高一函数定义域练习题
- 格式:docx
- 大小:106.48 KB
- 文档页数:2
函数定义域、值域、解析式习题及答案一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3}-\frac{3}{x-1}$先求分母的取值范围,$x+3\neq 0$,$x\neq -3$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$x^2-2x-15$的值域为$(-\infty,-16]\cup [3,\infty)$,$2x-1$的值域为$(-\infty,\infty)$,$4-x^2$的值域为$[-4,\infty)$。
因此,$y$的定义域为$(-\infty,-3)\cup (-3,1)\cup (1,3)\cup (3,\infty)$。
⑵ $y=1-\frac{1}{x-1}+\frac{2x-1}{x^2-4}$先求分母的取值范围,$x^2-4\neq 0$,$x\neq \pm 2$;$x-1\neq 0$,$x\neq 1$。
然后考虑分子的取值范围,$2x-1$的值域为$(-\infty,\infty)$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
⑶ $y=x+1-\frac{1}{1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}}$先求分母的取值范围,$x-1\neq 0$,$x\neq 1$;$4-x^2\neq 0$,$x\neq \pm 2$。
然后考虑分母的值域,$1+\frac{1}{x-1}+\frac{2x-1}{4-x^2}>0$,即$\frac{2x-1}{x^2-4}>-\frac{1}{x-1}$。
因此,$y$的定义域为$(-\infty,-2)\cup (-2,1)\cup (1,2)\cup (2,\infty)$。
4)$f(x)=\frac{x-3}{x^2-2}$的定义域为$(-\infty,-\sqrt{2})\cup (-\sqrt{2},3)\cup (3,\sqrt{2})\cup (\sqrt{2},\infty)$。
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域练习题1.函数2()lg(31)f x x =++的定义域是( ) A .1(,)3-∞- B .11(,)33- C .1(,1)3- D .1(,)3-+∞ 2. 已知1()1f x x =+,则函数(())f f x 的定义域是( ). A .{|1}x x ≠- B .{|2}x x ≠-C .{|12}x x x ≠-≠-且D .{|12}x x x ≠-≠-或 3.函数=y =R ,则k 的取值范围是( )A.09k k ≥≤-或B.1k ≥C.91k -≤≤D. 01k <≤ 4.函数()f x = )A .2[0,]3B .[0,3]C .[3,0]-D .(0,3) 5.若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是( ) A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a - 6.已知函数()f x 的定义域为[0,4],求函数2(3)()y f x f x =++的定义域为( )A .[2,1]--B .[1,2]C .[2,1]-D .[1,2]- 7.若函数()f x 的定义域为[2,2]-,则函数f 的定义域是( ).[4,4]A - .[2,2]B - .[0,2]C .[0,4]D 8.已知函数1()lg 1x f x x+=-的定义域为A ,函数 ()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A 、B 的关系中,不正确的为( )A .AB ⊇ B .AB B =C .A B B =D .B ⊂≠A 9.函数y =的定义域为 ( ) A .[4,1]- B .[4,0)-C .(0,1]D .[4,0)(0,1]-10. 若函数22()(23)(3)1f x a a x a x =--+-+的定义域和值域都为R ,则a 的取值范围是( )A .1a =-或3B .1a =-C .11a a >-<-或D .13a -<<11.已知函数22(1)1x y ax a x -=-+-的定义域是R , 则实数a 的范围是__________________12.若函数()f x 的定义域是[0,1],则()()f x a f x a +⋅- 102a <<的定义域是________.13.求下列函数的定义域:(1)y =y = . 14lg -15. (1) 已知函数2(log )f x的定义域是,求函数2(3)f x -的定义域(2) 已知函数(23)f x -的定义域是(1,4)-,求函数(13)f x -的定义域. 16.⑴求下列函数的定义域:0()f x -=+ ⑵已知函数()f x 的定义域是(,)a b ,求函数()(31)(31)F x f x f x =-++的定义域。
函数定义域练习题一、选择题1. 函数f(x) = 1/x的定义域是:A. (-∞, 0) ∪ (0, +∞)B. RC. [0, +∞)D. (-∞, 0) ∪ [1, +∞)2. 若函数f(x) = √(x - 1)的定义域是:A. (-∞, 1]B. [1, +∞)C. (-∞, 1)D. (1, +∞)3. 函数g(x) = log(2x + 3)的定义域是:A. (-∞, -3/2)B. (-3/2, +∞)C. (-∞, -1/2)D. [0, +∞)4. 函数h(x) = 2^(-x)的定义域是:A. (-∞, 0)B. RC. (0, +∞)D. [1, +∞)5. 函数p(x) = sin(πx)的定义域是:A. RB. (-∞, 0) ∪ (0, +∞)C. (-∞, 1) ∪ (1, +∞)D. [0, 1]二、填空题6. 函数f(x) = 1/√(1 - x^2)的定义域是_________。
7. 若函数y = √(4 - x) + 1,则x的取值范围是_________。
8. 函数y = log(1 - 2x)的定义域是_________。
9. 函数y = 1/(3x - 1)的定义域是_________。
10. 函数y = cos(2x)的定义域是_________。
三、解答题11. 已知函数f(x) = √(4 - x) - 1,请求解其定义域,并说明理由。
12. 函数g(x) = log(-x^2 + 5x - 4)的定义域是什么?请给出详细的求解过程。
13. 给定函数h(x) = 1/(1 - x^2),求其定义域,并解释为什么x不能等于1或-1。
14. 函数p(x) = √(-x^2 + 4x)的定义域是什么?请证明你的结论。
15. 函数y = log(2 - x)的定义域如何确定?请列出所有可能的x值。
四、综合题16. 已知函数f(x) = log(3x - 1) / (x^2 - 4),求其定义域,并解释为什么x不能取-2和2。
函数定义域练习题1.函数)13lg(13)(2++-=x xx x f 的定义域是 ( ) A .(∞-,31-) B .(31-,31) C .(31-,1) D .(31-,∞+) 2. 函数)1lg(11)(++-=x xx f 的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .R3. 若函数)12(log 1)(2+=x x f ,则)(x f 的定义域为 ( ) A.)0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,21(- 4函数y =的定义域为 ( ) A.( 3,1) B(3,∞) C (1,+∞) ( )1k ≤-3,0] D .(0,3)()()()g x f x f x =--的定义 A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a - 9.设I =R ,已知2()lg(32)f x x x =-+的定义域为F ,函数()lg(1)lg(2)g x x x =-+-的定义域为G ,那么GU I C F 等于 ( )A .(2,+∞)B .(-∞,2)C .(1,+ ∞)D .(1,2)U(2,+∞)10.已知函数)(x f 的定义域为[0,4],求函数)()3(2x f x f y ++=的定义域为( )A .[2,1]--B .[1,2]C .[2,1]-D .[1,2]-11.若函数()f x 的定义域为[-2,2],则函数f 的定义域是 ( )A .[-4,4]B .[-2,2]C . [0,2]D . [0,4]12.已知函数1()lg 1x f x x +=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A 、B 的关系中,不正确的为 ( )A .A ⊇B B .A ∪B=BC .A∩B=BD .B ⊂≠A13. 函数y =-x 2-3x +4x的定义域为 ( ) A .[-4,1] B .[-4,0) C .(0,1] D .[-4,0)∪(0,1]14. 若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是 ( ) <12)______.20.求函数的定义域:(1)x x x x x x f +-++-=02)1(65)(; (2)y =(3)y . ((1,2)) (4)lgsin y x =- ([5,)(0,)ππ--)21. 设2()lg 2x f x x +=-,求2()(2x f f x+的定义域.(13)f x -的定义域;2(6)x -的定义域.。
高中定义域试题及解析及答案1. 函数 \(f(x) = \sqrt{x - 3}\) 的定义域是什么?2. 若 \(g(x) = \frac{1}{x - 2}\),求 \(g(x)\) 的定义域。
3. 函数 \(h(x) = \frac{3x - 5}{x^2 - 4}\) 在哪些 \(x\) 值下是有定义的?4. 已知 \(k(x) = \log_{2}(x + 4)\),求 \(k(x)\) 的定义域。
5. 函数 \(m(x) = \frac{\sqrt{x + 2}}{x - 1}\) 在哪些 \(x\) 值下是有定义的?解析与答案1. 对于函数 \(f(x) = \sqrt{x - 3}\),我们需要保证根号内的表达式非负,即 \(x - 3 \geq 0\)。
解得 \(x \geq 3\)。
因此,\(f(x)\) 的定义域是 \([3, +\infty)\)。
2. 对于函数 \(g(x) = \frac{1}{x - 2}\),分母不能为零,所以\(x \neq 2\)。
因此,\(g(x)\) 的定义域是 \((-\infty, 2) \cup (2, +\infty)\)。
3. 对于函数 \(h(x) = \frac{3x - 5}{x^2 - 4}\),分母 \(x^2 -4\) 不能为零,即 \(x \neq \pm 2\)。
因此,\(h(x)\) 的定义域是\((-\infty, -2) \cup (-2, 2) \cup (2, +\infty)\)。
4. 对于函数 \(k(x) = \log_{2}(x + 4)\),对数函数的自变量必须大于零,即 \(x + 4 > 0\)。
解得 \(x > -4\)。
因此,\(k(x)\) 的定义域是 \((-4, +\infty)\)。
5. 对于函数 \(m(x) = \frac{\sqrt{x + 2}}{x - 1}\),根号内的表达式必须非负,即 \(x + 2 \geq 0\),同时分母不能为零,即 \(x \neq 1\)。
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一必修一定义域练习题一、基础题1. 求函数f(x) = √(x 1)的定义域。
2. 求函数g(x) = 1/(x^2 4)的定义域。
3. 求函数h(x) = (x + 2)/(x^2 9)的定义域。
4. 求函数k(x) = |x 3|的定义域。
5. 求函数m(x) = log₂(x 2)的定义域。
二、提高题1. 求函数f(x) = √(4 x^2)的定义域。
2. 求函数g(x) = √(x^2 5x + 6)的定义域。
3. 求函数h(x) = 1/√(x^2 3x + 2)的定义域。
4. 求函数k(x) = (x 1)^2/(x^2 2x)的定义域。
5. 求函数m(x) = log₃(x^2 4x + 3)的定义域。
三、综合题1. 已知函数f(x) = √(3x 2)/(x^2 5x + 6),求其定义域。
2. 已知函数g(x) = (x + 1)/(√(x^2 2x 3)),求其定义域。
3. 已知函数h(x) = log₄(√(x^2 6x + 9)),求其定义域。
4. 已知函数k(x) = √(4 x^2) + 1/(x 2),求其定义域。
5. 已知函数m(x) = √(x^2 5x + 6) log₂(x 3),求其定义域。
四、应用题1. 一个正方形的边长是x厘米,如果边长增加2厘米,面积增加20平方厘米,求x的取值范围。
2. 某企业的成本函数为C(x) = 3x^2 2x + 10,其中x为生产的产品数量,求C(x)的定义域。
3. 一辆汽车以每小时x公里的速度行驶,行驶了t小时后,其油耗量为y升,已知油耗量与速度的关系为y = x^2/20,求x的取值范围。
4. 某商品的价格为p元,需求量q与价格p的关系为q = 100 p,求该商品的需求量q的定义域。
5. 一个等腰三角形的底边长为2x厘米,腰长为x厘米,求x的取值范围。
五、拓展题1. 求函数f(x) = √(x^3 x^2 6x)的定义域。
函数概念与性质1.函数定义域1、函数x x x y +-=)1(的定义域为A .{}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x2、函数x x y +-=1的定义域为A .{}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x3、若函数)(x f y =的定义域是[]2,0,则函数1)2()(-=x x f x g 的定义域是A .[]1,0B .[)1,0C .[)(]4,11,0D .()1,04、函数的定义域为)4323ln(1)(22+--++-=x x x x xx f A .(][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 -5、函数)20(3)(≤<=x x f x 的反函数的定义域为A .()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,96、函数41lg)(--=x xx f 的定义域为 A .()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41,7、函数21lg )(x x f -=的定义域为A .[]1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11,8、已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N MA .{}1->x xB .{}1<x xC .{}11<<-x xD .Φ9、函数)13lg(13)(2++-=x xx x f 的定义域是A .⎪⎭⎫ ⎝⎛+∞-,31 B .⎪⎭⎫ ⎝⎛-1,31 C .⎪⎭⎫ ⎝⎛-31,31 D .⎪⎭⎫ ⎝⎛-∞-31,10、函数的定义域2log 2-=x y 是A .()+∞,3 B .[)+∞,3 C .()+∞,4 D .[)+∞,411、函数的定义域x y 2log =是A .(]1,0 B .()+∞,0 C .()+∞,1 D .[)+∞,112、函数)1(log 12)(2---=x x x f 的定义域为 .2.函数与值域练习题一、填空题1、定义在R 上的函数()f x 满足()()()2(,),(1)2f x y f x f y xy x y R f +=++∈=,则(0)f = ,(2)f -= 。
函数定
义域练习题 1.函数)13lg(13)(2
++-=x x
x x f 的定义域是 ( ) A .(∞-,31-) B .(31-,3
1
) C .(31-,1) D .(31-,∞+) 2. 函数)1lg(11)(++-=x x x f 的定义域是 ( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)∪(1,+∞) D .R
3. 若函数)
12(log 1)(2+=
x x f ,则)(x f 的定义域为 ( ) A.)0,21(- B.),21(+∞- C.),0()0,21(+∞⋃- D.)2,2
1(- 4
函数y =的定义域为 ( ) A.( 34,1) B(34,∞) C (1,+∞) D. ( 34
,1)∪(1,+∞) 5. 已知()f x =11+x ,则函数(())f f x 的定义域是 ( ) A .{|1}x x ≠- B .{|2}x x ≠- C .{|12}x x x ≠-≠-且 D .{|12}x x x ≠-≠-或 6.
函数=y R ,则k 的取值范围是 ( )
A.09k k ≥≤-或
B.1k ≥
C.91k -≤≤
D. 01k <≤
7.函数23)(x x x f -=的定义域为 ( )
A .[0,32 ]
B .[0,3]
C .[-3,0]
D .(0,3) 8.若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是 ( )
A .[,]a b
B .[,]b a --
C .[,]b b -
D .[,]a a - 9.设I =R ,已知2()lg(32)f x x x =-+的定义域为F ,函数()lg(1)lg(2)g x x x =-+-的定义域为G ,
那么GU I C F 等于 ( )
A .(2,+∞)
B .(-∞,2)
C .(1,+ ∞)
D .(1,2)U(2,+∞) 10.已知函数)(x f 的定义域为[0,4],求函数)()3(2x f x f y ++=的定义域为 ( )
A .[2,1]--
B .[1,2]
C .[2,1]-
D .[1,2]- 11.若函数()f x 的定义域为[-2,2]
,则函数f 的定义域是 ( ) A .[-4,4] B .[-2,2] C . [0,2] D . [0,4]
12.已知函数1()lg 1x f x x +=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于
A 、
B 的关系中,不正确的为 ( )
A .A ?
B B .A ∪B=B
C .A∩B=B
D .B ?≠
A 13. 函数y =-x 2-3x +4
x
的定义域为 ( ) A .[-4,1] B .[-4,0) C .(0,1] D .[-4,0)∪(0,1]
14. 若函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,则a 的取值范围是 ( )
A .a =-1或3
B .a =-1
C .a > 3或a <-1
D .-1 < a < 3
15. 若函数y =f (x )的定义域是[0,2],则函数 g (x )=21
f x x ()-的定义域是 ( ) A. [0,1] B. [0,1) C. [0,1)∪(1,4] D. (0,1)
16. 设函数()0)f x a <的定义域为D ,若所有点(,())(,)s f t s t D ∈ 构成一个正方形区域,则a 的值为 ( )
A .2-
B .4-
C .8-
D .不能确定17. 函数261x
x y --=的定义域是 . 18.已知函数22(3)1x y ax a x -=--+的定义域是R , 则实数a 的范围是_________________ .
19.若函数f (x )的定义域是[0,1],则f (x +a )·f (x -a ) (0<a <12)的定义域是__
______. 20.求函数的定义域:
(1)x x x x x x f +-++-=0
2)1(65)(; (2)y =
(3)
y . ((1,2)) (4)lgsin y x =- ([5,)(0,)ππ--U )
21. 设2()lg 2x f x x +=-,求2()()2x f f x
+的定义域. 22. (1) 已知函数(23)f x -的定义域是(-1, 4), 求函数(13)f x -的定义域;
(2) 已知函数2(log )f x 的定义域是1[,8]32,求函数2(6)f x -的定义域.。