钢架结构采用三角形的形状,这其中运用的数学道理是.4.(23-24七年级下·全国·假期作业)如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是因为三角形具有.题型二判断三边是否能构成三角形例题:(23-24七年级下·江苏盐城·期末)下列每组数分别表示3根小木棒的长度(单位:cm),其中能搭成三角形的是()A.4,5,10B.5,5,10C.5,8,10D.5,10,15巩固训练1.(23-24七年级下·海南儋州·期末)下列长度的三条线段中,能构成三角形的是()A.1,3,5B.2,4,6C.1,2,3D.3,4,52.(23-24七年级下·河北邢台·阶段练习)甲同学对下列三角形的边长分别进行标注,那么他标注错误的是()A.B.C.D.3.(2024·河北邯郸·二模)将一根吸管按如图所示的位置摆放在单位长度为1的数轴(不完整)上,吸管左-”处,右端对应数轴上的“5”处.若将该吸管剪成三段围成三角形,第一刀剪在数轴上的端对应数轴上的“8“5-”处,则第二刀可以剪在()A.“4-”处B.“3-”处C.“1-”处D.“2”处题型三已知三角形的两边长,求第三边的取值范围两边长分别为4与5,第三边的长为奇数,则第三边的长的例题:(23-24七年级下·重庆·期末)已知ABC最大值为.巩固训练1.(23-24七年级下·江苏无锡·期末)已知三角形的两边长为3和4,则第三条边长可以为.(请写出一个符合条件的答案)2.(23-24七年级下·黑龙江大庆·期中)一个三角形的两边长为2和6,第三边为奇数,则这个三角形的周长为.3.(23-24七年级下·内蒙古包头·期中)一个三角形的两边长分别为5和7,若x 为最长边且为整数,则此三角形的周长为.题型四判断是否三角形的高线例题:下列各图中,正确画出AC 边上的高的是()A .B .C .D .巩固训练1.下面四个图形中,线段BD 是ABC 的高的图形是()A .B .C .D .2.(2023秋·甘肃庆阳·八年级统考期末)如图,在ABC 中,A ∠是钝角,下列图中作BC 边上的高线,正确的是()A .B .C .D .3.如图,AD BC ⊥,EC BC ⊥,CF AB ⊥,点D ,C ,F 是垂足,下列说法错误的是()A .ABD △中,AD 是BD 边上的高B .ABD △中,EC 是BD 边上的高C .CEB 中,EC 是BC 边上的高D .CEB 中,FC 是BE 边上的高题型五根据三角形的中线求面积例题:(2023春·广东茂名·七年级校考阶段练习)如图,ABC 的面积为20,点D ,E ,F 分别为BC AD CE,,的中点,则阴影部分BFC △的面积为()A .4B .5C .6D .10巩固训练1.(2023春·山西太原·七年级山西大附中校考期中)如图,AD BE 、是ABC 的中线,则下列结论中,正确的个数有()(1)AOE COE S S = ;(2)AOB EODC S S = 四边形;(3)2BOC COE S S = ;(4)4ABC BOC S S = .A .1个B .2个C .3个D .4个2.(2023春·江苏扬州·七年级校联考阶段练习)如图,BD 是ABC 的中线,点E 、F 分别为BD CE 、的中点,若AEF △的面积为22cm ,则ABC 的面积是________2cm .3.(2023春·江苏南京·七年级校考阶段练习)如图,且满足13AE AD =,13AF AC =题型六与平行线有关的三角形内角和问题例题:(23-24七年级下·上海虹口·期中)如图,已知AB ED ∥,80EDC ∠=︒,53ECD ∠=︒,105B ∠=︒,那么ACB =∠.巩固训练1.(23-24七年级下·陕西渭南·期中)如图,在三角形ABC 中,点D ,H ,E 分别是边AB ,BC ,CA 上的点,连接DE ,DH ,F 为DH 上一点,连接EF ,若12180∠+∠=︒,365B ∠=∠=︒,52C ∠=︒.则FEC ∠的度数为︒.2.(23-24七年级下·陕西咸阳·期中)如图,AN 平分BAM ∠,BM 平分ABN ∠,AN BM ⊥于点C ,25MBN ∠=︒,则下列说法:①90BCN ∠=︒;②AM BN ;③50DAM ∠=︒;④60MAN ∠=︒,其中正确的是.(填序号)3.(23-24七年级下·上海浦东新·期中)如图,将一副直角三角板放在同一条直线AB 上,其中3045OMN OCD ∠=︒∠=︒,.将三角尺OCD 绕点O 以每秒10︒的速度顺时针方向旋转一周,设旋转的时间为t 秒.在旋转的过程中,边CD 恰好与边MN 平行,t 的值为.题型七与角平分线有关的三角形内角和问题例题:(23-24七年级下·江苏南京·期末)如图,在ABC 中,AD 平分BAC ∠,过点A 作EF BC ∥.若40EAB ∠=︒,80C ∠=︒,则ADC ∠=.巩固训练1.(23-24七年级下·上海浦东新·阶段练习)如图,在ABC 中,125BDC ∠=︒,如果ABC ∠与ACB ∠的平分线交于点D ,那么A ∠=度.2.(23-24七年级下·辽宁大连·期中)如图,在ABC 中,BD CD 、分别平分,ABC ACB BG CG ∠∠、、分别平分三角形的两个外角,48EBC FCB G ∠∠∠=︒、,则D ∠=︒.3.(23-24七年级下·湖南衡阳·期末)如图,在ABC 中,30B ∠=︒,70C ∠=︒,AE 平分BAC ∠,AD BC ⊥于点D .(1)求BAE ∠的度数.(2)求EAD ∠的度数.题型八三角形的外角的定义及性质例题:(23-24七年级下·四川乐山·期末)如图,在ABC 中,点D 在BC 的延长线上,70A ∠=︒,120ACD ∠=︒,则B ∠=︒.巩固训练1.(23-24七年级下·浙江杭州·阶段练习)如图,已知直线12l l ∥,154∠=︒,2100∠=︒,则A ∠=度.2.(23-24七年级下·江苏淮安·期末)如图,ABC 的两个外角的平分线交于点P .若64BPC ∠=︒,则A ∠=.3.(23-24七年级下·江西南昌·期末)已知直线12l l ∥,将含30︒角的直角三角板按如图所示摆放.若2140∠=︒,则1∠=.题型九多边形的内角和与外角和例题:(23-24七年级下·江苏镇江·期末)足球的表面是由12个正五边形和20个正六边形组成的.如图,将足球上的一个正六边形和它相邻的一个正五边形展开放平,则图中的ABC ∠=.巩固训练1.(23-24九年级下·重庆开州·阶段练习)如图,3∠和4∠是四边形ABCD 的外角,若1120∠=︒,275∠=︒,则34∠+∠=.2.(23-24八年级下·江西萍乡·期末)一个多边形的内角和是它的外角和的1.5倍,则这个多边形的边数为.3.(23-24七年级下·河南驻马店·阶段练习)如图,已知59MON ∠=︒,正五边形ABCDE 的顶点A 、B 在射线OM 上,顶点E 在射线ON 上,则NED ∠的度数为.题型十在网格中画三角形的中线、高线及求三角形的面积例题:(2023春·黑龙江哈尔滨·七年级哈尔滨市第六十九中学校校考期中)下图为79⨯的网格,每一小格均为正方形,已知ABC .(1)画出ABC 中BC 边上的中线AD ;(2)画出ABC 中AB 边上的高CE .(3)直接写出ABC 的面积为_________.巩固训练1.(2023春·黑龙江哈尔滨·七年级哈尔滨市第四十七中学校考期中)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出ABC 中边BC 上的高AD ;(2)画出ABC 中边AB 上的中线CE ;(3)直接写出ACE △的面积为______.2.(23-24七年级下·江苏连云港·阶段练习)如图,在方格纸内将ABC 水平向右平移4个单位得到A B C ''' .(1)画出A B C ''' ;(2)若连接AA ',BB ',则这两条线段之间的关系是_________;(3)画出AB 边上的中线CD ;(利用网格点和直尺画图)(4)图中能使ABC PBC S S =△△的格点P 有_________个(点P 异于点A ).3.(23-24七年级下·江苏扬州·阶段练习)如图,方格纸中每个小正方形边长均为1,在方格纸内将ABC 的点C 平移至点C '得到A B C ''' .(1)画出A B C ''' ;(2)线段AC 和A C ''的关系是_______.(3)借助方格画出AB 边上的中线CD 和高CE ;(4)四边形ACC A ''面积为_______.第十一章三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD 是△ABC 的高.2.AD 是△ABC 中BC 边上的高.3.AD ⊥BC 于点D .4.∠ADC =90°,∠ADB =90°.1.AD 是△ABC 的中线.2.AD 是△ABC 中BC 边上的中线.3.BD =DC =12BC 4.点D 是BC 边的中点.1.AD 是△ABC 的角平分线.2.AD 平分∠BAC ,交BC 于点D .3.∠1=∠2=12∠BAC .(或∠ADC=∠ADB=90°)推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.六、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.七、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.八、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n -3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n -2)个三角形.九、多边形内角和n 边形的内角和为(n -2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n- °;十、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形凹多边形03题型归纳题型一三角形的稳定性例题:(23-24七年级下·陕西咸阳·阶段练习)如图,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A.全等性B.对称性C.稳定性D.灵活性【答案】C【分析】本题主要考查了三角形具有稳定性,根据三角形具有稳定性,即可进行解答.【详解】解:墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的稳定性,故选;C.巩固训练1.(23-24八年级上·云南昆明·期末)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥的斜拉索,它能拉住桥面,并将桥面向下的力通过钢索传给索塔,确保桥面的稳定性和安全性.那么港珠澳大桥斜拉索建设运用的数学原理是()A.三角形的不稳定性B.三角形的稳定性C.四边形的不稳定性D.四边形的稳定性【答案】B【分析】本题主要考查了三角形的特性,解题的关键是熟练掌握三角形的稳定性;根据三角形的稳定性进行解答即可.。
八年级数学上册“第十一章三角形”必背知识点一、三角形的定义与基本性质1. 三角形的定义:不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形有三条边、三个内角和三个顶点。
2. 三角形的分类:按边分:不等边三角形、等腰三角形 (包括等边三角形,即三边都相等的特殊等腰三角形)。
按角分:锐角三角形、直角三角形、钝角三角形。
3. 三角形的主要线段:高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
中线:连接三角形的一个顶点和它所对边的中点的线段。
三角形的中线将三角形分为面积相等的两部分。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
三角形的三条角平分线都在三角形内部,且交于一点(内心)。
4. 三角形的稳定性:三角形的形状是固定的,具有稳定性。
这一性质在生产生活中应用广泛。
二、三角形的三边关系基本定理:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
推论:根据三边关系可以判断三条线段是否能组成三角形,或已知两边时确定第三边的取值范围。
三、三角形的内角与外角1. 内角和定理:三角形的三个内角的和等于180°。
推论:直角三角形的两个锐角互余。
2. 外角的定义与性质:定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
外角和定理:三角形的外角和为360°。
四、与三角形有关的角的其他性质等腰三角形的性质:等腰三角形的两个底角相等 (等边对等角)。
等边三角形的性质:等边三角形的三个内角都相等,且均为60°。
五、多边形的基本概念与性质多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角与外角:内角:多边形相邻两边组成的角。
外角:多边形的一边与它的邻边的延长线组成的角。
多边形的对角线:连接多边形不相邻的两个顶点的线段。
第十一章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.AB CED7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.A BCD 12(2)已知角平分线.(若BD是角平分线)BC的中线)(3)已知三角形中线(若AD是(5)其它。
初二数学第十一章全等三角形综合复习第十一章全等三角形复习(一)全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
(三)学习全等三角形应注意以下几个问题:(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” (5)截长补短法证三角形全等。
【切记】:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
3题图⑥⑤④③②①6题图B C第十一章三角形三角形有关的线段常考知识点:1.三角形三边间的关系定理:三角形任意两边之和__________第三边.任意两边之差___________第三边。
归纳:(1)给出三条线段的长度,判断它们能否构成三角形时只需要用其中两条_________边之________与最_______边的长度进行较,若前者________后者就能够成三角形(2)已知三角形两边的长,可以确定第三边的取值范围:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是_______________________. 知识点二:三角形的高、中线、角平分线(3)①锐角三角形的三条高在三角形_______部,三条高的交点也在三角形_______部;②钝角三角形有两条高在三角形的__________部,另一条高在三角形的_________部,且三条高的交点在三角形的___________部;③直角三角形有两条高在三角形的__________,另一条高在三角形的________部,三角三条高的交点是直角三角形的____________. 2、三角形的中线 要点归纳:(1)三角形的中线是___________;(2)三角形三条中线全在三角形____________部; (3)三角形三条中线交于三角形_________部一点,这一点叫三角形的____________. (4)中线把三角形分成面积_______________的两个三角形. 3、三角形的角平分线 要点归纳:(1)三角形的角平分线是___________;(2)一个三角形有__________条角平分线,并且都在三角形的___________部; (3)三角形三条角平分线交于三角形______部一点,这一点叫做三角形的_______. (4)三角形三条角平分线的交点到三角形____________的距离相等. 1、下列长度的三条线段能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,10 2、如图,图中三角形的个数为( )A 、4B 、6C 、8D 、10 3、下列图形中具有稳定性的有A 、2B 、3C 、4D 、54、等腰三角形两边长分别为3,7,则它的周长为( )A 、13B 、17C 、13或17D 、不能确定5、一个三角形有____条边,____个内角,_____个顶点,_____个外角。
6、如图,图中有_____个三角形, 把它们用符号分别表示为_______________________________________________________。
7、长为11,8,6,4的四根木条,选其中三根组成三角形,有____种选法,它们分别是_________________________________________.8、已知三角形的三边长分别为x,3,4,则x 的取值范围是__________. 9、若等腰三角形两边长分别为3,4,则它的周长为______________.10、△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是________________. *基础知识2题图DCBAC CC4题图3题图FE B A C6题图7题图5题图DDF D E B CC B B C1、下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点2、下列四个图形中,线段BE 是△ABC 的高的图形是( )3、如图,D,E 分别是△ABC 的边AC ,BC 的中点,则下列说法错误的是( )A .DE 是△BCD 的中线 B. BD 是△ABC 的中线C .AD=DC ,BE=EC D. ∠C 的对边是DE 4、如图,(1)在△ABC 中,BC 边上的高是 ______;(2)在△AEC 中,AE 边上的高是 ______;(3)在△FEC 中,EC 边上的高是 ______;(4)若AB=CD=2cm,AE=3cm,则AEC S ∆= __________㎝2,CE=_________cm.5、如图,BD=DE=EF=FC ,那么,AE 是 _____6、如图,BD=12BC ,则BC 边上的中线为 ______,ABDS ∆=__________。
7、如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABCS ∆= 42cm ,则S 阴影等于( )。
A .22cm B. 12cmC. 122cm D. 142cm 8、如图,ΔABC 中,AB=2,BC=4,ΔABC 的高AD 与CE 的比是多少?(提示:利用三角形的面积公式)11.2.1 三角形的内角知识点:1:三角形的内角和定理:三角形内角和为180°2:三角形外角的性质(1)三角形的一个外角与相邻的内角互补;(2)三角形的一个外角等于不相邻的两个内角的和; (3) 三角形的一个外角大于任何一个不相邻的内角.3:三角形外角和定理:三角形外角和360°1、若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、钝角三角形2、在△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A 、100° B 、120° C 、140° D 、160°3、已知△ABC 中,∠A=20°,∠B=∠C ,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、正三角形7题图D CB A8题图150︒50︒3217题图140︒80︒16题图FE A C B D 432110题图CB A D4、一个三角形至少有( )A 、一个锐角 B 、两个锐角 C 、一个钝角 D 、一个直角5、在△ABC 中,若∠A=80°,∠C=20°,则∠B=____,若∠A=80°,∠B=∠C,则∠C=____。
6、已知△ABC 的三个内角的度数之比∠A ∶∠B ∶∠C=1∶3∶5,则∠B=____,∠C=____。
7、如图,在△ABC 中∠BAC=60°,∠B=45°, AD 是∠BAC 的平分线,则∠DAC=______, ∠ADB=_____。
8、已知等腰三角形的两个内角的度数之比为1∶2,则这个等腰三角形的顶角为_________。
*基础知识1、已知等腰三角形的一个外角是120°,则它是( ) A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A. 30° B. 60° C. 90° D. 120°3、 已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为( ). A. 90° B. 110° C. 100° D. 120°5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ). A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定6、如图,若∠A=100°,∠B=45°,∠C=38°,则∠DFE 等于( )A. 120°B. 115°C. 110°D. 105°7、如图,∠1=______. 8、如图,则∠1=______,∠2=______,∠3=______,9、已知等腰三角形的一个外角为150°,则它的底角为_______. 10、如图,已知∠1=20°,∠2=25,∠A=35°,则∠BDC=______. 11、如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4, ∠BAC=63°,求∠DAC 的度数.多边形及其内角和知识点:多边形及有关概念1、 多边形的定义:__________,由_____________________组成的图形叫做多边形.2、多边形的一些要素:边:组成多边形的各条__________叫做多边形的边. 顶点:每相邻两条边的____________叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的_______,一个n 边形有______个内角。
外角:多边形的____与它的________________组成的角叫做多边形的外角。
3、多边形的分类:(1)多边形可分为______多边形和______多边形,画出多边形的___________边所在反之为凹多边形.本章所讲的多边形都是指_________多边形_____多边形 _____多边形21D CB A4题图C D BA 5题图AB DC 1111(2)多边形通常还以________命名,多边形有n 条边就叫做_____边形.三角形、四边形都属于多边形,其中___________是边数最少的多边形. 4、正多边形各个_____都相等、各个_____都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
注意要点:_____________、____________是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形5、多边形的对角线连接多边形___________的两个顶点的线段,叫做多边形的对角线. 6、多边形有关的公式:(1)从n 边形一个顶点可以引____________条对角线,将多边形分成__________个三角形;所以n 边形的内角和公式为____________________(2)n 边形共有_________________条对角线。
7、多边形的外角和等于_____________,与__________的多少无关。
正n 边形每个___角都相等,每个_______角也都相等, 8、外角和公式的应用正n 边形的边数=__________÷____________;正n 边形每个外角的度数=_____________÷______________ 正n 边形每个内角的度数=__________-_____________1、从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n B. (n-1) C. (n-2) D. (n-3)3、一个多边形从一个顶点最多能引出三条对角线,这个多边形是( ) A 、三角形 B 、四边形 C 、五边形 D 、六边形4、如图,下列图形不是凸多边形的是( )5、下列图形中∠1是外角的是( )6、下列说法正确的是( )A.一个多边形外角的个数与边数相同B.一个多边形外角的个数是边数的2倍C.每个角都相等的多边形是正多边形D.每条边都相等的多边形是正多边形7.一个四边形截去一个角后变成________边形。