关于变压器差动保护研究报告——最终版
- 格式:doc
- 大小:73.00 KB
- 文档页数:6
变压器差动保护实验报告1#主变差动保护试验报告继电保护检验报告设备名称: 主变差动保护安装地点: 继保室负责人: 刁俊起检验性质: 新安装检验试验日期: 2012.11.24开关编号: 510、410检验单位: 山东送变电工程公司试验人员: 王振报告编写:校核:审核:刁俊起风雨殿风电场RCS-9671CS变压器差动保护装置检验报告(新安装检验)试验日期: 2012年11月24日3绝缘及耐压试验:按下表测量端子进行分组,采用1000V摇表分别测量各组回路对地及各组回路之间的绝缘电阻,绝缘电阻值均应大于10MΩ。
在保护屏端子排处将所有电流、电压及直流回路的端子连在一起,并将电流、电压回路的接地点解开。
整个回路对地施加工频电压为1000V、历时为1分钟的介质强度试验,试验4工作电源检查(1)直流电源缓慢上升时的自启动性能检验。
直流电源从零缓慢升至80%额定电压值,此时逆变电源插件应正常工作,逆变电源指示灯都应亮,保护装置应没有误动作或误发信号的现象,(失电告警继电器触点返回)。
检查结果合格(2)拉合直流电源时的自启动性能。
直流电源调至80%额定电压,断开、合上检验直流电源开关,逆变电源插件应正常工作(失电告警继电器触点动作正确)。
检查结果合格(3)工作电源输出电压值及稳定性检测保护装置所有插件均插入,分别加80%、100%、110%的直流额定电压,电源监视指示灯、液晶显示器及保护装置均处于正常工作状态,测量电源输出电压值如下: 5初步通电检查(1)打印机检验:检查结果合格(2)键盘和液晶显示检验:检查结果合格(3)保护定值整定及失电保护功能检验:检查结果合格(4)时钟设置及失电保护功能检验检查结果合格(5)软件版本和程序校验码的核对6电气特性试验6.2开出检验6.3功耗测量:(记录功耗最大一侧的测量数据)6.4模/数变换系统检查:6.4.1零漂检查:利用人机对话打印出采样值的零漂(不加任何交流量时的正常采样值),电流、电压回路6.4.2电流通道刻度检查模拟量测量误差应不超过?5%。
差动变压器实验报告一、实验目的二、实验原理1.差动变压器的结构和工作原理2.差动保护的基本原理三、实验器材和仪器四、实验步骤及结果分析1.接线方法及注意事项2.实验步骤及数据记录3.结果分析及误差分析五、实验结论与体会一、实验目的1.掌握差动保护的基本原理,了解差动变压器在电力系统中的应用;2.熟悉差动变压器的结构和工作原理;3.学习使用实验仪器,掌握接线方法及注意事项。
二、实验原理1.差动变压器的结构和工作原理差动变压器由两个同等容量的互感器组成,其中一个互感器为主绕组,另一个为副绕组。
主绕组和副绕组中都有相同数量的匝数。
当主绕组中通以电流时,在副绕组中也会产生相应大小和方向相反的电流。
这是由于两个互感器之间有共同磁链所致。
2.差动保护的基本原理在电力系统中,发生故障时,通常会出现电流突变。
差动保护的基本原理是通过检测主绕组和副绕组中的电流差来判断电力系统是否发生故障。
如果两个绕组中的电流差超过了设定值,则认为电力系统发生了故障,保护装置将触发并切断故障部分。
三、实验器材和仪器1.差动变压器;2.交流电源;3.数字万用表;4.示波器。
四、实验步骤及结果分析1.接线方法及注意事项将主绕组和副绕组依次接入交流电源,数字万用表和示波器上分别接入主绕组和副绕组的两端。
注意接线顺序,避免短路或错误连接。
2.实验步骤及数据记录按照实验要求依次进行以下步骤,并记录数据:(1)在未发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(2)在发生故障时,记录主绕组和副绕组的电流值,并计算其差值。
(3)比较两次测量结果,分析误差来源。
3.结果分析及误差分析通过实验数据的比较和分析,可以得出以下结论:(1)在未发生故障时,主绕组和副绕组的电流值应该相等,差异应该为零。
(2)在发生故障时,主绕组和副绕组的电流值会有所变化,差异会增大。
(3)误差来源主要包括接线不当、测量仪器精度不足等。
五、实验结论与体会通过本次实验,我们掌握了差动保护的基本原理和差动变压器的结构和工作原理。
变压器差动保护及二次回路虚拟实验总结[object Object]首先,我们需要了解变压器差动保护的原理。
变压器差动保护是基于变压器二次侧电流的差值来进行判断的。
在正常情况下,变压器二次侧电流的和应该等于零。
如果出现故障,如短路或接地,会导致二次侧电流不平衡,差动保护会通过检测电流差值来判断是否存在故障。
在二次回路虚拟实验中,我们首先搭建了一个简单的变压器模型,包括变压器的一次侧和二次侧。
一次侧接入电源,二次侧接入负载。
通过调节电流和电压的大小,可以模拟变压器正常工作和故障情况。
接下来,我们使用二次回路虚拟实验平台进行实验。
在实验平台上,我们可以模拟不同的故障情况,如短路、接地等。
通过改变故障的位置和大小,可以观察差动保护的动作情况。
在实验中,我们观察到以下几个现象。
首先,当变压器正常工作时,差动保护的动作值应该为零。
即二次侧电流的和应该等于零。
其次,当出现故障时,差动保护会立即动作,并切除故障部分。
最后,当故障被切除后,差动保护会恢复到正常状态,变压器继续运行。
通过这个实验,我们可以清楚地看到变压器差动保护的工作原理和性能。
差动保护可以及时检测到变压器的故障,并迅速切除故障部分,保护变压器的正常运行。
同时,差动保护还可以提供故障信息,方便运维人员进行故障排除。
总的来说,变压器差动保护及二次回路虚拟实验是一种非常实用的实验方法,可以帮助我们深入理解差动保护的原理和性能。
通过实验,我们可以更好地学习和掌握变压器差动保护的知识,提高自己的实际应用能力。
差动变压器实验报告差动变压器实验报告引言:差动变压器是一种常用的电力设备,用于保护电力系统中的变压器。
本次实验旨在深入了解差动变压器的原理和工作机制,并通过实验验证其性能。
一、实验目的:1. 掌握差动变压器的基本原理和结构;2. 了解差动保护的工作原理;3. 通过实验验证差动变压器的性能。
二、实验仪器与设备:1. 差动变压器实验装置;2. 电源;3. 电流互感器;4. 电压互感器;5. 示波器。
三、实验原理:差动变压器是由两个或多个互感器组成的,其中一个为主互感器,其余为副互感器。
主互感器的一侧与电源相连,另一侧与负载相连。
副互感器的一侧与主互感器的相同端子相连,另一侧与差动继电器相连。
差动保护的基本原理是通过比较主互感器和副互感器的输出信号来判断系统是否发生故障。
在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;而在发生故障时,由于主互感器和副互感器的输出信号不同,差动继电器会动作,从而实现对系统的保护。
四、实验步骤:1. 将差动变压器实验装置接入电源,调整电压和电流的大小;2. 通过电流互感器和电压互感器分别测量主互感器和副互感器的输出信号;3. 将测得的信号输入示波器,观察波形;4. 通过改变电流和电压的大小,以及引入不同的故障情况,观察差动继电器的动作情况。
五、实验结果与分析:通过实验观察,我们可以得到以下结论:1. 在正常情况下,主互感器和副互感器的输出信号相等,差动继电器不动作;2. 在发生故障时,主互感器和副互感器的输出信号不同,差动继电器会动作;3. 不同类型的故障会导致差动继电器的动作时间和动作方式不同。
六、实验总结:通过本次实验,我们深入了解了差动变压器的原理和工作机制,并通过实验验证了其性能。
差动变压器作为一种重要的保护设备,在电力系统中起着至关重要的作用。
掌握差动保护的原理和应用,对于保障电力系统的安全运行具有重要意义。
在今后的学习和工作中,我们应该进一步加深对差动变压器的理解和应用,不断提高自己的技能和知识水平。
关于变压器差动保护误动问题的研究摘要:为有效解决电力变压器差动保护误动问题,防止因变压器差动保护误动而影响电力系统的安全可靠运行,本文首先介绍了变压器差动保护的基本原理,接下来从电流不平衡和励磁涌流两个主要方面对变压器差动保护误动的影响因素进行了浅析,最后提出了变压器差动保护误动的解决措施。
关键词:变压器差动保护误动原理影响因素解决措施市场经济条件下,我国电力系统在能源系统中占据着主导地位。
纵观整个电力系统,影响电力系统安全可靠运行的最关键原因就是变压器故障。
为了防止因为变压器产生故障而给电力系统的安全性和可靠性带来影响,对电力变压器采取了多种保护措施,变压器差动保护误动就是其中最为普遍的一种做法。
然而,系统运行中发现,因为电流不平衡、励磁涌流等因素经常会导致差动保护发生误动现象,更为重要的是差动保护误动经常影响到整个电力系统的安全可靠运行。
所以,关于变压器差动保护误动问题的研究具有十分重要的意义和价值。
1、变压器差动保护的基本原理电力变压器差动保护是电力变压器保护的主保护,是在循环电流理论基础上建立的保护系统。
一般而言,需要将电流互感器分别安装在电力变压器两端,再将电流互感器与差动继电器并联起来,一旦电力变压器正常工作或者差动保护区域外部发生故障,此时在电力变压器两端电流互感器的二次电流数值上是相等的,而方向上是相反的,如此差动继电器内部就不会有动作电流产生,所以,差动继电器不动作,不发生差动保护。
相反,一旦电力变压器不正常工作或者差动保护区域内部发生故障,此时在电力变压器两端电流互感器的二次电流就会出现不平衡现象,在差动继电器内部就会有动作电流产生,差动继电器引发动作,此时就需要对电力变压器进行差动保护。
2、变压器差动保护误动的影响因素2.1 电流不平衡因素受多种因素影响,电力变压器正常运行或者差动保护区域内部并未发生故障的情况下,电力变压器两端电流互感器的二次电流经常会出现不平衡现象,此时在差动继电器内部会有动作电流产生,引发差动继电器发生误动现象。
变压器差动保护误动原因分析前言国内35kv及以下的变电所中,普遍采用的保护是以分立式继电器构成的。
其最大的特点是二次回路构成简单、直观明了、经济、可靠。
当电力系统发生故障时,就会伴随着电流突增、电压突降以及电流与电压间相位差角发生变化,这些基本特点就构成了各种不同原理的继电保护装置[1]。
作为变压器主保护的纵联差动(简称差动)保护,正确动作率始终在50%一60%徘徊,这对变压器的安全和系统的稳定运行很不利。
造成“原因不明”的变压器不正确动作是多方面的,设计研究、制造、安装调试和运行维护部门都有或多或少的责任,虽然实际工作中各个相关的制造厂家都在不断的改进技术提高动作的可靠性,但是变压器差动误动事例仍然为数不少[2]。
本文的目的在于总结自己的经验并与同行交流讨论,共同为提高变压器差动保护装置运行水平而努力。
2 差动保护误动的原因分析2.1 励磁涌流引起变压器差动保护误动变压器励磁涌流的特点是正常运行情况下其值很小,一般不超过变压器额定电流的3%一5%,变压器工作在磁通的线性段OS,如图1。
铁芯未饱和,其相对导磁率μ很大,变压器绕组的励磁电感也很大。
当发生外部短路时,由于电压下降,励磁电流更小,因此这些情况下对励磁电流的影响一般可以不考虑[3]。
图1 Φ= f (I) 和u = f (I) 的关系曲线当变压器空投或故障切除后电压恢复时,由于变压器铁心中的磁通急剧增大,使铁心瞬间饱和,相对导磁率接近1,变压器绕组电感降低,伴随出现数值很大的励磁涌流,包含有很大成分的非周期分量和高次谐波分量,并以二次谐波为主,其数值可以达到额定电流的6~8倍以上,出现尖顶形状的励磁涌流,如图2,在起始瞬间励磁涌流衰减很快,对于一般中小型变压器,经0.5 ~1s后,其值不超过额定电流的0.25~0.5倍,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~3s,既变压器的容量越大衰减越慢,同时励磁涌流波形出现间断,有间断角,此电流流入差动继电器,可能引起保护装置误动[4]。
关于变压器差动保护装置接线的研究杨利民炼钢作业部公辅区摘要:文章就天车滑触线接地短路引起变压器差动保护动作故障,展开对差动保护的原理、变压器接线组别与差动保护CT接线关系以及如何测量变压器接线组别做了简要说明,同时着重从CT、二次线路、保护定值、谐波等方面介绍了防止差动保护误动的措施,最终归纳了差动保护动作后,排除故障的思路。
关键词:差动保护,变压器,CT,接线组别THE INVESTIGATION ON WIRING OF TRANSFORMER DIFFERENTIAL PROTECTION DEVICE ABSTRACT:This paper makes a simple explain about the principle of differential protection,the relationsbetweenconnection mode of transformer and connection of CT,and how to measure connection mode of transformer on short circuittroubleof cranepower supplyline which works by touching leads to differential protecting of transformer, at the same time it introducesmethod of preventingprotection on CT, control line,protection fixed value, harmonic etc, at last concluding the way of getting rid oftrouble after differential protection.KEYWORDS:DIFFERENTIAL PROTECTION,TRANSFORMER, CT, CONNECTION MODE 0 前言继电保护是随着电力系统的发展而发展起来的。
20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护。
从2O世纪5O年代到90年代末,在40余年的时间里,继电保护完成发展的4个阶段,从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。
近年来随着电子技术、计算机技术、通信技术的飞速发展,基于微机的差动保护应用越来越广泛,成为电力工程界越来越关注的课题。
文章就施工中存在的真实案例谈一谈差动保护如何接线问题,并对差动保护的灵敏性、可靠性、选择性以及防止勿动的措施作简要的介绍。
1 差动保护误动的现象炼钢作业部给480T天车供电2#变压器2008年正式投入运行,变压器容量10000kV A,20 08年12月12日、20日,2009年3月7日连续3次天车滑线接地放炮导致差动保护动作跳闸。
期间对变压器、高压柜进行多次实验检查,均未发现异常。
2 差动保护误动原因分析差动保护是继电保护的一种,是根据“电路中流入节点电流的总和等于零”原理制成的。
它把被保护的电气设备看成是一个接点,那么正常时流进该接点的电流就等于流出的电流,差动电流等于零。
当接点有故障时,流进的电流和流出的电流不相等,差动电流大于零。
当差动电流大于差动保护整定值时,保护动作,跳开被保护设备的各侧断路器,切断故障设备电源。
图一<1)差动保护原理差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流<折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧<或三侧)向故障点提供短路电流,变压器两侧CT感应二次电流和的正比于故障点电流,当电流和大于保护整定值时差动继电器动作。
见图一,变压器差动保护是防止变压器内部故障的主保护。
其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:I2=I1,流过继电器KD的电流为0。
如果内部故障,如图d2点短路,流入继电器的电流等于短路点的总电流。
即:I1+I2。
当电流I1+I2大于动作电流,保护动作断路器跳闸。
<2)保护误动原因查找差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。
滑线放炮属于保护外故障,变压器差动保护不应该动作。
因此,我们对变压器、开关柜及相关一次设备再次进行预防性实验检查,包括测试直流电阻、绝缘、泄漏、耐压等实验,各项数据都在《电力设备预防性实验规程》规定范围内。
于是我们对变压器高低压侧电流互感器及二次回路进行检查,无发现故障。
又对保护设备进行检查,仍无发现故障。
再对保护做整组实验,当在做差动保护整组实验时保护动作。
经检查发现,接在变压器高低压侧电流互感器进入保护的接线是Y/Y接线,但是变压器本身是Y/△-11接线,这样导致进入综保原副边电流相差30度角度差,差动保护跳闸的原因即为电流互感器接线有误,从而导致流入综保的不平衡电流大于保护定值所引起。
3 变压器差动保护接线方法<1)根据变压器铭牌标注变压器接线组别和CT极性,确定CT接线方式。
变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分别代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
这里且不考虑上述变压器接线组别种类,变压器可以分为Y/y接线、D/d接线、Y/d接线和D/y接线四大类,如果接线组别是Y/y或D/d的变压器,由于一、二次绕组对应相的电压同相位,故一、二次两侧对应相的相位几乎完全相同。
而常用的Y/d11接线的变压器,由于三角形侧的线电压,在相位上相差30°,故其相应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中也会出现不平衡电流。
所以为了消除由于变压器Y/d11接线而引起的不平衡电流的影响,可采用相位补偿法,即将变压器星形采用简易判断法,只要假设副边接有三相对称纯电阻负载,由电压与电流同相位的关系,作出电流电压相量图,根据同名相<如A相)的相电压的相位关系,很容易判断出为几点钟接线。
然后根据测得变压器接线组别数据对保护进行接线。
<3)根据综保装置液晶显示数据调整CT接线。
由于电子技术、计算机技术的高速发展,目前差动保护设备均配有液晶显示装置,可以显示变压器高低压侧三相电流、相位等数据。
假若接线前不方便测量变压器接线组别、CT极性或者知道这些数据但需要判断差动保护接线是否正确,我们可以利用这一点。
通常情况,保护装置接线均以高压侧为基准,即高压侧三相角度为A:0°,B:-120°,C:+120°;变压器低压侧电流相位理论值应该为:a:-30°,b:-150°,c:+90°,根据差动保护矢量和为〇的原理,低压侧接入保护的接线应让保护装置显示低压侧电流相位为:a:-150°,b:+90°,c:-30°<其它变比设置不变,本例是采用综保内部补偿,假若采用外部接线补偿还要考虑接线组别不同所产生√3倍电流误差的问题)。
假若低压侧a相显示-30°,则证明低压侧a相极性接错。
总而言之,可以根据差动保护装置显示角度的不同判断CT接线的关系,然后将错误接线调换,最终得到正确的接线。
4 防止误动措施<1)严格检查电流互感器。
①减小稳态情况下的不平衡电流变压器差动保护各侧用的电流互感器,选用变压器差动保护专用的D级电流互感器;当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。
②减小电流互感器的二次负荷这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。
减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度>;采用弱电控制用的电流互感器(二次额定电流为lA>等。
③采用带小气隙的电流互感器这种电流互感器铁芯的剩磁较小,在一次侧电流较大的情况下,电流互感器不容易饱和。
因而励磁电流较小,有利于减小不平衡电流。
同时也改善了电流互感器的暂态特性。
<2)严格检查保护接线。
保护接线必须正确。
任意一相极性接反,都会产生不平衡电流而使保护误动作。
因差动保护是反映变压器等被保护设备内部短路故障的主保护,在电流互感器二次侧应按循环电流法接线,两端电流互感器的同极性端子应朝向同一方向,即两只电流互感器的二次侧异极性相连,差动继电器电流线圈并联在两只电流互感器连线之间。
同时,为减小暂态过程中最大不平衡电流的影响,差动保护<继电器)回路中应经中间速饱和变流器接入差动回路,非周期分量不易通过速饱和变流器传到二次侧,中间速饱和变流器可以成功地躲过外部初始短路瞬间出现的最大不平衡电流中的非周期分量产生的影响。
<3)严格核定保护定值。
计算、校核保护定值时,要依据发电机差动保护不同类别来确定。
采用常规的电磁型、半导体式保护,主要有比率制动式和有直流助磁特性的差动保护。
比率制动式差动保护定值计算时,根据比率制动式差动保护动作的特性,要计算两个定值即最小动作电流和制动系数,最小动作电流不能小于继电器的固有动作电流,规程要求具有比率制动的发电机差动保护制动电流Idz=<0.1~0.3)IN,一般取0.2IN,制动系数建议取0.3~0.4。
对有直流助磁特性的差动保护定值计算时,其动作电流要按躲过外部故障时的最大不平衡电流和电流互感器二次回路断线来整定,同时要整定电流回路断线信号。
<4)保护装置的投切、更换必须做预防性实验。
保护装置更换、升级后要对保护装置、二次回路进行检查实验。
实验时要测试差动保护二次回路的直流电阻,检查其接线是否牢固,回路接线是否正确。
安装和检修以后在投入运行前,要对电流互感器的极性进行校核,即一次侧电流从端子L1流入,而二次侧电流则从其同极性端子K1流出,采用直流法、交流法、仪表直接测量法对电流互感器的极性进行校核。
<5)采用比率差动保护。
比率差动保护是差动保护的一种。