第二篇11电子探针显微分析知识讲解
- 格式:ppt
- 大小:2.50 MB
- 文档页数:50
电子探针显微分析电子探针显微分析(Electron Probe Microanalysis,简称EPMA)是一种用于材料分析的先进技术。
它结合了扫描电子显微镜(Scanning Electron Microscopy,简称SEM)和能谱仪,能够提供高分辨率的成分分析和元素分布图像。
电子探针显微分析的原理是利用电子束和样品之间的相互作用。
首先,电子束通过集束系统聚焦到样品表面,与样品发生相互作用。
这些相互作用包括:在样品表面产生的次级电子、背散射电子和散射电子。
次级电子是从样品表面弹出的电子,背散射电子是从样品内部产生的电子,散射电子是从相互作用点散射出的电子。
次级电子和背散射电子是电子显微镜的常规成像信号,这部分信号可以用来获得样品的表面形貌和显微结构。
而散射电子则包含了样品的化学信息,通过能谱仪可以对这些散射电子进行能谱分析,获得样品的元素组成。
电子探针显微分析既可以定性分析材料中的元素,也可以定量分析元素的含量。
电子探针显微分析在材料科学、地质学、环境科学等领域广泛应用。
它可以对金属、陶瓷、半导体、岩石等各种材料进行分析。
在材料科学研究中,电子探针显微分析可以用于分析材料中的微观缺陷、晶体结构和化学成分。
在地质学研究中,它可以用于分析岩石样品中的矿物成分和地球化学元素分布。
在环境科学研究中,它可以对大气颗粒物、水体中的溶解物等进行化学成分分析。
除了成分分析,电子探针显微分析还可以进行元素的显微分布分析。
通过调整电子束的扫描区域和扫描速度,可以获得样品中元素的分布图像。
这些图像可以用来研究材料的相分离、溶质迁移和化学反应等过程。
总之,电子探针显微分析是一种强大的材料分析工具。
它提供了高分辨率、高灵敏度的成分分析和元素分布图像,对于研究材料的结构和性质具有重要意义。
未来,随着技术的不断进步,电子探针显微分析将在更多领域展示其潜力和应用价值。
【材料课堂】一文了解电子探针显微分析的原理及应用一般的化学分析方法仅能得到分析试样的平均成分,而在电子显微镜上却可实现与微区形貌相对应的微区分析,因而是研究材料组织结构和元素分布状态的极为有用的分析方法。
今天就跟大家一起聊一聊电子探针显微分析的原理和特点。
电子探针的功能主要是进行微区成分分析。
它是在电子光学和x射线光谱学原理的基础上发展起来的一种高效率分析仪器。
原理用细聚焦电子束入射样品表面,激发出样品元素的特征x射线。
分析特征x射线的波长(或特征能量)即可知道样品中所含元素的种类(定性分析)。
分析x射线的强度,则可知道样品中对应元素含量的多少(定量分析)。
电子探针仪镜筒部分的构造大体上和扫描电子显微镜相同,只是在检测器部分使用的是x射线谱仪,专门用来检测x射线的特征波长或特征能量,以此来对微区的化学成分进行分析。
因此,除专门的电子探针仪外,有相当一部分电子探针仪是作为附件安装在扫描电镜或透射电镜镜简上,以满足微区组织形貌、晶体结构及化学成分三位一体同位分析的需要。
电子探针的镜筒及样品室和扫描电镜并无本质上的差别,因此要使一台仪器兼有形貌分析和成分分析两个方面的功能,往往把扫描电子显微镜和电子探针组合在一起。
电子探针的信号检测系统是x射线谱仪,用来测定特征波长的谱仪叫做波长分散谱仪(WDS)或波谱仪。
用来测定x射线特征能量的谱仪叫做能量分散谱仪(EDS)或能谱仪。
一、波长分散谱仪(波谱仪,WDS)1、工作原理在电子探针中x 射线是由样品表面以下一个微米乃至纳米数量级的作用体积内激发出来的,如果这个体积中含有多种元素,则可以激发出各个相应元素的特征波长x射线。
特征x射线的波长(或频率),并不随入射电子的能量(加速电压)不同而不同,而是由构成物质的元素种类(原子序数)所决定的。
在各种特征x射线中,K系列是主要的,虽然K系列的x射线有好多条,但其强度最高的只有三条。
若在样品上方水平放置一块具有适当晶面间距d的晶体,入射x射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的x射线就会发生强烈衍射。
扫描电子显微分析与电子探针演示文稿一、介绍电子显微分析技术是通过对物质进行扫描和分析,利用扫描电子显微镜和电子探针来获取材料的化学成分、晶体结构和显微结构等信息。
本文将介绍扫描电子显微分析和电子探针的原理、应用和相关技术。
二、扫描电子显微分析原理1.高能电子入射2.电子-物质相互作用当高能电子束与样品表面相互作用时,会产生多种次级电子、散射电子和反冲电子等。
通过检测和分析这些次级电子,可以推断出材料的表面形态、原子分布等信息。
3.映射制图三、电子探针电子探针是在扫描电子显微镜上配备的一个仪器,用于对样品进行微区分析,可以获得样品的化学成分、晶体结构和显微结构等信息。
1.材料组成分析电子探针可以通过扫描样品表面并测量X射线谱来确定样品的化学成分。
当高能电子束与样品相互作用时,会产生特定能量的X射线,通过测量和分析这些X射线的能量和强度,可以准确地确定样品中元素的类型和含量。
2.显微区结构分析电子探针还具有高空间分辨率,可以在显微区域内对样品的晶体结构进行分析。
利用电子束的扫描和集线系统结构,研究者可以选择一个很小的区域进行分析,从而得到显微区的晶体结构信息。
四、应用领域1.材料科学在材料科学中,扫描电子显微分析和电子探针技术可用于分析和表征各种材料的组成、晶体结构和显微结构,如金属材料、陶瓷材料、复合材料等。
这些信息有助于研究者了解材料的性能和性质。
2.地质学3.生物学五、技术发展1.分辨率的提高新一代的扫描电子显微镜和电子探针仪器分辨率更高,可实现更高精度的成分分析和显微观察。
例如,现在的仪器可以实现亚纳米级别的空间分辨率。
2.信号检测和处理技术的改进通过改进信号检测和处理技术,使得扫描电子显微分析和电子探针技术对噪声和干扰信号的抑制能力更强,从而提高了数据的准确性和可靠性。
六、总结扫描电子显微分析和电子探针技术是现代材料科学研究中不可或缺的工具。
它们在分析样品的化学成分、晶体结构和显微结构等方面具有重要作用,广泛应用于材料科学、地质学和生物学等领域。