成都理工《线性代数》模拟试题(二)
- 格式:doc
- 大小:178.50 KB
- 文档页数:6
成都理工大学地球科学学院高等数学(一)2002——2005高等数学(二)2000——2005自然地理学2004——2005旅游资源学2004——2005城市规划原理2004——2005普通地质学2004——2005测量学2004——2005地理信息系统概论2004——2005,2010(2010为回忆版)C语言及程序设计2004——2006遥感地质学2004遥感导论2005微机原理及应用2001——2002,2004——2006(2005有答案)沉积岩石学2004——2005地球科学概论2004——2005找矿勘探地质学2004——2005环境化学2004——2005普通化学2004——2005地质学基础2004——2005油藏工程2004——2005石油地质学2004——2005(注:2005年试卷共6页,缺第5页和第6页)渗流力学2004——2005油层物理学2004——2005普通生物学2004——2005结晶学与矿物学2005能源学院普通地质学2004——2005油层物理学2004——2005沉积岩石学2004——2005石油地质学2004——2005(注:2005年试卷共6页,缺第5页和第6页)找矿勘探地质学2004——2005渗流力学2004——2005油藏工程2004——2005机械原理2004——2005环境与土木工程学院混凝土结构2004——2005工程岩土学2004岩土力学2004——2005结构力学2004——2005工程力学2004——2005环境化学2004——2005水力学2004——2005建筑设计原理2004——2005城市规划原理2004——2005普通生物学2004——2005机械原理2004——2005信息工程学院普通物理2004物理2005地球科学概论2004——2005地质学基础2004——2005信号与系统2004——2006通信原理2004——2006微机原理及应用2001——2002,2004——2006(2005有答案)C语言及程序设计2004——2006数据结构2004——2006数字电子技术2004,2006计算数学2004线性代数2004——2005概率论2004计算方法2004——2005高等数学(一)2002——2005高等数学(二)2000——2005核技术与自动化工程学院高等数学(一)2002——2005高等数学(二)2000——2005普通地质学2004——2005分析化学2004——2005无机化学2004——2005普通化学2004——2005电子测量与仪器2005微机原理及应用2001——2002,2004——2006(2005有答案)核电子学基础2005普通物理2004物理2005机械原理2004——2005材料与化学化工学院高等数学(一)2002——2005高等数学(二)2000——2005无机化学2004——2005分析化学2004——2005有机化学2004——2005无机材料物理化学2004——2005 材料科学基础2004——2005材料科学概论2004——2005化工原理2004——2005结晶学与矿物学2005信息管理学院高等数学(一)2002——2005数据结构2004——2006计算数学2004线性代数2004——2005概率论2004最优化方法2004——2005计算方法2004——2005管理学研究2005现代管理学原理2004微观经济学2004——2005西方经济学2004——2005文法学院马克思主义哲学原理2004——2005 科学技术史2004——2005社会学原理2004——2005外国语学院综合英语2004——2006英语语言基础理论2004——2005 二外俄语2003二外法语2004——2006二外日语2004——2006沉积地质研究院高等数学(一)2002——2005高等数学(二)2000——2005普通地质学2004——2005地球科学概论2004——2005沉积岩石学2004——2005普通生物学2004——2005传播科学与艺术学院(无此试卷)。
线性代数练习题二(矩阵)一、 填空题1、设A 是m n ⨯阶矩阵,B 是s m ⨯阶矩阵,则T T A B 是 阶矩阵.2、设A B ,均为m n ⨯阶矩阵,则AB BA =的充要条件是 .3、设A B ,均为n 阶矩阵,则AB 不可逆的充要条件是 .4、设A B ,均为n 阶可逆矩阵,则由A B ≠≠0,0可推出O A B O = ;O A B O -⎛⎫= ⎪⎝⎭1. 5、 设A B C ,,均为n 阶方阵,且A AB C ≠=0,,则B = 6、 设A B ,为同阶方阵,则A B A AB B +-++=222()(2) 7、设A 为5阶方阵,且A =3,则A -=1 ;A =2 ;A *= .8、设A 为3阶方阵,且A =12,则A A -*-=132 . 二、 选择题1、设A B ,均为n 阶矩阵,且A AB +=0,则( )2020/3/27A AB E BC A E BD AE B =+==+==+=000000或和2、设矩阵A B A O A ⎛⎫=⎪⎝⎭12,其中A A 12,都是方阵,若A 可逆,则下列结论成立的是( )A A AB A A CA A DA A 12211212,,可逆不可逆可逆不可逆与可逆性不定与均可逆3、若A B C ,,均为同阶方阵,且A 可逆,则下列结论成立的是( )A AB AC B CB AB CB A CC AB O B OD BC O B O========若则若则若则若则4、若A 是( )矩阵,则A 必是方阵A B Cn D 对称矩阵可逆矩阵阶矩阵的转置矩阵线性方程组的系数矩阵5、设A 是非奇异对称矩阵,则( )仍是对称矩阵TT AA BA CA DAA -136、若A 为n 阶方阵,且A a =≠0,则A *=( )n n A aB a Ca D a --11三、 计算题1、设A ⎛⎫⎪--⎪= ⎪-- ⎪--⎝⎭1111111111111111,求n A .2、设A B C ⎛⎫--⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭4113021,25,0424234,求TABC (). 3、解矩阵方程A AX E -=2,其中A -⎛⎫⎪= ⎪ ⎪-⎝⎭111011001,E 为单位矩阵.4、设4阶方阵A r r r B r r r ==234234(,,,),(,,,)αβ,其中r r r 234,,,,αβ均为4维列向量,且行列式A a B b ==,,求行列式A B +的值.5、若A B ,均为n 阶方阵,且A B ==-2,3,求行列式A B *-13的值.6、设A 为n 阶实方阵,且T AA E A ==-,1,求行列式E A +的值. 四、 证明题1、已知矩阵A ab c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭222111,证明: T AA b a c a c b =---222()()().(提示:利用范德蒙德行列式)2、设A 为n 阶实方阵,且T AA E =,证明:行列式A =±1.2020/3/27答案:一、1、n s m n A B A B ⨯===1. 2.,, 3.00且可交换或;nOB A B AC BA AB A A AO -----⎛⎫--== ⎪⎝⎭1111114.(1); 5. 6.7.;3A A *==29;818.16二、C D A C A B C A B C D C 1. 2. 3., 4.,, 5.,,, 6. 三、n n n n A E n A E n A A -=⇒==2211.22;2为偶数时,为奇数时,n X a b -⎛⎫⎛⎫ ⎪=+- ⎪ ⎪⎝⎭ ⎪⎝⎭1021601402. 3.000 4.8() 5.68.02642000四、(略).。
考研数学二(线性代数)模拟试卷28(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.已知其中a<b<c<d,则下列说法错误的是( )A.ATX=0只有零解B.存在B≠O,使AB=OC.|ATA|=0D.|AAT|=0正确答案:D解析:A=,a<b<c<d,知r(A)=3.r(AAT)=r(A)=3,|AAT|≠0,故|AAT|=0是错误的,其余(A),(B),(C)正确,自证.知识模块:线性代数2.设A是m×n矩阵,B是n×m矩阵,则( )A.当m>n时,必有|AB|≠0B.当m>n时,必有|AB|=0C.当n>m时,必有l AB I≠0D.当n>m时,必有|AB|=0正确答案:B解析:Am×nBn×m是m阶方阵,当m>n时,r(AB)≤r(A)≤n<m,故|AB|=0.(B)成立.显然(A)错误.知识模块:线性代数3.设A是m×n矩阵,C是n阶可逆阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则( )A.r>r1B.r<r1C.r=r1D.r和r1的关系依C而定正确答案:C解析:r(A)=r(B),因C是可逆矩阵,是若干个初等矩阵的积,A右乘C,相当于对A作若干次初等列变换,不改变矩阵的秩.知识模块:线性代数4.设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为( )A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表出B.向量组β1,β2,…,βm可由向量α1,α2,…,αm线性表出C.向量组α1,α2,…,αm与向量组β1,β2,…,βm等价D.矩阵A=[α1,α2,…,αm]与矩阵B=[β1,β2,…,βm]等价正确答案:D解析:A=[α1,α2,…,αm],B=[β1,β2,…,βm]等价←→r(α1,…,αm)=r(β1,…,βs)←→,β1,β2,…,βm线性无关(已知α1,α2,…,αm线性无关时).知识模块:线性代数5.要使ξ1=都是线性方程组AX=0的解,只要系数矩阵A为( ) A.B.C.D.正确答案:A解析:因[一2,1,1]ξ1=0,则[一2,1,1]ξ2=0.知识模块:线性代数6.齐次线性方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则( )A.λ=一2且|B|=0B.λ=一2且|B|=0C.λ=1且|B|=0D.λ=1且|B|≠O正确答案:C解析:B≠O,AB=O,故AX=0有非零解,|A|=0,|A|==(λ一1)2=0,λ=1,又A≠O,故B不可逆,故λ=1,且|B|=0.知识模块:线性代数7.齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为则( )A.β1不能由β3,β4,β5线性表出B.β2不能由β1,β3,β5线性表出C.β3不能由β1,β2,β3线性表出D.β4不能由β1,β2,β3线性表出正确答案:D解析:βi能否由其他向量线性表出,只须将βi视为非齐次方程的右端自由项(无论它原在什么位置)有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β4不能由β1,β2,β3线性表出.知识模块:线性代数8.设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是( )A.A的列向量线性无关B.A的列向量线性相关C.A的行向量线性无关D.A的行向量线性相关正确答案:A解析:A的列向量线性无关←→AX=0有唯一零解,是充要条件,当然也是充分条件.知识模块:线性代数9.设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)ATAX=0,必有( )A.(II)的解是(I)的解,(I)的解也是(Ⅱ)的解B.(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解C.(I)的解不是(II)的解,(II)的解也不是(I)的解D.(I)的解是(II)的解,但(III)的解不是(I)的解正确答案:A解析:方程AX=0和ATAX=0是同解方程组.知识模块:线性代数填空题10.已知向量组等秩,则x=____________.正确答案:1解析:[α1,α2,α3]=知r(α1,α2,α3)=2,由题设:r(β1,β2,β3)=2.因[β1,β2,β3]=故x=1.知识模块:线性代数11.已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
习题一A 组1.计算下列二阶行列式 (1)521-12= (2)012896= (3)2222ba abbab a -= (4)11112322--=++-x x x x xx2.计算下列三阶行列式(1)132213321=1+8+27-6-6-6=18 (2)5598413111= (3)714053101-=- (4)00000=dc b a 3. 当k 取何值时,10143kk k-=0. 解:10143kk k-0)3(0)(02-----++=k k , 得 0342=+-k k , 所以 1=k 或 3=k 。
4.求下列排列的逆序数.解:(1) 512110)51324(=++++=τ.(2) 8142010)426315(=+++++=τ. (3) 21123456)7654321(=+++++=τ.(4) 1340423000)36715284(=+++++++=τ.5.下列各元素乘积是否是五阶行列式 ij a 中一项?如果是,该项应取什么符号? 解:(2) 不是. 因为 5145332211a a a a a 中有俩个元素在第一列. (3) 是. 对应项为534531*********)1(a a a a a )(τ-1021)24153(+++=τ 所以该项应取负号。
6.选择i , j 使j i a a a a a 54234213成为五阶行列式 ij a 中带有负号的项解: 当 )5,1(),(=j i 时, 30102)31425(=+++=τ, 是奇排列.当 )1,5(),(=j i 时, 81232)35421(=+++=τ, 是偶排列. 所以 i = 1, j = 5.8.利用行列式性质计算下列行列式.解: (1) 111212321-2343032123121----+-+-r r r r 6243032132-=--+-r r (2) 6217213424435431014327427246-621721100044354320003274271000123c c c ++621721144354323274271103=. 62110014431002327100110323c c +-621114431232711105=31212r r r r +-+-2942111032711105--=294105⨯ (3)1111111111111111---820000200002011114,3,21-=---=+-i r r i(4)1502321353140422-----1523213531402112-----=11203840553002112234413121-----+++r r r r r r11205100046100211223424-----+-+-r r r r 7130051000461002112242------+-r r 7130120046100211)5(2-----=27120046100211)5(2743----+r r 272100641020111043---↔c c 270-=.(5)yy x x -+-+1111111111111111yyy x x x c c c c --+-+-11011010110123412yy x x r r r r --+-+-011000010124321yy x x--=00011000101012232001000010101y x yy xxr r =--+(6)dc b a c b a ba ad c b a c b a b a a dc b a c b a ba a dc b a++++++++++++++++++3610363234232cb a b a ac b a b a a c b a b a ad c b ai r r i 36103630234232004,3,21+++++++++=+-ba ab a ac b a b a ad c b ar r r r 37302000324232++++++-+-443020003a ab a ac b a b a ad c b ar r =+++++-9.用行列式性质证明:(1) 333332222211111c c b kb a c c b kb a c c b kb a ++++++=333222111c b a c b a c b a 证明: 333332222211111c c b kb a c c b kb a c c b kb a ++++++33332222111123c b kb a c b kb a c b kb a c c ++++-33322211112c b a c b a c b a c kc +-. (2) efcf bf de cd bdaeac ab---=abcdef 4证明: ef cfbf de cd bdae ac ab---d cbe c b e c b abf---的公因子提取各行111111111---abfbce 的公因子提取各列 022001113121-++a b c d e f r r r r 202011123--↔a b c d e f r r a b c d e f 4=.(3)y y x x ++++1111111111111111y x xyy x 222222++=证明:y y x x++++1111111111111111=y y x x+++++++1110111101111011111y y x +++=1111111111111111 yy x x++++111011*********y y x 0000000001111=yy x x +++++++110101101011101101y y x x y y xxy +++++++=1010011001010101000000011101112yy x x yx x xyxy+++++=101001001001100110011011022yy x x y x xxy+++=10100100100000110011011022=+++=)1(2222y y x y x xy222222y x y x xy++.10.解下列方程:(1)0913251323222321122=--xx解: 由 2243212240005132320321129132513232223211xx r r r r x x ----+-+---223140131********2xx r r ------+-222212401310332003211xx x r r x -------+22223403320013103211xx xr r ------↔)4)(32(22x x ---=得 0)4)(32(22=---x x 所以 2=x 或 2-=x .(2)0011101101110=x x x x解: 由=++++=+01110110122224,3,20111011011101xx x x x x x i r r xx x x i 0111011011111)2(xx x x +11111010101111)2(413121-------++-+-+-x x x x x x r r r xr r r x x x x x x x r r -------++10011010101111)2(43xxx x x x x xxx x x x x x r r x ------+=----+----++-10)1(0010101111)2(10)1)(1(10010101111)2()1(32xxx x x x ----⨯-+=1)1(111)2(=})1(){1)(2(22x x x x -+-+2)2)(2(x x x -+-=得 0)2)(2(2=-+x x x , 所以 021==x x ,23=x , 24-=x . 15. 用克莱姆法则解下列线性方程组:(1)⎩⎨⎧=+=+2731322121x x x x解:由系数行列式57332==D 172311==D 123122==D5111==DD x , 5122==DD x .(3) ⎪⎩⎪⎨⎧=+-=+-=+-445222725 1243321321321x x x x x x x x x解: 由系数行列式 63871702112452181211245272524331212313=--+-+----+-+----=r r r r r r r r D=--+-+---=411437862200124454722224131211c c c c D 63 126002312545322442722521331212=---+-+-=r r r r D 18910717703112452148131124522225143312123133=--+-+---+-+----=r r r r r r r r D 得 111==DD x , 222==DD x ,333==DD x .16.判断下列齐次方程组是否有非零解: (1) ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=++--=+-+0320508307934321432143214321x x x x x x x x x x x x x x x x解:由系数行列式3211151118137931------=D 4728144022198079313413121------+-+-+r r r r r r 0472814422198=-----= (第一、二行对应元素成比例) 此齐次方程组有非零解. (2). ⎪⎪⎩⎪⎪⎨⎧=-++=+++=-++=+-0302430332022432143214321421x x x x x x x x x x x x x x x解:由系数行列式315111104)1(231511122)1(31501131321022113121433132102212234232---+----=----+-+----=+r r r r r r D 0131114≠=---=此齐次方程组只有唯一的非零解.17. 若齐次线性方程组 ⎩⎨⎧=-+=+-0)2(504)3(y x y x λλ 有非零解.则λ取何值?解:由系数行列式 )2)(7(14520)2)(3(25432+-=--=---=--=λλλλλλλλD其齐次线性方程组有非零解,则 7=λ 或 2-=λ.习题二A 组1.计算下列矩阵的乘积. (1) ⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131. 解: ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛⨯+⨯⨯+-⨯⨯-+⨯⨯-+-⨯⨯+⨯⨯+-⨯=12111577251253)2(22)1(113)1()2(1231133)2(1. (2)()0111132=⎪⎪⎪⎭⎫⎝⎛---(3) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214. 解: ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=10316665350021161167923. (4)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x 解:()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x =233322222111x a x a x a +++212112)(x x a a ++313113)(x x a a ++323223)(x x a a + 2. 计算下列各矩阵:(1) 52423⎪⎪⎭⎫⎝⎛--. 解: 52423⎪⎪⎭⎫ ⎝⎛--22423⎪⎪⎭⎫⎝⎛--=22423⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=4421⎪⎪⎭⎫ ⎝⎛--4421⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛--=81267⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫⎝⎛-=8423. (2)2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 解: 2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡433349447(3) n⎪⎪⎭⎫ ⎝⎛1011. 解: n⎪⎪⎭⎫⎝⎛1011n⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=00101001 =nn n nn n n ⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--0010001010012)1(001010011001221+⎪⎪⎭⎫ ⎝⎛=1001⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101000n n , 其中 20010⎪⎪⎭⎫ ⎝⎛ =⎪⎪⎭⎫ ⎝⎛=30010⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=00000010n. (4) n⎪⎪⎪⎭⎫⎝⎛λλλ001001解: n⎪⎪⎪⎭⎫⎝⎛λλλ001001=n⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛0001000100000λλλn⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=0010001010010001λ ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=---- 222110001000101000100012)1(000100010100010001100010001n n n n nnn n n λλλ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-00002)1(000000000000002n nnn nnn n n n λλλλλλ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-nn nn nn n n n n λλλλλλ0002)1(1其中 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛0000001000001000102, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛0000000000001000100001000103n. 5. 证明:对任意n m ⨯矩阵A ,A A T 与T AA 都是对称方阵;而当A 为n 阶对称方阵时,则对任意n 阶方阵C ,AC C T为对称方阵.证明: (1)A A T 为n 阶方阵, 又A A A A T T T =)( A A T ∴为n 阶对称方阵同理T AA 为m 阶对称方阵(2)AC C T 为n 阶方阵, A 为n 阶对称方阵 A A T =∴ 又 AC C AC C T T T =)(AC C T ∴为n 阶对称方阵6.设C B A ,,均为n 阶方阵.证明:如果CA A C AB E B +=+=, 则.E C B =-解: 由已知 E B A E E AB B =-=-)(, 则 B A E =--1)(.且 A CA C =-即 A A E C =-)(, 则 AB A E A C =-=-1)(. 得 E AB B C B =-=-.8.(3)⎪⎪⎪⎭⎫⎝⎛--=122341213A 解:25=A 1011=A 521=A 531-=A712-=A 122-=A 1132=A 613-=A 823-=A 1333=A⎪⎪⎪⎭⎫⎝⎛-----=-1386111755102511A9. 解下列矩阵方程: (1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛23123512X 解: 由 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-251335121, 得 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-1161923122513231235121X . (3) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛02110234101100001100001010X 解: 由 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛=--0110000102110234110000101001010000102110234110000101011X ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛---=20143101201100001021341102, 即 ⎪⎪⎪⎭⎫⎝⎛---=201431012X . 11. 设 B A AB A -=⎪⎪⎪⎭⎫⎝⎛--=2,011002100, 求.B 解: 由已知 ,2)(,2A B E A A B AB =+=+因 01622)(3≠-===+=+A A B E A B E A1)(-+E A 存在, 则 A E A B 2)(1⋅+=-由 ()⎪⎪⎪⎭⎫⎝⎛----−→−++-⎪⎪⎪⎭⎫⎝⎛----=+22240420001021010120220042001110121012,3121r r r r A E A ⎪⎪⎪⎭⎫⎝⎛----−−→−++-⎪⎪⎪⎭⎫⎝⎛-----−→−+--31322211310010001216264042002210101321231332rr r r r r r所以 ⎪⎪⎪⎭⎫ ⎝⎛----=⋅+=-31322211132)(1A E AB . 12.设B A ,均为n 阶方阵,E 为n 阶单位阵,证明: (1) 若,AB B A =+ 则E A -可逆;(2) 若O E A A =+-432 则E A -可逆,并求-1)(E A -.解: (1)由已知 E E B A AB =+--, 即E E B E A E E B E B A =--=---))((,)()(,所以 E A -可逆,且E B E A -=--1)(.(2)由已知 E E A E A A E E A AE AA 2)(2)(,222-=----=+--,,2))(2(E E A E A -=-- 所以 E A -可逆,且A E E A E A 21)2(211--=--=-)(.14.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=110210000230012A , 求 4,A A 及1-A. 解: 33111212312=⨯=---=A ,由⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛7-48-7-11-2197168-56-9723-1-244,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=740870000971680056974A . 由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛112-13111-21231223-1-2-1-1,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=31310032-3100002300121-A . 15. 用初等变换把下列矩阵化为标准形: (1) ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A解: ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A ⎪⎪⎪⎭⎫⎝⎛-+-+⎪⎪⎪⎭⎫-- ⎝⎛+-+-10010001)1(1001101012-1-05-5021-133********r r r r r r r r r 16.求下列各矩阵的秩: (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=61331311405133312A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔3312311405136133141r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-152970275313018348061331243413121r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-152970275313035106133124r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+-+-6601212003510613317134232r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→121206600351061331⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0006600351061331 所以3)(=A R 17.设⎪⎪⎪⎭⎫⎝⎛=110101011A ,⎪⎪⎪⎭⎫⎝⎛=a a a B 111211,且矩阵AB 的秩为2,求a 解:因为2)(=AB R ,所以B A AB ==0 又因为0≠A , 所以0=B 即01=+-a 1=⇒a习题三A 组2. 设1233()2()5()αααααα-++=+,其中TTT123(2513)(101510)(4111),,,,,,,,,,,ααα===-, 求向量α.解:由已知 123325325αααααα-+-=--+, 即12312311325)325)66ααααααα=---+=+-((,所以 ().4,3,2,143215209510352152020661T=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+++-+-+=α3. 设向量组123,,ααα线性无关,而向量组 1121233132.,βααβαααβαα=+=-+=-,,试判断向量组123,,βββ的线性相关性.解:设数 321,,k k k 使得 1122330k k k βββ++= 成立,即 1122123313()()(2)0k kk ααααααα++-++-=, 1231122233()()(2)0.k k k k k k k ααα+++-+-=得线性方程组⎪⎩⎪⎨⎧=-=-=++02003221321k k k k k k k ,其系数行列式0.12-10011111≠= 线性方程组只有唯一解0321===k k k ,则向量组123,,βββ的线性无关.5.已知向量组 TTT123(123)(312)(23),,,,,,,,c ααα==-=问c 取何值时向量组123,,ααα线性无关或向量组123,,ααα线性相关.解:设数 321,,k k k 使得1122330k k k ααα++=成立,得线性方程组 ⎪⎩⎪⎨⎧=++=+-=++023032023321321321ck k k k k k k k k , 其系数行列式)5(732213321T--=-c c.所以 ⇔=-05c 线性方程组有非零解 ⇔向量组123,,ααα线性相关; ⇔≠-05c 线性方程组只有零解 ⇔向量组123,,ααα线性无关.6.设向量组123,,ααα线性无关,证明向量组122331,,αααααα+++也线性无关. 解:设数 321,,k k k 使得112223331()()0k k k αααααα+++++=()成立, 得线性方程组⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 其系数行列式02110011101T≠=线性方程组只有唯一解0321===k k k ,所以向量组122331,,αααααα+++线性无关.7. 设向量组123,,ααα线性无关,判断向量组12233441,,,αααααααα++++线性相关性 并证明之.解:设数 4321,,,k k k k 使得 112223334441()()()0k k k k αααααααα+++++++=() 成立 得线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+0043322141k k k k k k k k 其系数行列式0110011000111001=则线性方程组有非零解,所以向量组12233441,,,αααααααα++++线性相关 .9.若向量组m ααα ,,21线性无关,而向量β不能由m ααα ,,21线性表示,证明向量组βααα,,,m 21线性无关.证明: 反证法.设βααα,,,m 21线性相关,由定理3.1向量β可由m ααα ,,21线性表示,这与已知条件矛盾.假设不成立.所以向量组βααα,,,m 21线性无关. 10.判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若当数021====m k k k 时,有02211=+++m m k k k ααα 则向量组m ααα ,,21线性无关. ( × ).(2) 若有m 个不全为零的数m k k k ,,,21 , 使得02211≠+++m m k k k ααα 则向量组m ααα ,,21线性无关 ( × ).(3) 若向量组m ααα ,,21线性相关,则1α可由其余向量线性表示. ( × ).(4) 设向量组r I ααα,,,)(21 ;m r r II ααααα,,,,,,)(121 +.若向量组r I ααα,,,)(21 线性无关,则向量组m r r II ααααα,,,,,,)(121 +也线性无关. ( × ). (5) 若向量组βααα,,,21m ,线性无关,则向量β不能由m ααα,,,21 线性表示. ( √ ). (6) 若向量组m ααα,,,21线性无关且向量1+m α不能由m ααα,,,21 线性表示,证明向量组121,,,,+m m αααα 线性无关. ( √ ).(7) 若向量β不能由m ααα,,,21 线性表示,则向量组βααα,,,21m ,线性无关. ( × ).提示: 利用向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000,0020,0010,03024321αααα 讨论(1)—(4),(7),利用定理3.1和3.2讨论(5),(6).12.求下列向量组的秩,并求它的一个极大无关组.(1) T T T )3,3,1(,)2,2,0(,)0,1,1(321===ααα. 解: 取矩阵 ⎪⎪⎪⎭⎫⎝⎛==320321101),,(321αααA ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫ ⎝⎛+-1002201013202201013221r r r r 所以向量组的秩为3,极大无关组是321,,ααα.(2) T T T T )0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321-===-=αααα. 解: 取矩阵),,,(4321αααα=A⎪⎪⎪⎪⎪⎭⎫⎝⎛-↔⎪⎪⎪⎪⎪⎭⎫-⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0004000011013014000000011013014220011003301301420142427121031130143413121r r r r r r r r 所以向量组的秩为3,极大无关组是421,,ααα.(3) TT T T )1,2,3,4(,)1,1,0,1(,)1,4,5,2(,)1,3,2,1(4321=--==-=αααα解: 取矩阵=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1111214330524121)),,,(4321αααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛---+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----++-+-00020800521041212080208005210412132523104205210412132433232413121r r r r r r r r r r r r 所以向量组的秩为3,极大无关组是321,,ααα. 14.求解线性方程组.(1) .343326133053321321321321⎪⎪⎩⎪⎪⎨⎧=+-=+--=-+=-+x x x x x x x x x x x x解: 由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛↔⎪⎪⎪⎪⎪⎭⎫ ⎝-+-⎪⎪⎭⎝⎛------+-++⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------+-↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=000110020101001201011000000100161351066006600320137835101529701834806133123351033120513613312311433126133105134232314342431214321r r r r r r r r r r r r r r r r r r r A所以 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛121321x x x .(2) ⎪⎩⎪⎨⎧-=-+=-+=++12321323321321321x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-⎪⎪⎪⎭⎫⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛--=3000241031115410241031111212321321311132321r r r r r r A 得 3)(2)(=<=A r A r , 所以此方程组无解.(3) ⎪⎪⎩⎪⎪⎨⎧=+++=++-=++-=--+323153423221234321432143214321x x x x x x x x x x x x x x x x解:由增广阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=000000000017410117501730747007470074701213132311231534123212121313212413121r r r r r r r r r r A得同解方程组 ⎪⎪⎩⎪⎪⎨⎧==+=--=443343243174751x x x x x x x x x x ;取 ,,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛101107450001214321k k x x x x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x解:由增广阵 ⎪⎪⎪⎭⎫⎝⎛------+-+-⎪⎪⎪⎭⎫ ⎝⎛-----↔⎪⎪⎪⎭⎫ ⎝⎛-----=59571018101402534123111124312325341253414312311112312131r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛----007579751076717101得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==-+-=++=4433432431797575717176x x xx x x x xx x取 ,7,72413k x k x == 得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛70910751007576214321k k x x x x . 15.求下列齐次线性方程组的基础解系及全部解. (1)⎪⎩⎪⎨⎧=--+=+--=--+02302022432143214321x x x x x x x x x x x x解:由系数阵⎪⎪⎪⎪⎭⎫⎛---+⎪⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛------=001511005301525155150212132121311122121123121r r r r r r A 得同解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==4433432315153x x xx x x x x x , 取 ,,52413k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100013214321k k x x x x , 基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1010001321ηη,.(2) ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛----+-+-⎪⎪⎪⎭⎫⎝⎛----=0000100102104040011215351105316311213121r r r r A 得同解方程组⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 取 ,,2412k x k x ==得通解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10100012214321k k x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1010001221ηη,. (4) ⎪⎩⎪⎨⎧=---=++++=++++02202243022253215432154321x x x x x x x x x x x x x x解:由系数阵 ⎪⎪⎪⎭⎫⎝⎛--------+-+-⎪⎪⎪⎭⎫ ⎝⎛---↔⎪⎪⎪⎭⎫ ⎝⎛---=326532650224312102211221222431102212243112212312121r r r r r r A⎪⎪⎪⎪⎭⎫⎝⎛+000053525610515452015312r r 得同解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧===---=---=55443354325431535256515452x x x x x x x x x x x x x x , 取 3524135,5,5k x k x k x ===,得基础解系⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=50031,0502400562321ηηη, , 通解 332211ηηηηk k k ++=.18.已知非齐次线性方程组⎪⎩⎪⎨⎧-=+++=+-+=++12)3(13)12(12321321321λλλλλλλλx x x x x x x x x 解: 由增广阵 ⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛-+-=22100110121231312123121λλλλλλλλλλλλλr r r r A 知: 当1=λ时, ⎪⎪⎪⎭⎫⎝⎛+-⎪⎪⎪⎭⎫⎝⎛=0000100101120000100121112r r A ,32)()(<==A r A r ,方程组有无穷多解, 通解为 ⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0110011321k x x x ;当0=λ时, ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----++⎪⎪⎪⎭⎫⎝⎛---=300210020102120130002210011012002313r r r r A 则 3)(2)(=<=A r A r ,方程组无解;当1,0≠λ时, 有3)()(==A r A r ,方程组有唯一解. 19.问b a 、取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++4234321321321x bx x x bx x x x ax 有唯一解,无解,无穷多解(无穷多解时并求其解)解:(1)系数行列式1211111bb aA ==)1(-a b 当1,0≠≠a b 时方程组有唯一解(克拉默法则)(2)当0=b 时,−−→−⎪⎪⎪⎭⎫⎝⎛=+-324113101411rr aA ⎪⎪⎪⎭⎫ ⎝⎛1003101411a)()(A R A R ≠ 所以线性方程组无解(3)当1=a 时,⎪⎪⎪⎭⎫⎝⎛---+-+-⎪⎪⎪⎭⎫⎝⎛=0012010104111412131141113121b b r r r r bb A 当012=-b 时,即21=b 时 32)()(<==A R A R ,方程组有无穷多解,同解方程组为 ⎪⎩⎪⎨⎧-=-=++12142321x x x x令03=x 得方程组的特解⎪⎪⎪⎭⎫ ⎝⎛=0220X 取13=x 得基础解系⎪⎪⎪⎭⎫⎝⎛-=101η此时全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101022k 其中k 为任意常数20. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111,1111,1111111111214321ααααβ,, 将β表示成向量组4321,,,αααα的线性组合.解: 设数 4321,,,k k k k 使得 βαααα=+++44332211k k k k 得 ⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++11214321432143214321k k kk k k k k k k k k k k k k其增广阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔+-+⎪⎪⎪⎪⎪⎭⎫⎝⎛------+-+-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛------=022122000202010101210022002020122001111111111111112111111111324313413121r r r r r r r r r r r r A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎛---4110210100410010450001411041010041001010101142111000101010101)21(132r r r 得41,41,41,454321-=-===k k k k , 即432141414145ααααβ--+=.21.设四元线性方程组β=AX 的系数矩阵的秩为3,321X X X ,,是其3个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=80021X ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132X X .求其全部解 解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+-123232321)(X X X 所以全部解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=123238002k ξ 其中k 为任意常数B 组1. 判断题(结论对的请在括号内打“√” ,错的打“×”)(1) 若n m >,则n 维向量组m ααα,,,21 线性相关. ( √ ) 提示:定理3.3的推论2.(2)若向量组线性相关,则它的任意一个部分组都相关. ( × ) 提示:利用上面(10)题解中的4321,,,αααα讨论.(3) 若向量组m ααα,,,21 线性相关,则它的秩小于m ,反之也对. ( √ ) 提示: 若向量组m ααα,,,21 的秩为m ,则若.(4) 向量组T T T )1,2,0,0(,)5,1,2,4(,)0,3,0,1(321===ααα的极大无关组为21,αα. ( × ) 提示: 向量组321,,ααα的秩为3.(5) 若n 阶方阵A 的行列式不等于零,则A 的列向量组线性相关. ( × ) 提示: 由n 阶方阵A 的行列式不等于零, 方阵A 的秩n =,和A 的列向量组的秩=方阵A 的秩n =, 则A 的列向量组线性相关. 2. 填空题(1) 向量组T T T )6,0,0(,)5,4,2(,)3,2,1(321===ααα的秩= 2 .解: 由()⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎪⎭⎫⎝⎛==000100321600100321600542321,,21321r r A ααα. (2) 若21,αα都是齐次线性方程组0=AX 的解向量,则)43(21αα-A = 0 . 解: 043)43(2121=-=-ααααA A A .(3) 若向量组T T T t t )1,0,0(,)0,2,1(,)0,1,1(2321+=+==ααα线性相关,则1 . 解: 由321,,ααα线性相关,有 0,,321==αααA .即 0)1)(1()1)](1(2[1021011,,222321=+-=++-=++==t t t t t t A ααα.(4) 方程组⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-00111032321x x x 的基础解系所含向量的个数= 1 . 解:由系数阵的秩是2,.(5) 方程组⎩⎨⎧=-=-004321x x x x 的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1100,001121ηη .(6) 若线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则长数=k 15/4 .解: 线性方程组⎪⎩⎪⎨⎧=+=+=-kkx x x x x x 2121213122的有解,则其系数阵的秩=增广阵的秩,有0=A所以 0154)3)(1()6(363130211331212112121=-=+---=-+--+-+--=k k k k k r r r r kkA . 3. 单项选择题(1) 向量组(I)线性相关的充分必要条件是( B ). (A) (I)中每个向量都可由其余向量线性表示.(B) (I)中至少有一个向量都可由其余向量线性表示. (C) (I)中只有一个向量都可由其余向量线性表示. (D) (I)中不包含零向量. 提示:定理3.2.习题四A 组10.下列矩阵是否为正交矩阵? (1)⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-61616221210313131 (2)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--2102102131213121 解:(1)),,(321ααα=A ,其中),,(3211==i i α )(,),(j i j i ≠=0αα),,,(321=j i 所以A 为正交矩阵(2)),,(321ααα=A ,其中),,(3211=≠i i α )(,),(j i j i ≠≠0αα),,,(321=j i 所以A 不是正交矩阵11.设A 是n 阶对称矩阵,B 是n 阶正交矩阵,证明AB B 1-也是对称矩阵证明: 由题意可知A A T =, 1-=B B T因为AB BAB BT11--=)( 所以AB B1-也是对称矩阵习题五A 组1. 设矩阵 ⎪⎪⎪⎭⎫⎝⎛--=111131111A , 试证向量T)1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.解:由 αα⋅=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=1111111111131111A所以向量T )1,1,1(-=α为矩阵A 的属于特征值1=λ的特征向量.3. 若0λ是矩阵A 的一个特征值, m 是正整数,试证m 0λ是矩阵m A 的一个特征值. 证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有αλαλαλαλαλαmm m m m m mAA AAAAm AA 02202010011)(=======-----所以m 0λ是矩阵m A 的一个特征值. 4. 若0λ是矩阵A 的一个特征值,试证(1)2020-+λλ是矩阵E A A 22-+的一个特征值; (2)若022=-+E A A ,矩阵A 的特征值只能等于-2或1.证明: 由0λ是矩阵A 的一个特征值,存在非零向量α,使得αλα0=A 成立,即α是矩阵A 的属于特征值0λ的特征向量.那么有(1) αλλααλαλαααα)2()2(02002022-+=-+=-+=-+E A A E A A 所以2020-+λλ是矩阵E A A 22-+的一个特征值. (2) 由022=-+E A A , 和 αλλα)2()2(0202-+=-+E A A , 00=α, 有02020=-+λλ, 得1200=-=λλ,,即矩阵A 的特征值只能等于-2或1. 7. 求下列矩阵的特征值与特征向量. (1) ⎪⎪⎭⎫⎝⎛--=2223A 解:由 0)2)(1(4)2)(3(2223=+-=+-+=⎪⎪⎭⎫⎝⎛--+=-λλλλλλλA E 得特征值.2,121-==λλ当11=λ时,对应的特征向量应满足齐次线性方程组()0=-X A E ,即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00122421x x ,其基础解系⎪⎪⎭⎫⎝⎛=211α.所以矩阵A 的属于特征值11=λ的全部特征向量为11αk , 其中1k 是任意非零常数.当22-=λ时,对应的特征向量应满足齐次线性方程组()02=--X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00422121x x ,其基础解系⎪⎪⎭⎫⎝⎛=122α.所以矩阵A 的属于特征值22-=λ的全部特征向量为22αk , 其中2k 是任意非零常数. (2) ⎪⎪⎭⎫⎝⎛-=4112A 解:由 0)3(1)2)(4(41122=-=+--=⎪⎪⎭⎫⎝⎛---=-λλλλλλA E 得特征值.321==λλ当321==λλ时,对应的特征向量应满足齐次线性方程组()03=-X A E , 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--00111121x x ,其基础解系⎪⎪⎭⎫⎝⎛=11α.所以矩阵A 的属于特征值321==λλ的全部特征向量为αk , 其中k 是任意非零常数.(3) ⎪⎪⎪⎭⎫⎝⎛-=311111002A 解:由 3)2(]1)3)(1)[(2(3111112-=+---=⎪⎪⎪⎭⎫⎝⎛------=-λλλλλλλλA E 得特征值.2321===λλλ当.2321===λλλ时,对应的特征向量应满足齐次线性方程组()02=-X A E ,即⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---000111111000321x x x ,其基础解系⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121αα.所以矩阵A 的属于特征值.2321===λλλ的全部特征向量为2211ααk k +,其中21,k k 是任意不同时为零常数.8. 设A 为3阶矩阵,满足023,0,0=-=+=-A E A E A E , 求 (1)A 的特征值; (2)A 的行列式A .解: (1) 因,0=-A E 得;11=λ因(),0)1(3=---=---=+A E A E A E 即,0=--A E 得;12-=λ因,0232232233=-=⎪⎭⎫ ⎝⎛-=-A E A E A E 即,023=-A E 得.233=λ (2)由,23,1,1321=-==λλλ和321λλλ=A ,有23-=A .9. 已知矩阵 ⎪⎪⎪⎭⎫⎝⎛----=x A 44174147的特征值,12,3321===λλλ求x 的值,并求矩阵A 特征向量。
考研数学二(线性代数)模拟试卷50(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.A,B是n阶可逆方阵,则下列公式正确的是( )A.(A2)-1=(A-1)2B.(A+B)-1=A-1+B-1C.(A+B)(A—B)=A2一B2D.(kA)-1=kA-1(k≠0)正确答案:A解析:(A)中,(A2)-1=(AA)-1=A-1A-1=(A-1)2;(B)不成立,例:B=一A,A+B不可逆;(C)中,若AB≠BA,则BA一AB≠O;(D)中,不一定等于kA-1.涉及知识点:线性代数2.设A是n阶方阵,且A3=O,则.( )A.A不可逆,且E一A不可逆B.A可逆,但E+A不可逆C.A2一A+E及A2+A+E均可逆D.A不可逆,且必有A2=O正确答案:C解析:因A3=O,有E3+A3=(E+A)(A2一A+E)=E,E3一A3=(E—A)(A2+A+E)=E,故A2-A+E及A2+A+E均可逆,(C)正确.由以上两式知,E-A,E+A也均可逆,故(A),(B)不成立.(D)不成立,例有但知识模块:线性代数3.A是n阶方阵,A*是A的伴随矩阵,则|A*|= ( )A.|A|B.|A-1|C.|A-1|D.|An|正确答案:C解析:由AA*=|A|E,两边取行列式,得|A||A*|=|A|n 若|A|≠0,|A*|=|A|n-1=|An-1|;若|A|=0,则|A*|=0,故选(C).知识模块:线性代数4.设A是n阶可逆方阵(n≥2),A*是A的伴随矩阵,则(A*)*= ( ) A.|A|n-1AB.|A|n+1AC.|A|n-2AD.|A|n+2A正确答案:C解析:由AA*=|A|E,得A*(A*)*=|A*|E,(A*)*=|A*|(A*)-1,其中故知识模块:线性代数5.A是n阶矩阵,|A|=3.则|(A*)*|= ( )A.3(n-1)2B.3n2-1C.3nn2一nD.3n-1正确答案:A解析:因|A|=3,A可逆,则A*(A*)*=|A*|E,所以|(A*)*|=||A|n-2A|=|A|n-2n|A|=|A|n2-2n+1=3(n-1)2.知识模块:线性代数6.设An×n是正交矩阵,则( )A.A*(A*)T=|A|EB.A*TA*=|A*|EC.A*(A*)T=ED.(A*)TA*=一E正确答案:C解析:因为A是正交矩阵,则有,A*(A*)T=|A|AT(|A|AT)T=|A|2ATA=E.知识模块:线性代数7.设A为n阶可逆矩阵,则下列等式中,不一定成立的是( )A.(A+A-1)2=A2+2AA-1+(A-1)2B.(A+AT)2=A2+2AAT+(AT)2C.(A+A*)2=A2+2AA*+(A*)2D.(A+E)2=A2+2AE+E2正确答案:B解析:由矩阵乘法的分配律可知:(A+B)2=(A+B)A+(A+B)B=A2+BA+AB+B2,因此,(A+B)2=A2+2AB+B2的充要条件是BA=AB,也即A,B的乘积可交换.由于A与A-1,A与A*以及A与B都是可交换的,故(A),(C),(D)中的等式都是成立的.故选(B).知识模块:线性代数8.设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij 的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为( ) A.lB.2C.3D.4正确答案:B解析:由aij=Aij(i,j=1,2,3)及伴随矩阵的定义可知:A*=AT,那么|A*|=|AT|,也即|A|2=|A|,即|A|(|A|一1)=0.又由于A为非零矩阵,不妨设a11≠0,则|A|=a11A11+a12A12+a13A13=a112+a122+a132>0,故|A|=1.因此,A可逆.并且由AAT=AA*=|A|E=E,可知A是正交矩阵,故①,④正确,③错误.从题目中的条件无法判断A是否为对称矩阵,故正确的只有两个,选(B).知识模块:线性代数9.设A为m×n矩阵,B为n×m矩阵,且m>n,则必有( )A.|AB|=0B.|BA|=0C.|AB|=|BA|D.||BA|BA|=|BA||BA|正确答案:A解析:由于m>n,则有r(AB)≤r(A)≤nP为3阶非零矩阵,且满足PQ=O,则( )A.t=6时,P的秩必为1B.t=6时,P的秩必为2C.t≠6时,P的秩必为1D.t≠6时,P的秩必为2正确答案:C解析:“AB=O”是考研出题频率极高的考点,其基本结论为:①Am×sBs×n=Or(A)+r(B)≤s;②Am×sBs×n=O组成B的每一列都是Am×sX=0的解向量.对于本题,PQ=Or(P)+r(Q)≤31≤r(P)≤3一r(Q).当t=6时,r(Q)=11≤r(P)≤2r(P)=1或2,则(A)和(B)都错;当t≠6时,r(Q)=21≤r(P)≤1r(P)=1.故选(C).知识模块:线性代数11.设若r(A*)=1,则a= ( )A.1B.3C.1或3D.无法确定正确答案:C解析:由r(A*)=1,得r(A)=3,则|A|=0,即得a=1或3,且此时均满足r(A)=3,故选(C).知识模块:线性代数填空题12.已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,行列式|B|=2,则行列式正确答案:解析:设λ3为A的另一特征值.则由A~B知,|A|=|B|=2,且又λ1λ2λ3=|A|=2,可见λ3=1,从而A,B有相同的特征值λ1=1,λ2=2,λ3=1.于是有|A+E|=(λ1+1)(λ2+1)(λ3+1)=12,|(2B)*|=|22B|=43|B|=43|B|2=256,故知识模块:线性代数13.已知AB—B=A,其中则A=_________.正确答案:解析:知识模块:线性代数14.设A为奇数阶矩阵,AAT=ATA=E,且|A|>0,则|A—B|=_____________.正确答案:0解析:由题知|A—E|=|A—AAT|=|A(E-AT)|=|A||(E-A)T|=|A||E-A|.又由于AAT=ATA=E,可知|A|2=1.又由|A|>0,可知|A|=1.又A为奇数阶矩阵,故|E 一A|=|一(A—E)|=一|A—E|,从而有|A—E|=一|A—E|,可知|A—E|=0.知识模块:线性代数15.设α=[1,2,3],A=αTβ,则An=__________.正确答案:解析:因故An=(αTβ)n=(αTβ)(αTβ)…(αTβ)=αT(βαT)(βαT)…(βαT)β=3n-1A.知识模块:线性代数16.设则Bn=__________.正确答案:解析:因故Bn=(αTα)n=(αTα)(αTα)…(αTα)=αT(ααT)…(ααT)α=14n-1B.知识模块:线性代数17.设n≥2为正整数,则An-2An-1=__________.正确答案:O解析:因故An=2An-1,An一2An-1=O.知识模块:线性代数18.A,B均为n阶矩阵,|A|=一2,|B|=3,则||B|A-1|=____________.正确答案:解析:因|A|=一2,|B|=3,故知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
成都理工大学《线性代数》模拟考试试卷(一)及参考答案一、填空题(每空3分,共30分)1.设A 为44⨯矩阵,B 为55⨯矩阵,2||,2||-==B A ,则=-A B || 2.设n 阶方阵A 满足022=++E A A ,则=+-1)(E A 3.设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,1||=A ,)93,42,(321321321ααααααααα++++++=B ,则=||B4.设齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解,则k 应满足5.若向量组),1,1(,)1,,1(21'='=a a a a )1,1,(3'=a a 线性相关,则a = 。
6.逆序数=)54321(τ。
7.当k = 时,向量)5,,1(k =β能由向量)2,3,1(1-=α,)1,1,2(2-=α表示。
8.二次型323121232221321444),,(x x x x x x x x x x x x f +++---=的秩为 。
9.行列式xyy x y x y x000000=10.设)'1,1,1(,)',,(321==βαααα,则='αβ二、单项选择题(每小题3分,共15分) 得 分得 分11.设A 为n 阶方阵,*A 是A 的伴随矩阵,则||||*A A 等于( )。
(A )2||A(B )n A ||(C )n A 2||(D )12||-n A12.设A 为n 阶方阵,且0||≠A ,下列正确的是 ( )。
(A )对n 阶方阵B ,若AB =0,则B =0 (B )对n 阶方阵B ,若AB =BA ,则0||≠B(C )对n 阶方阵B ,若||||A B =,则A ,B 有相同的特征值 (D )对任意非零向量)',,,(21n x x x X =,都有0'>AX X 13.若向量组321,,ααα线性无关,421,,ααα线性相关,则 ( )(A )1α必可由432,,ααα线性表出 (B )2α必不可由431,,ααα线性表出 (C )4α必可由321,,ααα线性表出 (D )4α必不可由321,,ααα线性表出14.设A 为n 阶可逆矩阵,λ是A 的一个特征值,则A 的伴随矩阵*A 的特征值之一是 ( )(A )n A ||1-λ (B )||1A -λ(C )||A λ(D )n A ||λ15.已知A ,B 均为n 阶方阵,且方程组0=ABX 有非零解,则 ( )(A )0=Ax 与0=Bx 至少有一个存在非零解 (B )0=Ax 与0=Bx 均不存在非零解 (C )0=Ax 必有非零解 (D )0=Bx 必有非零解三、计算题及证明题(含4个小题,共25分)16.(5分)计算矩阵⎪⎪⎪⎭⎫⎝⎛----=762153424121A 的秩。
成都理工大学《复变函数》模拟考试试题(一)参考答案121i z +=,则=2010z i 。
2 三角形三个顶点复数为321,,z z z ,则重心处的复数是)(31321z z z ++。
3 函数2||z w =的奇点是 全体复数(任意复数) 。
4i e π+1= -e 。
5 |z|=1,化简zz 1-= 0 。
二 计算题(每题6分,共4题24分)6 求Ln(1+i 3) 的全体值。
解:原式=)31(2ln i iArg ++···················3分 =)32(2lnππ++k i ·····················3分7 求i i )1(+的全体值。
解:原式=)1(i iLn e +=))42(2(ln ππ++k i i e····························3分=)42(ππ+-k e2lni e=)42(ππ+-k e[2ln sin 2ln cos i +]·············3分8 计算⎰πsin zdz z 。
成都理工大学2006—2007学年 第一学期《线性代数》考试试卷(A )(含答案)一.填空题(每空3分,共30分)1. 已知A* =⎪⎪⎭⎫⎝⎛4031,则A = 。
2. A 、B 、C 是同阶矩阵,A 可逆,若AB = AC ,则B = 。
3. 若A 2= E ,则A 1- = 。
4. 设A = 1,A 2 = 32,则A 为 阶矩阵。
5. 行列式D = 42062013-中,元素6的代数余子式为 。
6. A 、B 、C 是同阶方阵,且A ≠0,BA=C ,则B= 。
7. 逆序数τ(23541)= 。
8. n + 2个n 维向量的相关无关性为 (填“相关”“无关”或“不确定”)。
9. 向量组的 所含向量的个数称为向量组的秩。
10. 若n 阶实矩阵A 满足 ,则称A 为正交矩阵。
二.单项选择题(每小题3分,共15分)11. A 、B 是同阶方阵,下面结论中( )是正确的。
(A) 若AB = 0且B ≠0,则A = 0; (B) 若AB = 0且B ≠0,则A = 0;(C) 若AB = 0且B ≠0,则A ≠0; (D)若A ≠0,则A 是可逆矩阵。
12. n 阶行列式D 的值为零的充要条件是( )(A)某一行元素全为零; (B)某两行元素相等; (C) D 的秩<n ; (D)两行对应元素成比例. 13. 若A 是( ),则A 不一定是方阵。
(A)对称矩阵; (B)方程组的系数矩阵; (C)可逆矩阵; (D)上(下)三角形矩阵。
14. 两个非零向量α、β线性相关的充分必要条件是( )(A)α、β的对应分量成比例; (B)α=β;(C)α、β中有一个是零向量; (D) 0α+0β=0不成立. 15. 齐次线性方程组AX=0有非零解是它的基础解系存在的( )。
(A)充要条件; (B)必要条件; (C)充分条件; (D)无关条件.三.解答下列各题:(21分)16. 计算D = 1222111b a a c c b b a ca c bc b a+++17. 证明若对称矩阵A为非奇异矩阵,则A1 也对称。
成都理工大学
《线性代数》模拟考试试卷(二)及参考答案
一、填空题(每空3分,共30分) 1.设B A ,均为n 阶矩阵,3||||-=2=B ,A ,则=-|2|1*B A 2.设n 阶方阵A 满足022=++E A A (E 是n 阶单位矩阵),则=-1A 。
3.设α为3维列向量,'α是α的转置,若⎪⎪⎪
⎭
⎫
⎝
⎛----=11
1111
111
'αα,则=αα' 。
4.设⎪⎪⎪
⎭
⎫
⎝
⎛--=10
0001
010
A ,AP P
B 1-=,其中P 为三阶可逆矩阵,则2
2004
2A B
-= 。
5.设A 为三阶方阵,且A A -=',则=||A 。
6.若n 元线性方程组有解,且其系数矩阵的秩为r ,则当 时,方程组有惟一解。
7.逆序数=)45321(τ 。
8.已知)0,2,5,1(),9,7,5,3(-==βα,x 满足βα=+x 32,则=x 。
9.二次型3231212
32
22
1321121210933),,(x x x x x x x x x x x x f +++++=的秩
为 。
10.已知⎪⎪⎪
⎭
⎫ ⎝
⎛=⎪⎪⎭⎫
⎝
⎛=11
1121,10
112
1
B A ,则=AB 。
二、单项选择题(每小题3分,共15分) 得 分
得 分
11.设3阶矩阵⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫
⎝⎛=3232
,32r r B r r A βα,其中32,,,r r βα均为3维行向量,且已知行列式2||,18||==B A ,则行列式||B A -等于( )
(A )1
(B )2
(C )3
(D )4
12.设A ,B 均为n 阶方阵,下面结论正确的是( )。
(A )若A ,B 均可逆,则A +B 可逆 (B )若A ,B 均可逆,则AB 可逆 (C )若A +B 可逆,则B A -可逆 (D )若B A +可逆,则B A ,均可逆
13.设向量组321,,ααα线性无关,则下列向量组线性相关的是( )。
(A )133221,,αααααα+++ (B )321211,,αααααα+++ (C )133221,,αααααα--- (D )1332213,2,αααααα+++
14.设三阶矩阵A 的特征值为2,1,2--,矩阵E A A B 2323+-=,则=||B ( )
(A )-4
(B )-16
(C )-36
(D )-72
15.设321,,εεε是0=AX 的基础解系,则该方程组的基础解系还可以表成( )。
(A )321,,εεε的一个等价向量组 (B )321,,εεε的一个等秩向量组 (C )321211,,εεεεεε+++ (D )133221,,εεεεεε---
三、计算题及证明题(含4个小题,共25分)
16.(4分)计算矩阵⎪⎪⎪⎪
⎪⎭
⎫
⎝
⎛---=41
2420311
113A 的秩。
得 分
17.(7分)计算n 阶行列式1
2
2
1
100000000010
0001a x a a a a x x x x D n n n
+---=
--
18.(7分)设A 为n 阶可逆矩阵,且E A A ||2=,证明A 的伴随矩阵A A =*。
19.(7分)设向量组321,,ααα线性无关,向量组211ααβk +=,
32133222,αααβααβk ++=+=,当k 为何值时,321,,βββ线性无关。
四、解答题(10分)
20.设B A AB 2+=,且⎪⎪⎪⎭
⎫
⎝
⎛=41
0011
103A (1)求1)2(--E A (2)求B
五、解答题(10分)
21.已知线性方程组
⎪⎪⎩⎪⎪
⎨
⎧=-+++=+++=-+++=++++2
33456220
32354321
5432
5432154321x x x x x b x x x x x x x x x a
x x x x x (1)a ,b 为何值时,方程组有解。
(2)方程组有解时,求出其导出组的一个基础解系并写出方程组的通解。
六、解答题(10分)
22.已知二次型313221232221444444x x x x x x x x x f +++++=,写出它的矩阵,并用正交变换法化f 为标准型。
得 分
得 分
参考答案(二)
一、填空题(每空3分,共30分)
1. 3
2
1
2--
n 2. 2E
A +- 3. 3 4.⎪⎪⎪⎭
⎫ ⎝
⎛-10
030
003 5. 0 6.n r = 7. 9 8.⎪⎭
⎫
⎝
⎛---
-
6,4,35
,37 9. 2 10.
⎪⎪⎭
⎫ ⎝
⎛3254
二、单项选择题(每小题3分,共15分)
11.B 12.B 13.C 14.D 15.C 三、计算题及证明题(含4个小题,共25分)
16.2
17.111n n n n a a x a x x --++++ 18.证略。
19.1=k
四、解答题(10分)
20. ⎪⎪⎪⎭⎫ ⎝
⎛-----=--11
1122112
)2(1
E A ,⎪⎪⎪⎭
⎫
⎝
⎛-----=32
2234
225B
五、解答题(10分)
21.(1)当3,1==b a 时,方程组有解。
(2)当3,1==b a 时,其导出组的基础解系:)1,0,0,6,5()0,1,0,2,1()0,0,1,2,1(321'
-='-='
-=ηηη
原方程组的通解为
12321153226010000100001x k k k -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
,其中321,,k k k 为任意常数。
六、解答题(10分)
22.⎪⎪⎪⎭
⎫
⎝
⎛=42
2242
224A
,令210
T ⎛
-- =-
⎝
则正交变换TY X =将二次型化为标准型2
322
21822y y y f ++=。