小曲线半径对动车组轮对轮缘磨耗的影响及对策
- 格式:pdf
- 大小:877.09 KB
- 文档页数:5
浅谈小半径曲线钢轨磨耗的原因与整治措施小半径曲线钢轨磨耗是指在铁路交通运行过程中,位于小半径曲线处的钢轨因受到高速列车的持续运行摩擦、压力等多种因素的作用而出现的磨耗现象。
这种磨耗对于铁路交通的安全和运行质量都会产生严重的影响,因此需要采取相应的整治措施来减少磨耗,保障铁路运行的安全和顺畅。
造成小半径曲线钢轨磨耗的原因主要有以下几个方面:1.硬轮对钢轨磨损:因为小半径曲线处列车需要进行弯道运行,车轮与钢轨之间的分离力较小,对车轮和钢轨产生了较大的摩擦力,使得钢轨表面出现磨损。
2.车轮滚动作用:车轮在弯道处的滚动作用是不规则的,部分车轮轴向滚动时的滑移速度较快,会对钢轨表面产生较大的冲击力,导致磨耗加剧。
3.钢轨断裂:小半径曲线处的钢轨由于承受了较大的曲线压力,容易发生断裂,断裂面上的边缘会出现严重磨耗。
为了减少小半径曲线处钢轨的磨耗,可以采取以下整治措施:1.增加曲线半径:适当增大曲线半径可以减小列车在曲线上的侧向加速度,减少与钢轨之间的冲击力,从而减轻钢轨的磨耗。
2.优化曲线设计:合理地设计曲线的曲率和过渡曲线,减少曲线的变化率能够减小列车在曲线上的横向力,降低钢轨磨损。
3.加强轮对的维护:对列车车辆的轮对进行定期的维护和检验,保证车轮的圆度、踏面磨耗等参数在规定范围内,减小车轮对钢轨的冲击力。
4.增加轨道支撑力:通过修建合适的支撑结构,增加钢轨在曲线处的支撑力,减少钢轨的侧向滑移,降低磨损。
5.加强钢轨的维修:对于损坏严重的钢轨,及时进行更换和修复,保持钢轨的良好状态,减少磨损。
6.加装降噪设备:在小半径曲线出口处加装降噪装置,减少列车进入曲线的时候产生的噪音和震动,改善列车运行的环境。
总之,钢轨的磨耗是不可避免的,但通过合理的曲线设计、轮对维护和钢轨的维修等措施可以有效减少小半径曲线处钢轨的磨耗。
同时,也需要加强对铁路交通的监测和管理,及时发现和处理存在的问题,确保铁路运行的安全和稳定。
重载铁路小半径曲线轮轨磨耗影响因素与减磨措施分析作者:陈凯来源:《海峡科技与产业》 2018年第6期摘要:为了使重载列车在小半径曲线上行驶时更加平稳和安全,并且减小对车轮和钢轨的磨耗,通过应用动力学仿真软件对重载铁路车辆建立精密的轨道动力学仿真模型。
在仿真模型中通过对个别参数进行变化,从而引起一系列的相关参数的变化。
通过对参数的变化规律进行总结,研究不同轴重火车下曲线半径以及重载铁路曲线超高对轮轨磨耗的影响以及减磨措施。
关键词: 小半径曲线;重载铁路;轮轨磨耗;减磨措施中图分类号:U29 文献标识码:A包神铁路(包头至神东)是国家能源集团铁路网主要干线,也是我国西煤东运战略通道的重要组成部分,近年来,随着我国经济的发展和“一带一路”伟大战略的实施,我国的进出口贸易活动变得越来越频繁,这就对货物的运输能力提出了越来越高的要求。
而在各种不同的运输形式之中,重载铁路运输有着其得天独厚的优势,例如成本更低、运量更大等。
在这种背景条件下,重载铁路运输得到了大力地发展,但是在高速发展的过程中难免会遇到一些问题。
如为了能够运输更多的货物,车辆的轴重变得越来越大,车辆的长度也在不断加长,同时车辆的行驶速度也在不断地加快[1]。
在这种情况下,轮轨磨耗损坏的现象变得越来越频繁。
而且这些现象往往都发生在车辆通过小半径曲线时。
所以,在对曲线的各项参数进行设置时,除了要保证重载火车能够安全而平稳地通过曲线,还要尽可能地减小车轮和钢轨之间的磨耗。
为此,本文利用计算机软件对重载铁路车辆建立了精密的轨道动力学仿真模型,对重载列车通过小半径曲线时的各项参数进行了重点分析,为减小轮轨磨耗提供数据依据。
1 不同轴重火车下曲线半径对轮轨磨耗的影响及减磨措施分析应用计算机软件建立轨道动力学仿真模型,其具体参数见表1。
利用动力学仿真分析软件得到的数据,总结出了以下规律。
当车辆的轴重分别达到25t和30t时,车辆的所有动力学的数据会依次下降。
小半径曲线钢轨磨耗分析及整治措施小半径曲线的换轨周期,主要由上股钢轨的侧面磨耗和波形磨耗来控制。
我国铁路行业小半径曲线上的钢轨有98%是由于侧面磨耗超限而报废的。
对于小半径曲线上的钢轨而言,轮轨的磨耗和损伤十分严重,具体表现在曲线上股钢轨侧磨加剧,导致几何形状发生改变,有效截面减小,影响运营安全。
因此,必须在钢轨磨损达到一定限度时就更换钢轨,以保证列车的运营安全。
严重的钢轨侧面磨耗减少了钢轨的强度,加剧了钢轨的伤损,缩短了钢轨的使用寿命,不仅浪费大量的资金,而且还干扰运营任务的完成。
因此,延长钢轨使用寿命对解决轨道交通因钢轨磨耗而出现报废的问题具有积极意义。
1 曲线钢轨磨损机理钢轨磨耗主要有垂直磨耗、侧面磨耗、鞍型磨耗和波形磨耗(简称波磨)等。
其中影响最大的是钢轨的侧面磨耗和波形磨耗,下面就这两种磨耗机理进行简单阐述。
波磨机理波形磨耗是指钢轨使用后钢轨顶面出现的波形不均匀磨耗。
按其波长分为短波(波纹形磨耗)和长波(波浪形磨耗)两种。
据研究,钢轨波形磨损形成的充要条件是轮轨接触点上的法向力和切向力联合作用结果,使旧钢轨轨头内产生2~7mm深的塑性区,并且在纵向负蠕滑率作用下,塑性区向上向前产生碾压变形基础单波,同时踏面经过不均匀磨耗和压宽,由单波发展成多波,从而导致波形磨损的发生和发展。
在轮轨系统中,影响钢轨波磨形成的因素很多,大致分为两类:一是轮对的扭转粘滑振动的强度,它决定了是否会形成钢轨波磨;二是在车辆运行条件下,钢轨波磨是否会进一步发展,是加速还是减缓波磨的发展,则取决于轨道弹性和阻尼、机车车辆及其走形部构造特性、曲线半径、轮轨间粘着系数及轮轨蠕滑力特性曲线、轨道不平顺等因素(见图1)。
图1波磨示意图侧磨机理钢轨侧磨发生在小半径曲线的外股钢轨上,是目前曲线上伤损的主要类型之一。
列车在曲线上运行时,轮轨的摩擦与滑动是造成外轨侧磨的根本原因。
当机车车辆在直线轨道上运行时,一般轮轨间仅为一点接触,但列车通过小半径曲线时,外轮缘与外轨的轨距线相互贴靠,产生两点接触现象,并在该点上产生钢轨对车轮的导向力。
地铁小半径曲线钢轨磨耗分析及整治措施摘要:本文结合研究背景及意义,对小半径曲线钢轨磨耗类型进行分析,提出了一些避免发生小半径曲线钢轨磨耗的若干建议供大家参考。
关键词:地铁小半径曲线;钢轨磨耗分析;整治措施在当今社会城市快速发展背下下,汽车也越来越多。
城市中出现了大量的交通堵塞现象,这对城市居民出行生活及城市经济发展带来了很大的冲击和影响。
为了解决目前我国大、中、小规模的交通问题,很多大城市都在大力发展轨道交通网,并对其进行了深入研究。
在整个地铁钢轨中,最易遭受磨耗破坏的是小半径曲线,列车通过其曲线钢轨时,列车通过其自身的巨大惯性作用,将对其形成强烈的撞击,从而导致钢轨变形,引起钢轨横向磨耗和波磨,如果不采取有效的处理方法。
一、研究背景及意义地铁项目以地下为主体,采用了隧道的构造方式,在运行的时候可以搭载更多的乘客,并且因为钢轨的特殊性,它在运行的时候具有很高的正确性,不会造成车流拥堵的情况。
目前,国内很多大城市都在大力发展着,把轨道交通的规划和建设与原来的地面公交系统相结合起来,可以让城市公交变得更为便捷,进而对城市的经济发展起到了积极的推动效果。
在城市轨道地铁建筑施工中,街道、居民楼等诸多原有建筑均会对工程产生不同程度影响,因此,在轨道布设上缺失不了精心的规划设计,无法实现如同地面铁路般的工程设计那样应用到大范围的轨道半径曲线,而是会出现大量的小半径的曲线。
除此之外,在进行地铁钢轨的设计和施工时,还必须要注意与其它的地面公共交通的有效对接,这对钢轨的设计也会产生一定的影响。
因此,在实际规范建设中,钢轨的设计要比地面的常规钢轨要大很多,而且,根据列车行驶的作用,在地铁项目的小半径曲线部位,更易产生强烈的摩擦,从而造成钢轨的损坏。
钢轨是牵引列车运行的主体,它不可避免地要承受着从车轮上传来的载荷,这就导致了车轮与钢轨之间的摩擦力,在这种持续的摩擦力下,钢轨表面会出现一些磨损。
二、小半径曲线钢轨磨耗类型分析(一)小半径曲线钢轨侧磨问题分析对于小半径曲线钢轨而言,最为常见的磨损问题则是侧磨问题,其产生原因是由于钢轨本身的原因。
论小半径曲线钢轨磨耗原因及防治摘要:地铁运行的全程轨道中小半径曲线段最容易受到磨损危害。
当车辆到达曲线段时,轨道的曲线迫使机车转弯。
由于高速车辆的惯性大,对弯道路段的轨道会产生很大的影响。
当冲击力过大时,容易造成履带变形,对履带造成横向磨损破坏。
如果长时间不采取合理的措施,就会使轨道内外的荷载发生偏转,加剧轨道的磨损程度,引起车辆行驶的振动,甚至威胁车辆行驶的安全。
关键词:小半径曲线;钢轨磨耗;防治小半径曲线段是钢轨结构强度最薄弱的部分,在实际应用中容易受到病害的干扰。
本文综合分析了小半径曲线的病害类型,简要分析了病害原因,并根据分析结果提出了降低小半径曲线钢轨磨损的具体措施,以延长小半径曲线的使用寿命。
保证小半径曲线截面良好的运行状态。
1钢轨磨损的分类1.1钢轨的垂直磨损当轮对通过半径较小的曲线时,由于曲线轨道的外轨道比内轨道长,所以轮对轨道需要在内轨道上滑动才能平稳运行,这通常会导致轨道的垂直磨损。
为了保证列车通过曲线轨道时能够减少垂直磨损,必须严格设计轨道的曲线半径,如轨道的曲线半径应大于或等于840m,以减少磨损;乘用车轨道曲线半径应大于或等于920m,以避免轨道内侧竖向磨损,降低轨道压力块或接头块。
1.2钢轨的侧面磨损由于列车运行时曲线内外的距离差,往往会造成曲线轨侧磨,尤其是外轨侧磨更为严重。
列车运行时,轮缘对外轨的压力较大,轮轨摩擦较大。
1.3钢轨的波浪型磨损列车通过小半径曲线时,轮对的扭转共振产生交变纵向力,导致轮对与钢轨之间发生纵向滑动和波状磨损。
钢轨的波磨损还与小半径曲线的曲率以及轮轨的粘着状态有关。
波浪磨损的具体过程如下:当列车通过小半径曲线轨道时,由于车轮碰撞角的变化,轮轨的纵向剪切力超过轮轨,轮轨与轮轨之间的纵向滑动产生波谷,滑动后的累计能量被释放,减少轮轨磨损,产生波峰。
重复胶粘滑动时,轨面会产生波浪形磨损。
2钢轨磨耗产生的原因分析铁路弯道上钢轨磨损的原因有很多,甚至受多种因素的影响。
小半径曲线钢轨磨耗防治措施的探讨摘要:目前,地方性铁路仍然存在小半径曲线,钢轨磨耗病害十分严重,给交通运输和人们的生命安全造成了严重的影响和危害。
钢轨的磨耗一般是由于轮轨的反复摩擦、相互作用造成的,它不仅降低了轨道交通的安全性和可靠性,减少了轨道的使用寿命,也给交通道路管理部门造成了大量的金属耗费和成本投入,尤其以小半径曲线钢轨为最。
本文通过研究和分析造成小半径曲线钢轨磨损的原因,对其防治提出有效的解决办法和措施,以期提高小半径曲线钢轨的使用性能,延长它的使用寿命。
关键词:小半径曲线;钢轨;磨耗;原因;防治1、工程概述阳涉线为国铁Ⅱ级铁路,牵引种类为内燃,设计线路允许速度为60km/h。
阳涉线北起石太线的白羊墅车站,向南经平定、昔阳、和顺、左权四县,至邯长线的悬钟车站,全长185.571公里。
全线正线小半径曲线(R≤500m)共有80条,延长43432.22m;其中R=400m 24条,延长14934.74m;R=450m 13条,延长8102.26m;R=480m 1条,延长294.44m;R=500m 42条,延长20100.78m。
经调查发现,全线小半径曲线地段均不同程度的存在外轨磨耗、内轨压溃现象,并且随着牵引重量及运量的增加,磨耗速率不断加大,致使阳涉线提前进行换轨大修,2017年3月-2017年9月对全线磨耗严重的22条小半径曲线伤损钢轨进行了更换。
因此为减少运输成本,减缓小半径曲线钢轨磨耗的措施已迫在眉睫。
2、钢轨磨耗产生的原因分析铁路曲线上钢轨磨耗产生的原因很多,甚至受诸多因素的综合影响,究其根本原因是钢轨承受来自列车车轮的力,造成曲线外轨侧磨和垂磨。
由此可见,列车在曲线地段运行过程产生离心力和地球引力(力),根据力与反作用力的原理,曲线钢轨需提供与离心力及地球引力等大小反方向的力,因此造成曲线外轨垂磨、侧磨。
综上所述,曲线外轨产生磨耗的原因主要是围绕通过减少或减缓钢轨受力的角度,应用到现场实际上,主要表现在以下几个方面的原因。
论小半径曲线钢轨磨耗原因及防治发表时间:2019-07-03T16:36:50.923Z 来源:《基层建设》2019年第10期作者:王彪[导读] 摘要:小半径曲线由于轮轨接触情况复杂,导致钢轨磨损的情况比较严重。
中国铁路西安局集团有限公司工务机械段陕西西安 710016摘要:小半径曲线由于轮轨接触情况复杂,导致钢轨磨损的情况比较严重。
钢轨的磨损不仅会影响列车的运行平稳性,甚至可能会引发断轨造成行车安全事故。
每年小半径曲线轨道上报废的钢轨有绝大部分都是因为磨损导致的,通过钢轨打磨改善轮轨接触关系,减缓病害发展速度,从而增52A0其使用寿命对轨道建设具有重大意义。
关键词:小半径曲线钢轨磨损钢轨打磨钢轨的磨损危害性很大,尤其是小半径曲线钢轨磨损的程度更加严重。
本文首先研究了钢轨磨损的分类,一般的磨损可以分成三类;然后分析了导致小半径曲线钢轨磨损的原因,其中钢轨的位置、钢轨的运营条件、养护工作等对小半径曲线钢轨磨损的影响最大;最后提出了通过钢轨打磨技术减轻曲线段波磨,鱼鳞裂纹,改善轮轨接触关系,来提高钢轨使用寿命的建议。
一、钢轨磨损的分类1.1钢轨的垂直磨损当轮对经过小半径曲线时,由于曲线轨道的外轨线比内轨线长,轮轨在轨道上滑动时需要依靠在内侧钢轨上产生相对滑动才能顺利行驶,这种情况通常就会导致钢轨产生垂直磨损。
为了保证列车在经过曲线轨道时能够减少垂直磨损,必须严格设计轨道的曲线半径,例如对于厢式货车,轨道的曲线半径应该大于等于840米才能最大限度的减少磨损;对于客车,轨道的曲线半径应该大于等于920米才能避免轨道内侧产生垂直磨损,也避免了下股钢轨压溃掉块或接头掉块。
1.2钢轨的侧面磨损列车在运行时由于曲线内侧外侧的距离差,经常导致曲线钢轨的侧面磨损,尤其是钢轨的外轨侧面磨损更加严重。
列车运行时车轮轮缘对外轨的压力较大,轮轨之间的摩擦力变大,在摩擦力的作用下,外股钢轨产生侧面磨损。
1.3钢轨的波浪型磨损列车的轮对通过小半径曲线时,轮对扭曲共振产生交替的纵向力,导致轮对与钢轨之间产生纵向滑动而发生波浪型磨损。
浅谈小半径曲线钢轨磨耗原因及防治摘要:针对铁路运输小半径曲线轨道钢轨磨耗严重,危及铁路行车安全的问题,阐述了钢轨磨耗产生的机理分析了导致铁路曲线钢轨磨耗严重的原因,介绍了相应的防治措施。
关键词:力:小半径;曲线钢轨;磨耗;影响;防治措施前言:铁路钢轨在大自然的影响和列车作用下,会因锈蚀、磨耗和伤损到一定程度而不断更换。
在曲线轨道,特别是在小半径曲线轨道上,磨耗更为严重。
我们辽源矿业集团铁路运输公司始建于1931年,钢轨型号复杂,设备陈旧老化,小半径曲线多,坡度大,钢轨磨耗更为严重。
在养护维修中,近几年发现二百半径处钢轨磨耗远比其它处严重,表现为踏面磨耗、钢轨飞边、擦伤、剥落掉块和侧面磨耗,尤以侧面磨耗严重,需经常换轨。
而换轨大修费用十分昂贵,且浪费工时,人员劳动强度大,成本消耗大。
1钢轨磨耗产生的机理和影响因素机车车辆在轨道上运行时,会产生各种复杂地振动,导致复杂地作用与轨道上的荷载,产生各种各样的力。
行驶中的机车车辆作业于钢轨上的力是非常复杂的。
大体可分为垂直于轨面的竖向力,垂直于钢轨的横向水平力和平行于钢轨的纵向水平力三种。
轨道在这些力的作用下,产生各种各样的应力和变形。
这些力或由于机车车辆与轨道之间的相互作用,或由于轨道本身温度变化或其它原因而产生,对钢轨产生不同影响。
1.1竖向力的影响竖向力是指作用于钢轨的车轮荷载。
竖向力包括静轮重和附加动压力两部分,随行车速度的增加而增加,过大可以造成钢轨压溃现象。
影响竖向力的主要原因有:1.1.1车轮踏面因制动或其它原因被擦伤而形成扁瘢。
有扁瘢的车轮每转动一周要撞击钢轨一次。
产生具有冲击性质的轮载,使动力附加值增加。
1.1.2 车轮轮筛和轮心因圆周不同心而形成偏心。
有偏心的车轮在行驶过程中对钢轨施加冲击力,犹似蒸汽机车的过量平衡锤一样,使动力附加值增加。
113机车车辆通过曲线轨道时因未被平衡的外轨超高而产生的轮载偏载,使一股钢轨上的轮载增加,另一股钢轨上的轮载减小。
浅议地铁小半径曲线钢轨的减磨措施摘要:地铁轨道选线设计受城市地形、地物、地质、建筑、管线等的影响,地铁线路中小半径曲线所占比例较其他铁路居多。
本文结合深圳地铁轨道养护维修实际,提出若干措施减缓小半径曲线钢轨的磨耗速度,延长曲线轨道使用寿命,降低维修成本和换轨施工对列车运营的影响,同时增强轨道安全性。
关键词:小半径曲线减磨;涂油;轨底坡;超高;打磨;线路设计Abstract: by the rail route design urban terrain, geophysics, geology, architecture, pipelines, etc, the effects of the subway line in the proportion of medium and small radius curve than other railway in the majority. Combining with the shenzhen metro rail maintenance practical, and puts forward some measures to slow the small radius curve the abrasion of rail speed, prolong the service life of the curve track, reduce maintenance cost and change to the operation of the train tracks construction effect, and enhance the safety track.Keywords: small radius curve by grinding; With oil; Rail bottom slope; High; Burnish; Circuit design中图分类号:U213.4 文献标识码:A 文章编号:一、前言曲线钢轨是轨道平面的重要组成部分,也是轨道的薄弱环节之一。
浅谈铁路小半径曲线病害成因及其整治铁路运输的永恒主题是安全生产,安全生产的关键就是确保设备和人身安全。
目前铁路实施第六次提速尤其是动车组开行以后,对设备的要求更高、标准更严,只有不断探索铁路划时代改革的新形势下的安全生产管理,修建,维修,建立起一整套与铁路相适应的安全生产管理办法,才能更好的适应提速新形势,线路轨道是铁路运输的基础,身为一名铁路职工,如何搞好工务线路设备的维修养护工作,为铁路运输安全畅通夯实基础是我们铁路职工的职责,也对保障铁路运输的安全具有极为重要的意义。
下面就结合这几年在从事铁路工务工作,谈一下对铁路养护维修的一些体会。
铁路线路设备是铁路运输的基础设备,它常年裸露在大自然中,经受着风雨冻融和列车荷载的作用,轨道几何尺寸不断变化。
路基及基床不断产生变形,刚轨、连接零件及轨枕不断磨耗,因而是线路设备的技术状态不断发生变化。
线路维修养护贯彻“预防为主,防治结合,休养并重”的原则,经常保持线路设备完整和质量均衡,是列车能以规定速度安全、平稳和不间断的运行,并尽量延长设备的使用寿命。
因此合理养护线路,确保线路质量是保证工务部门安全生产的前提,也是保证铁路运输安全的基础,对企业经济效益的增长、人民生命财产的保障和国民生产总值的提高都有很重要的意义。
曲线轨道的构造与直线地段有不同特点:①曲线半径较小,轨距适当加宽;②外轨增设超高;③曲线两端与直线连接处设置缓和曲线。
轨距加宽机车车辆进入曲线时,因惯性作用,任然力图保持其原来行驶方向,仅当前轮碰到外轨,受到外轨引导,才延着曲线轨道行驶。
这是车辆的的转向架与曲线在平面上保持一定的位置和角度。
可能出现三种不同情况:第一种情况适当轨距足够宽时,只有前轴外轮的轮缘受到外轨的挤压力(称导向力)后轴则居于曲线半径方向,两侧轮缘与钢轨间都有一定的间隙,行车阻力最小;第二种情况是当轨距不够宽时,后轴(或其他一轴)的内轮轮缘也将受到内轨的挤压产生了第二导向力,行车阻力较前者增加;当轨距更小时,可能出现第三种情况,此时不但中间谋轴内轮受内轨挤压,而且后轴外轮也受到外轨挤压,车轮被楔住在两轨之间,不仅行车阻力大,甚至可能把轨道挤开。
浅谈地铁小半径曲线异常磨耗产生原因及解决对策分析摘要:近几年,我国的轨道交通行业有了很大进展,铁道工程建设越来越多。
城市轨道交通的建设和发展在很大程度上舒缓我国内各大城市中的交通拥堵问题,在城市居民出行时可以有多种路线搭配不同的交通方式选择,大幅节省了时间。
西安地铁线网建设已逐渐成型,随着长时间运营,调图缩短列车间隔,线路钢轨状态随之也出现一定程度上的损伤,由此引发的振动噪声问题也日益显著,尤其在小半径曲线区段,轮轨作用力致使钢轨表面出现波磨、掉块、肥边甚至裂纹等一系列影响列车安全运营的病害。
有效的降低钢轨伤损、曲线磨耗可降低地铁的运营成本,达到列车安全平稳运行的目的。
关键词:铁道工程;曲线磨耗;钢轨伤损引言有随着国民经济的快速发展,城市道路交通拥堵状况越发严重。
地铁作为城市的重要交通压力、实现城市经济和社会可持续发展起着重要作用,已成为地方政府投资的热点,当前国内很多城市新建地铁线路即将开通,如何确保新线开通试运营顺利实施。
根据国家相关规定,地铁试运营期间应满足安全性、可靠性、可用性、可维护性的要求。
如何保障上述各项工作顺利实施,从而达到试运营条件,是本文研究的重点。
作者通过总结西安地铁六号线前期建设至今运营以来的实践经验,对地铁曲线异常磨耗进行探讨和分析。
1曲线的概念铁道线路在平面上由一个方向转向另一个方向时,中间必须用曲线来连接,这种曲线通称平面曲线。
只有一个半径的曲线称为单曲线,由两个或两个以上不同半径组成的曲线称为复心曲线,线路上设置曲线时,应尽量采用单曲线,仅在困难条件下才设置复心曲线。
曲线的基本要素如图1-1所示,曲线的基本要素是:(1)曲线的转向角 a (转向角和线路中心角相等);(2)曲线半径 R (即圆曲线半径);(3)曲线切线长 T ;(4)曲线外矢距 E ;(5)曲线全长 L ;(6)缓和曲线长l。
;图中虚线为无缓和曲线的情况,实线为有缓和曲线的情况。
铁道线路在纵断面上由一个坡度转向另一个坡度,或由平坡与坡道连接时,当其代数差大于某一定值时,中间也必须用曲线连接,这种曲线通称竖曲线。
某型动车组车轮轮缘异常消耗问题改善摘要:本文介绍了某型出口低速动车组车轮的运用情况,异常磨耗问题处理等关键词:中低速动车组车轮轮缘异常磨耗0.引言某型出口中低速动车组,小半径曲线较多,且轨道维护情况差,车轮镟修不合理,导致车轮消耗严重.针对该型动车组的车轮异常磨耗进行了一系列调研和改进工作.1、轮缘异常磨耗问题概述轮缘:铁路车轮型线的内侧部分,车轮的型线由踏面和轮缘组成,轮缘有导向和防止脱轨的作用.在一般情况下,仅在通过曲线时轮缘会与曲线外轨接触.在曲线多、半径小的山区,常易发生轮缘及外轨过早磨耗的问题.该型动车组自运营以来,发现车轮轮缘磨耗量大.列车在运营4-5万公里时因轮缘磨耗即需镟轮,车辆运营至20万公里,经过4次镟轮后车轮消耗到限,属于典型的轮缘异常磨耗.列车运营20万公里车轮即消耗完,车轮寿命远远低于预期,严重影响了动车组的正常运用.在动车组车轮运用和维护过程中,车轮消耗主要两方面原因:一、车轮踏面和轮缘因为轮轨摩擦产生的磨耗;二、踏面和轮缘磨耗后为使车轮恢复到正常使用状态而对车轮进行镟修.2、线路条件及轮缘润滑系统介绍运营线路小半径曲线多,线路缺乏维护,轨道磨损情况严重,曲线处轨道未涂抹润滑油降低轮轨磨耗,增加车轮的使用寿命..正线曲线限速高,未平衡离心加速度(1.0,),曲线限速标识不明显,车辆通过曲线时有超速现象.3、原因分析针对轮缘润滑系统的调研分析,轮缘润滑系统存在以下问题:3.1.车辆自运营起未添加轮缘润滑油,轨道上未涂抹润滑油脂,通过曲线时轮缘与钢轨贴靠干磨,加剧磨耗.3.2.使用的轮缘润滑油为轴承润滑脂与机油勾兑,不满足技术规范要求,无法实现轮缘润滑效果.但轮缘磨耗速率由原来的0.8~1.2mm/万公里降至0.5~0.6mm/万公里.3.3 车轮镟修后,未对轮缘润滑装置喷嘴进行调整,喷到了车轮顶部,润滑效果减弱.3.4 业主的镟床为老旧的仿形加工镟床,镟轮样板宽度为140mm,动车组车轮为135mm宽度,且现有镟轮样板并非我司采用的EPS,S1002踏面.导致业主镟轮时踏面斜边长度方向多加工了5mm,当轮径加工量在15-20mm时,镟修后轮缘厚度仅恢复到28mm,每次镟轮后车辆运营3万余公里就需再次镟轮,镟轮加工造成了车轮的极大浪费.(图1)图1 、140宽车轮样板加工135宽度车轮示意图图2、由于靠模松动轮缘顶部加工形状不合格4、解决方案4.1将轮缘润滑脂更换为满足技术规范要求的某牌润滑脂,车辆日检时重点检查轮缘润滑系统工作状态.4.2制作轮缘厚度分别为30mm,32.5mm的EPS-S1002型宽度为135mm的踏面镟轮样板,现场指导培训业主规范镟轮.5、方案验证执行上述两项方案后,工作人员每15天测量车轮轮缘尺寸记录,以进行效果验证.方案实施前后轮缘磨耗数据对比:在使用EPS-S1002的镟轮样板后的一次车轮镟修情况如下:根据镟修后采用的建议检查样板检查135mm宽的镟轮样板能贴合车轮踏面斜线和轮缘根部圆弧的形状.并且,采用新的镟修样板后,轮径加工量在15mm时,轮缘厚度即可恢复到30-32mm镟修质量得到了很大的改善.经过数据统计分析,执行上述两项方案后,轮缘厚度磨耗从2016年的0.8-1.2mm/万公里下降到目前的0.2-0.3mm/万公里,镟轮的里程间隔已由3-5万公里提升的10-15万公里,效果显著.6、结论本文主要结合某型动车组项目轮缘异常磨耗的典型故障案例进行原因分析,提出解决方案,并进行跟踪验证,确定方案的有效性,提升动车组车轮的使用寿命.参考文献:[1]邹家龙《机车车轮轮缘非正常磨耗的原因分析及对策》中国机械 2014[2]马勇《NJ2机车在高原地区车轮非正常磨耗原因探析》铁道技术监督 2011。
3陈海林贵阳市城市轨道集团有限公司运营分公司550018摘要:铁路线路设备是铁路列车运行的基础,经常保持线路设备完整和质量均衡,才能使列车以规定速度安全、平稳和不间断地运行。
由于受到地形、特殊地物的影响,采用半径小于300米的曲线来绕避障碍,这类曲线在日常工作中称为小半径曲线。
随着运运输量快速增长,加之机车类型的更新,使钢轨的磨耗迅速增快,尤其是在小半径曲线地段钢轨磨耗尤为严重。
严重的钢轨磨耗削弱了钢轨的强度,加剧了钢轨的伤损,缩短了钢轨的使用寿命,对运行安全带来很大威胁。
因此如何减缓小半径曲线钢轨磨耗,延长钢轨与轮对的使用寿命成为技术革新和研修的方向。
关键词:小半径曲线;钢轨磨耗;原因分析;措施1曲线钢轨磨耗增快发展原因分析1.1小半径曲线超高设置不当超高过大或过小都将引起钢轨的偏载和轮轨间的不正常接触。
超高过大,列车的重载偏载于内股钢轨,显然对内股钢轨的磨耗加大,同时对外股钢轨的磨耗也不利,因为内外股钢轨的长度不等,在车轮箍导向车轮轮缘向外股行走时,可以利用轮缘踏面锥形坡度来弥补一部分,但在后轴上,一般内股轮缘紧贴内股,使内、外股钢轨行程差值相对较大,这部分差数只有靠外轮沿纵向滑动或内轮向后滑动或打空转来调整,这就导致外轨的磨耗。
如果超高过小,离心力显然得不到平衡,势必也增大横向力,也同样导致曲线外股钢轨的磨耗。
1.2轨底坡坡度较小在曲线轨道上,外股长、内股短,只有轮对外轮的滚动半径大于内轮的滚动半径时,转向架才有良好的通过曲线性能,从而减少车轮对钢轨的滑动摩擦距离。
曲线下股轨底坡较小时,车轮踏面接触位置内移,滚动半径增大,内外轮滚动半径差减少,滑动摩擦距离增大,从而加剧曲线外股钢轨的磨耗。
1.3轨道轨面几何尺寸偏差超限轨距超限,千分率递减不好,正矢偏差超限,由于扣件扭力不良,扣板离缝、松动,锚钉个别缺失,拉杆松动、脱落、失效,轨底大胶垫厚薄不均,焊缝打磨不顺等原因,易造成轨距不良而引发列车冲击力增大,加剧上股钢轨磨耗。
铁路线路小半径曲线病害成因及预防措施摘要:在铁路线路维修中,由于曲线地段相比直线地段更易产生各种病害,所以提高曲线的维修质量,增强曲线这一铁路线路上的薄弱环节,对提高线路整体质量、保证行车安全有着重要的意义。
文章重点就铁路线路小半径曲线病害成因及预防措施进行研究分析,以供参考和借鉴。
关键字:铁路线路;小半径曲线;病害成因;预防措施引言我国铁路承担着客运和货运的重担,是国民经济的大动脉,但是由于铁路长期暴露在自然环境中,受自然条件和机车车辆动力的双重影响,其轨道尺寸、路基和道床会产生一定的变化,给铁路线路埋下了病害隐患。
随着国民经济和国防建设的进一步发展,人们对铁路运输提出了更高的要求。
曲线病害是铁路线路设备的薄弱环节,也是铁路维护中的重点。
如果铁路线路设备状态的不良,在列车运行过程中就会受到横向水平力的作用,引起列车车体的摇晃,给列车的运行埋下了安全隐患。
因此,分析铁路线路病害,找出其病害的成因并及时对其进行整治,是确保铁路线路安全运营和延长铁路线路使用寿命的重要必要手段。
1铁路线路小半径曲线常见病害小半径曲线病害的产生与钢轨受力有着直接关系,当列车在曲线地段运行时,所产生的力是非常复杂的。
通过对列车作用于钢轨上的力的分析,可以将其分为三个方向,即竖直方向、水平横向以及水平纵向。
因此,小半径曲线在以上三个方向力的相互作用下,导致钢轨、线路几何尺寸、轨枕和道床等产生变化,经过一段时间的累积,各种变形进一步扩大,线路的各种病害就会逐步显现出来,从而对铁路安全运输造成隐患,铁路线路小半径曲线常见病害如下:1.1曲线钢轨磨耗小半径曲线钢轨磨耗往往是在多种因素的复合作用下形成的,造成曲线钢轨磨耗的原因主要有以下几种:第一,钢轨本身质量不过关;第二,曲线不圆顺、方向不良,使列车通过时产生左右摇晃;缓和曲线超高的递减距离不够,引起列车在缓和曲线运行时发生震动、摇晃和冲击;第三,超高偏大,车轮在重力作用下撞击摩擦曲线下股钢轨,从而逐渐形成下股钢轨磨耗;第四,超高偏小,车轮在离心力作用下撞击摩擦曲线上股钢轨,逐渐形成上股钢轨磨耗;第五,轨距超限,使车轮与钢轨的接触不好,增加行车阻力与摇晃;第六,缓和曲线超高的顺坡距离不够,引起列车在通过缓和曲线时产生剧烈振动,加速摇晃和冲击,造成钢轨非正常磨耗;第七,轨底坡不正确,使钢轨顶面与车轮踏面不相吻合,钢轨顶面受偏压,这些都会使钢轨加速磨耗。
地铁小半径曲线钢轨磨耗分析及整治措施发布时间:2023-01-04T02:48:51.330Z 来源:《新型城镇化》2022年23期作者:淡亚楠[导读] 在现代化城市的发展进程中,人们对于公共交通出行的要求在不断的提高,特别是在当前城市建设的交通运输压力不断增加的过程中,加强轨道交通的建设就显得非常重要的。
地铁具有自身的一些优势,对于上班族来说是非常重要的出行交通工具。
苏州市轨道交通集团有限公司运营一分公司江苏苏州 215200摘要:在当前交通运输系统日益发达的现阶段,城市轨道交通成为了人们出行的重要交通工具,地铁的发展建设就显得尤其重要,也是现代化城市建设发展重要的标志。
因此,对于地铁小半径曲线钢轨磨耗病害的严重性以及整治措施的研究非常重要,这对于当前城市轨道交通也是非常重要的课题。
地铁在运行的过程中,列车受离心力影响会对曲线钢轨有一定的磨耗,加强维修和养护是必不可少的,只有不断的提高地铁小半径曲线钢轨的维修和养护质量,才能更好的提高轨道线路状态,保障城市轨道交通列车安全平稳不间断的运行。
关键词:地铁;交通运输;措施;养护引言在现代化城市的发展进程中,人们对于公共交通出行的要求在不断的提高,特别是在当前城市建设的交通运输压力不断增加的过程中,加强轨道交通的建设就显得非常重要的。
地铁具有自身的一些优势,对于上班族来说是非常重要的出行交通工具。
但是,地铁小半径曲线钢轨在长时间的运行过程中,会产生一定的磨耗,对地铁的安全运行是有一定影响的。
但是在现阶段,我国地铁建设起步较晚,对于地铁系统的养护还有一定的局限性,因此,针对地铁小半径曲线钢轨磨耗的检修和养护整治还需要结合现代化的科学技术不断加强研究,这是对完善我国城市交通运输系统建设最重要的一项课题。
1 地铁小半径曲线钢轨磨耗概述及原因分析在城市交通运输系统中,地铁具有准时准点、便捷、不堵车等优势,对于上班族来说是非常重要的交通出行工具。
在地铁运行中,轨道线路是列车安全稳定运行的重要基础,也是整个城市轨道交通系统的不可缺少的一部分,地铁轨道的铺设工程是具有一定的难度和复杂性的,在运行中又具有运行时间长、列车间隔时间短、同时载客量又比较大的一些特点。
轨道车辆轮缘磨耗原因探究及应对策略摘要:针对某出口项目轨道交通车辆在开通运行之初,存在轮缘磨耗严重,车轮频繁进入镟修以确保其轮缘厚度尺寸不要超限。
经过分析,线路小曲线过多,是造成轮缘过度磨耗的主要原因。
通过润滑车轮和润滑轨道可以延缓轮缘磨耗的进程,延长车轮的使用寿命。
关键词:轮缘磨耗;Qr值;镟修;小曲线;润滑1.引言某出口项目铁路客车自开通运营以来,轮缘普遍磨耗较快,车轮镟修频繁导致多个转向架车轮轮径减少量已超过20㎜,最大减少量已将近30㎜。
轮缘磨耗严重,使轮轨匹配关系恶化,影响行车安全。
车轮频繁镟修,导致车轮使用寿命降低,最终导致列车的运营维护成本增加。
2.轮缘厚度及Qr值定义该出口项目列车轮对踏面外形采用LMA 型,LMA型轮缘踏面外形轮廓示意图见图1所示。
图1轮缘Qr值即图2中所示的l4的数值。
在列车日常运用维护过程中该Qr值须≥6.5㎜,轮缘厚度26㎜≥l6㎜≥34㎜。
图21.a点:轮缘最高点;2.b点:轮缘最高点向下2㎜垂线与轮缘交点;3.c点:踏面基点向上12㎜垂线与轮缘交点;4.d点:踏面基点;5.l1:12㎜;6.l2+ l1=轮缘高度;7.l3:取2㎜;8.l4:车轮Qr值;9.:70线;l510.l:轮缘厚度;63.数据采集及分析为跟踪轮缘磨耗规律,在列车运行交路基本不变的情况下,选取9组列车进行为期两个月的跟踪测量。
检测发现,在轮缘厚度大于26㎜的条件下。
部分列车最小轮缘磨耗量为1㎜/月,部分列车最大轮缘磨耗范围超过2㎜/月,平均轮缘磨耗均超过1.5㎜/月。
具体见图3所示。
图 3通过跟踪轮缘厚度及对应的Qr值,详见表1所示,通过分析发现:第1、2、3列车组在四级修修形后,在正式开通前已试运行近4个月,自正式开通运行1个月后,初始Qr值接近8㎜,Qr值下降趋势平缓;第4、5、6列车组在三级修镟修之后,初始Qr值接近9㎜,自正式开通运行1个月后,Qr值下降较快、下降趋势明显(异常);第7、8、9列车组未经高级修、未经镟修。