变压器电压差动保护方法研究
- 格式:pdf
- 大小:893.26 KB
- 文档页数:6
变压器差动保护试验方法分析作者:李耀华来源:《电子技术与软件工程》2015年第24期摘要变压器是变电站是最重要的设备,而差动保护是构成变压器的两种主保护的一种,可以说差动保护动作的可靠与否,关系到电力系统安全运行稳定基础。
从早期的BCH差动继电器到现在的微机差动保护,无论其可靠性和灵敏度都有了大幅度的提高,但是相应保护的设置和调试也更加复杂,现在以武安某变电站的差动保护调试方法为典型做一个简要说明。
【关键词】差动保护试验1 前言某变站站差动保护采用的是南京南自电网控制技术有限公司的NDT320差动保护装置,它采用现在较普遍的带制动特性的比率差动保护,其实质为二次谐波制比率差动保护+差动速断,具有在区内故障灵敏动作,区外故障可靠闭锁的优点,使其在系统内得到了广泛的运用。
二次谐波比率差动保护可以灵敏地反应区内故障,当区外故障时利用制动电流来抬高差动定值,在出现励磁涌流(主要出现在变压器空载送电或外部故障切除电压恢复时)情况下可以利于二次谐波来制动比率差动保护。
差动速断实质是反应差动电流的速断保护,其作用是防止区内高水平短路CT饱合产生的二次谐波使比率差动保护失去作用。
2 变压器差动保护试验的方法根据定值单要求,CT接线选用了Y-Y接线,两侧CT极性要求均为母线侧,这样高压侧二次电流I1N超前低压侧二次电流由I2N150°装置内部通过计算来进行平衡,NDT320装置只要输入变压器容量和高低压侧CT变比即可计算出低平系数,不再另行计算,这也是该装置的一个优点。
该定值单为某变电站2#主变差动保护和后备保护定值单,这里只对差动保护做一说明。
2#主变容量可20MVA,高压侧CT变比为600/5,低压侧CT变比为1500/5,主变高低压侧二次额定电流通过计算得出低平系数装置内部高压侧校正方法如下:由于线电压等于相电流且超前30°,装置实质把I1N前移30°且放大,这样计算后的I1N 超前I2N180°,计算后的数值即为定值单上的A,据定值单:差动速断电流值:比率差动门槛电流:制动曲线拐点电流:比率制动典线斜率:Kb=0.5二次谐波系数:Kxb=0.17差动电流制动电流动作公式为:比率制动特性曲线在进行制动系数校验时,一定要清楚保护的差流、制动电流的算法和制动特性曲线方程,这样才能合理选择测试点,快速计算实测制动系数;并且,YΔ—11变压器差动保护,在用Y 侧和Δ侧同时加入电流进行制动系数校验时,Δ侧一定要在试验相的超前相同时加入电流,以免该相差动动作干扰制动系数校验。
完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。
为了确保差动保护能够可靠地工作,需要对其进行调试和验证。
下面将详细介绍完整的变压器差动保护调试和验证方法。
一、调试方法:1.检查保护装置的接线是否正确。
检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。
2.对CT进行检定。
使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。
3.调整差动保护装置的参数。
根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。
4.模拟故障事件进行测试。
通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。
同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。
二、验证方法:1.进行整套装置的一次性测试。
通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。
2.进行稳态和动态特性测试。
测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。
同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。
3.进行电流差动特性测试。
通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。
4.进行接地故障测试。
在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。
5.进行保护可靠性测试。
通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。
同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。
总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。
变压器差动保护试验方法第一,绕组电压比差动试验。
该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的电压值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压,计算电压差值。
5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。
第二,同侧相位关系试验。
该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。
2.进行变压器空载试验,记录各测点的相位关系。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在各测点测量电压和相位,检查相位关系是否一致。
5.如相位关系一致,则差动保护正常。
第三,误差变换试验。
该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。
具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。
2.进行变压器空载试验,记录各测点的电压和相位值。
3.按照试验参数设置电流,对绕组进行加载试验。
4.在继电器的输出端口测量电流,计算误差。
5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。
第四,保护性校验试验。
该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。
1.在差动保护系统的感应线圈内接入故障源。
2.设置故障源的类型和参数,例如短路故障。
3.观察差动保护系统的动作情况,包括动作时间、动作电流等。
4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。
总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。
变压器差动保护实验报告1#主变差动保护试验报告继电保护检验报告设备名称: 主变差动保护安装地点: 继保室负责人: 刁俊起检验性质: 新安装检验试验日期: 2012.11.24开关编号: 510、410检验单位: 山东送变电工程公司试验人员: 王振报告编写:校核:审核:刁俊起风雨殿风电场RCS-9671CS变压器差动保护装置检验报告(新安装检验)试验日期: 2012年11月24日3绝缘及耐压试验:按下表测量端子进行分组,采用1000V摇表分别测量各组回路对地及各组回路之间的绝缘电阻,绝缘电阻值均应大于10MΩ。
在保护屏端子排处将所有电流、电压及直流回路的端子连在一起,并将电流、电压回路的接地点解开。
整个回路对地施加工频电压为1000V、历时为1分钟的介质强度试验,试验4工作电源检查(1)直流电源缓慢上升时的自启动性能检验。
直流电源从零缓慢升至80%额定电压值,此时逆变电源插件应正常工作,逆变电源指示灯都应亮,保护装置应没有误动作或误发信号的现象,(失电告警继电器触点返回)。
检查结果合格(2)拉合直流电源时的自启动性能。
直流电源调至80%额定电压,断开、合上检验直流电源开关,逆变电源插件应正常工作(失电告警继电器触点动作正确)。
检查结果合格(3)工作电源输出电压值及稳定性检测保护装置所有插件均插入,分别加80%、100%、110%的直流额定电压,电源监视指示灯、液晶显示器及保护装置均处于正常工作状态,测量电源输出电压值如下: 5初步通电检查(1)打印机检验:检查结果合格(2)键盘和液晶显示检验:检查结果合格(3)保护定值整定及失电保护功能检验:检查结果合格(4)时钟设置及失电保护功能检验检查结果合格(5)软件版本和程序校验码的核对6电气特性试验6.2开出检验6.3功耗测量:(记录功耗最大一侧的测量数据)6.4模/数变换系统检查:6.4.1零漂检查:利用人机对话打印出采样值的零漂(不加任何交流量时的正常采样值),电流、电压回路6.4.2电流通道刻度检查模拟量测量误差应不超过?5%。
差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
关于变压器差动保护误动问题的研究摘要:为有效解决电力变压器差动保护误动问题,防止因变压器差动保护误动而影响电力系统的安全可靠运行,本文首先介绍了变压器差动保护的基本原理,接下来从电流不平衡和励磁涌流两个主要方面对变压器差动保护误动的影响因素进行了浅析,最后提出了变压器差动保护误动的解决措施。
关键词:变压器差动保护误动原理影响因素解决措施市场经济条件下,我国电力系统在能源系统中占据着主导地位。
纵观整个电力系统,影响电力系统安全可靠运行的最关键原因就是变压器故障。
为了防止因为变压器产生故障而给电力系统的安全性和可靠性带来影响,对电力变压器采取了多种保护措施,变压器差动保护误动就是其中最为普遍的一种做法。
然而,系统运行中发现,因为电流不平衡、励磁涌流等因素经常会导致差动保护发生误动现象,更为重要的是差动保护误动经常影响到整个电力系统的安全可靠运行。
所以,关于变压器差动保护误动问题的研究具有十分重要的意义和价值。
1、变压器差动保护的基本原理电力变压器差动保护是电力变压器保护的主保护,是在循环电流理论基础上建立的保护系统。
一般而言,需要将电流互感器分别安装在电力变压器两端,再将电流互感器与差动继电器并联起来,一旦电力变压器正常工作或者差动保护区域外部发生故障,此时在电力变压器两端电流互感器的二次电流数值上是相等的,而方向上是相反的,如此差动继电器内部就不会有动作电流产生,所以,差动继电器不动作,不发生差动保护。
相反,一旦电力变压器不正常工作或者差动保护区域内部发生故障,此时在电力变压器两端电流互感器的二次电流就会出现不平衡现象,在差动继电器内部就会有动作电流产生,差动继电器引发动作,此时就需要对电力变压器进行差动保护。
2、变压器差动保护误动的影响因素2.1 电流不平衡因素受多种因素影响,电力变压器正常运行或者差动保护区域内部并未发生故障的情况下,电力变压器两端电流互感器的二次电流经常会出现不平衡现象,此时在差动继电器内部会有动作电流产生,引发差动继电器发生误动现象。
变压器差动保护校验方法变压器差动保护是一种常用的电力系统保护方式,用于检测变压器的内部故障并及时采取保护措施,避免故障扩大导致设备损坏甚至事故发生。
为了确保差动保护的准确性和可靠性,需要进行校验。
变压器差动保护的校验方法主要包括以下几个方面:1. 参数设置校验:差动保护系统的参数设置是保证其正常运行的基础。
在校验过程中,应对差动保护装置的参数进行检查和确认,包括变压器的额定电压、额定容量、变比等参数,确保与实际情况相符。
同时,还需要校验差动保护装置的动作电流、动作时间等设置参数,确保其与设备的故障特性相匹配。
2. 运行情况监测:差动保护装置应能实时监测变压器的运行情况,包括电流、电压、温度等参数。
校验时,需要检查差动保护系统的监测功能是否正常,监测数据是否准确可靠。
此外,还需要检查差动保护装置与变压器之间的连接线路是否良好,是否存在接触不良或线路故障等情况。
3. 动作特性校验:差动保护是通过检测电流差值来判断设备是否发生故障的。
在校验过程中,需要模拟不同类型的故障,如短路、接地故障等,观察差动保护装置的动作情况是否符合预期。
同时,还需要校验差动保护装置的灵敏度和可靠性,确保在故障发生时能及时动作,保护设备安全。
4. 报警和保护功能校验:差动保护装置应具备报警和保护的功能,当设备发生故障时能及时报警并采取保护措施。
在校验过程中,需要检查差动保护装置的报警和保护功能是否正常,是否能准确判断故障类型,并能发出相应的报警信号或动作指令。
5. 联锁功能校验:差动保护装置通常需要与其他保护装置进行联锁,以实现全面的保护。
在校验过程中,需要检查差动保护装置的联锁功能是否正常,是否与其他保护装置实现了正确的联锁逻辑。
同时,还需要校验差动保护装置的自检功能和自动复归功能,确保系统能够及时发现故障并自动进行恢复。
变压器差动保护的校验方法是一个多方面的工作,从参数设置到运行情况监测,再到动作特性、报警保护以及联锁功能的校验,需要全面而系统地检查差动保护装置的各项功能和性能。
变压器保护整定中的差动保护的整定与校验方法在变压器保护装置中,差动保护是一种常见且重要的保护方式。
为了确保差动保护能够发挥其应有的保护作用,需要对差动保护进行整定和校验。
本文将从整定和校验两个方面介绍变压器差动保护的相关方法。
一、差动保护的整定方法差动保护的整定是为了确保在变压器正常运行时不发生误动作,同时能够在发生故障时能够准确可靠地动作。
以下是差动保护整定的一般步骤:1. 确定保护区域:根据变压器的接线图和实际情况,确定差动保护所要覆盖的保护区域。
通常情况下,保护区域应包括变压器的高压侧和低压侧。
2. 确定整定电流:根据变压器的额定电流和负载情况,确定差动保护的整定电流。
整定电流一般设置为变压器额定电流的百分之几,具体数值根据实际情况而定。
3. 确定动作特性:根据差动保护的动作特性曲线,确定差动保护的整定参数。
常见的动作特性曲线有梯形曲线、平板曲线等,具体选择应考虑变压器的性能和运行要求。
4. 确定整定参数:根据变压器的特性、接线方式和运行要求,确定差动保护的整定参数。
整定参数包括时间定值、灵敏系数等,可以根据经验值或者故障模拟等方法确定。
二、差动保护的校验方法差动保护的校验是为了验证整定参数的准确性和保护装置的可靠性。
以下是差动保护校验的一般步骤:1. 检查接线:首先,检查差动保护装置的接线情况,确保连接正确可靠。
同时,还应检查变压器主绕组和各侧绕组之间的连接,确保变压器内部电路的连通性。
2. 模拟故障:通过模拟故障的方式进行校验,例如在变压器的高压侧或低压侧接入故障电阻、故障电容等。
模拟故障时,需要记录差动保护的动作时间和动作电流,与整定参数进行对比。
3. 调整整定参数:如果校验结果与整定参数存在较大偏差,需要进行整定参数的调整。
可以通过调整灵敏系数、时间定值等参数来准确匹配差动保护的整定与校验结果。
4. 验证保护可靠性:校验完成后,需要进行保护可靠性的验证。
可以通过变压器的正常运行和模拟故障实验等方式来验证差动保护的可靠性和准确性。
第41卷第4期电力系统保护与控制Vol.41 No.4 2013年2月16日Power System Protection and Control Feb.16, 2013变压器电压差动保护方法研究王 雪,王增平(华北电力大学新能源电力系统国家重点实验室,河北 保定 071003)摘要:提出一种基于补偿电压的变压器电压差动保护。
以单相双绕组变压器为例在正常变压器回路方程的基础上定义补偿电压的概念,并给出了三相变压器补偿电压的表达式。
深入分析了变压器调压分接开关位置变化、漏电抗参数计算误差以及CT变换误差对基于回路方程差值的变压器保护以及补偿电压的幅值、相位的影响,在此基础上提出了综合补偿电压幅值和相位特征的变压器电压差动保护。
利用ATP仿真软件获得变压器各种运行状态下的数据,分析结果表明了本方法的正确性和可行性。
关键词:变压器保护;回路方程;补偿电压;不平衡输出;ATPResearch on the method of transformer voltage differential protectionWANG Xue, WANG Zeng-ping(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University, Baoding 071003, China)Abstract: A novel transformer voltage differential protection based on the compensating voltages is presented. The concept of compensating voltage is defined based on the loop equation of a sound single-phase two-winding transformer, and then the expressions of compensating voltages of three-phase transformer are given. The influences on the amplitude and phase of compensating voltage and the protection of transformer based on the difference of loop equation of some conditions such as the change of tap position, computation error of leakage impedance and the transformation error of CT are analyzed deeply, and based on the above analysis the novel criterion of transformer voltage differential protection is presented, in which the amplitude and phase characteristics of compensating voltages are synthesized. The data of transformer under various conditions are obtained with A TP. The correctness and feasibility of the presented protection are proved by the analysis results.This work is supported by National Natural Science Foundation of China (No. 50777016) and the Indicative Program of Hebei Provincial Department of Education (Z2012063).Key words:transformer protection; loop equation; compensating voltages; unbalanced output; ATP中图分类号: TM772 文献标识码:A 文章编号: 1674-3415(2013)04-0067-060 引言在变压器差动保护中,如何区分励磁涌流和内部故障电流是其固有的、不可回避的问题[1]。
目前实际运行的变压器差动保护主要利用二次谐波含量来识别励磁涌流,但随着铁心工艺的改进,饱和磁通倍数下降为1.2左右,甚至更低,励磁涌流中的二次谐波含量可能低于10%,同时由于无功补偿装置和输电线路分布电容的影响,变压器内部故障时也会产生较大的二次谐波,这样就难以确定合适的二次谐波制动比,保护存在不正确动作的风险[2]。
基金项目:国家自然科学基金项目(50777016);河北省教育厅指导性计划项目(Z2012063) 国内外文献已提出了众多的励磁涌流识别方法,其中大部分文献利用某种数学工具或算法提取涌流波形某方面的特征[3-6],具有一定的识别效果,但由于影响励磁涌流的因素很多,仅凭某一方面的外在特征均不能保证任何情况下差动保护都不会误动,部分文献提出利用模糊数学理论综合多个判据识别涌流[7-8],虽然取得了较好效果,但识别过程更加复杂,将会影响差动保护的快速性。
近些年来不受励磁涌流影响的变压器主保护受到人们的重视,进行了有益的研究,取得了一定的成果[9-12]。
其中基于功率差动的主保护通过检测变压器消耗的有功功率的大小来判别变压器是否发生内部故障[9],该保护不再依赖励磁涌流的波形特征,- 68 - 电力系统保护与控制但需要躲过励磁涌流开始的充电过程以及此时产生的较大的铁耗,将会降低保护的灵敏度。
基于回路方程的变压器主保护从正常变压器回路方程出发得到主保护判据。
其中一类判据为根据回路方程差值的大小来判别变压器是否发生内部故障[10-11],该判据需要考虑变压器漏电感参数计算误差的影响,另一类判据根据变压器线圈漏电感的变化情况来识别内部故障[12],利用回路方程计算三相等值漏电感,根据它们之间的差异情况判断变压器运行状态,当发生相间短路时,由于三相等值漏电感计算值都很小,该判据存在灵敏度低甚至失效的问题,必须补充其他判据。
本文在正常变压器回路方程的基础上定义了补偿电压的概念,分析了在各种不利条件下补偿电压的幅值和相位变化特征,据此提出了综合补偿电压幅值和相位特征的变压器电压差动保护。
仿真分析结果验证了该保护的正确性和可行性。
1 补偿电压的定义单相双绕组变压器如图1所示,i 1、i 2分别为两侧线圈电流。
图1 单相双绕组变压器Fig. 1 Single-phase two-winding transformer根据电路原理可得单相变压器两侧回路方程为111111222222d d d d d d d d i u i R L N t ti u i R L N t t φφ⎧=++⎪⎪⎨⎪=++⎪⎩(1) 式中:u 1、u 2分别为两侧电压;R 1、L 1、R 2、L 2分别为两侧线圈的电阻和漏电抗;N 1、N 2分别为两侧线圈的匝数;φ为主磁通。
定义变压器两侧的补偿电压分别为1op111112op 22222T d d d d i u u i R L t i u u i R L n t ⎧=−−⎪⎪⎨⎛⎞⎪=−−⎜⎟⎪⎝⎠⎩(2)式中:n T 为变压器变比,等于两侧线圈匝数比,为了分析简便,后文中假设n T =1。
Υ/Δ-11接线的三相两绕组变压器如图2所示。
图中i La 、i Lb 、i Lc 、i A 、i B 、i C 分别为Δ侧和Υ侧各线电流,i a 、i b 、i c 分别为Δ侧各线圈电流。
根据单相变压器的分析过程,可得三相变压器两侧的补偿电压分别为ABCabc图2 三相双绕组Υ/Δ接线变压器Fig. 2 Three-phase two-winding Υ/Δ transformer()()()()()()A B opA AB A B 11B C opB BC B C 11C A opC CA C A 11d d d d d d i i u u i i R L t i i u u i i R L t i i u u i i R L t −⎧=−−−⎪⎪⎪−=−−−⎨⎪⎪−=−−+⎪⎩(3) La opaac ba La 22Lb opb ba cb Lb 22Lc opc cb ac Lc 22d d d d d d i u u u i R L ti u u u i R L t i u u u i R L t ⎧=−++⎪⎪⎪=−−+⎨⎪⎪=−−+⎪⎩(4) 2 基于回路方程差值的保护不平衡输出分析变压器回路方程是根据正常状态下模型得到的,外部故障、励磁涌流等运行状态下,变压器内部结构以及参数没有变化,该方程总是成立的,这样两侧的补偿电压总是相等的。
当变压器内部发生故障时,回路方程不再成立,两侧补偿电压之间就会产生差值。
定义回路方程差值为两侧补偿电压之差,即d op1op 2u u u =− (5)可以根据回路方程差值的大小来判断变压器内部发生故障。
从前面分析可以看到基于回路方程差值的保护需要首先获得变压器两侧线圈的电阻和漏电感。
利用有限元方法可以准确计算变压器线圈的漏电感[13],但是该方法需要详细的变压器铁心及线圈的结构参数,由于大多数情况下很难获得这些参数,该方法的应用受到很大限制。
另一种方法是利用短路实验数据计算变压器两侧线圈总漏电感,然后假定每侧线圈的漏电感为总漏电感的一半[10,14],实际上变压器设计过程中总漏电感并不是平均分配的,比如同心式布置时高压线圈一般位于外侧,高压侧漏电感可能占总漏电感的75%~90%[15],因此简单地按照总漏电王 雪,等 变压器电压差动保护方法研究 - 69 -感一半来计算线圈漏电感必然存在误差,使得外部故障或励磁涌流等运行状态下保护存在不平衡输出。
此外变压器调压分接开关位置改变以及CT 变换误差也会影响到保护性能。
本节将针对这些问题进行分析。
为了分析过程方便,给出变压器补偿电压和回路方程差值的相量形式为op1111op 2222U U I Z U U I Z ⎧=−⎪⎨=−⎪⎩(6) d op1op 2U U U =− (7) 变压器正常时,补偿电压相量图如图3。