第五章 硅酸盐水泥熟料的煅烧
- 格式:doc
- 大小:168.50 KB
- 文档页数:9
硅酸盐水泥熟料的煅烧工艺硅酸盐水泥熟料是水泥生产过程中的关键原料之一,它通过煅烧工艺将原料中的生石灰和硅酸盐化合物进行热反应,形成熟料。
熟料是水泥生产的主要成果,它经过磨碎等加工步骤后可以用于生产各种类型的水泥产品。
本文将对硅酸盐水泥熟料的煅烧工艺进行详细介绍。
1. 原料准备硅酸盐水泥熟料的原料主要包括石灰石、白云石、黏土、铁矿石等。
在煅烧工艺中,这些原料需要经过粉碎、混合等步骤进行初步的处理。
原料准备的关键目标是确保原料的化学成分、粒度分布等参数能够满足生产要求,并能够保证煅烧过程中的稳定性和高效性。
2. 煅烧过程硅酸盐水泥熟料的煅烧过程一般分为预热、煅烧和冷却三个阶段。
2.1 预热阶段在预热阶段,原料进入煅炉前会先经过预热窑进行预热处理。
这个过程旨在将冷料加热到适宜的温度,以提高煅炉的热效率,并促进原料的分解反应。
2.2 煅烧阶段在煅烧阶段,原料进入煅炉进行煅烧反应。
这个阶段的关键过程是煅烧反应,通过将原料加热到高温,使其中的石灰石和硅酸盐化合物发生热反应,生成熟料。
煅烧过程需要控制温度、时间、气氛等参数,以确保反应的充分性和产物的质量。
2.3 冷却阶段在煅烧反应完成后,熟料需要经过冷却处理。
冷却的目的是使熟料从高温状态迅速降温,防止其过度烧结,并稳定其结构。
冷却过程一般采用空气冷却或水冷却的方式进行。
3. 参数控制硅酸盐水泥熟料的煅烧工艺需要对一系列的参数进行控制,以确保产品的质量和生产的稳定性。
3.1 温度控制温度是煅烧过程中最重要的参数之一。
煅烧反应的温度直接影响熟料的组成和品质。
过低的温度会导致反应不完全,熟料中未反应完全的硅酸盐化合物含量较高;过高的温度则会导致熟料的烧结,影响品质。
因此,温度的控制是煅烧工艺中的关键环节。
3.2 时间控制煅烧时间是指原料在煅烧炉中停留的时间。
时间过短会导致反应不完全,熟料中硅酸盐化合物含量较高;时间过长则会导致能耗过高,增加生产成本。
因此,时间的控制需要根据原料的组成和工艺的特点进行合理设定。
硅酸盐水泥熟料技术《硅酸盐水泥熟料技术》:采用最先进的工艺制备高质量水泥熟料硅酸盐水泥熟料技术是现代水泥工业中使用最广泛的生产方式之一。
它以含有高岭土和石灰石为主要原料,经过一系列的物理和化学反应,通过高温烧成得到熟料,最终通过磨矿和混合工艺生产出优质的硅酸盐水泥。
本文将对硅酸盐水泥熟料技术进行详细介绍。
首先,硅酸盐水泥熟料技术的核心工艺是熟料的烧成过程。
该工艺通常采用旋转窑或立窑进行,通过高温将原料进行煅烧,使其发生物理和化学变化。
在烧成过程中,高岭土和石灰石中的主要成分包括氧化钙、氧化硅、氧化铝和氧化铁等,经过热裂变、脱水、脱碳等反应,生成了大量的熟料矿物,如反硫酸钙(C2S)、反硫酸三钙(C3S)、反硫酸铁(Al2O3·Fe2O3)等。
其次,在熟料的制备过程中,控制烧成工艺参数是非常重要的。
温度、煅烧时间等参数直接影响熟料中矿物的生成和相对含量。
合理的烧成工艺可以提高熟料的反应活性和水化性能,从而进一步提高硅酸盐水泥的品质。
同时,烧成过程中的矿物相变和形貌变化也是影响熟料性能的重要因素。
通过优化工艺参数,可以调控熟料中矿物的相对含量,并提高熟料的综合性能。
此外,硅酸盐水泥熟料技术中的能耗问题也备受关注。
烧成过程需要大量的能源消耗,导致环境污染和能源浪费。
因此,在提高水泥熟料技术效能的同时,减少能源消耗也是一个重要的课题。
目前,一些新型的烧成工艺,如预分解窑、流化床窑等,已经被引入,取得了一定的成果。
通过这些新技术的应用,熟料的烧成温度和时间可以得到更好的控制,从而降低能源消耗和环境污染。
总结起来,硅酸盐水泥熟料技术是制备高质量水泥的重要工艺之一。
通过控制烧成工艺参数、优化矿物相对含量和形貌等方式,可以提高熟料的性能。
同时,减少能源消耗也是该技术的发展趋势之一。
未来,硅酸盐水泥熟料技术将不断创新与改进,为水泥行业的发展贡献更多的力量。
硅酸盐水泥熟料的煅烧§5-1 生料在煅烧过程中的物理化学变化§5-2 熟料形成的热化学§5-3 矿化剂、晶种对熟料煅烧和质量的影响§5-4 挥发性组分及其他微量元素的作用§5-5 水泥熟料的煅烧方法及设备【掌握内容】1、硅酸盐水泥熟料的形成过程:名称、反响特点、影响反响速度的因素;2、熟料的形成热、热耗的定义、一般数值、影响因素3、挥发性组分对新型干法水泥生产的影响4、悬浮预热器窑及预分解窑的组成、工作过程5、影响窑产、质量及消耗的因素【理解内容】1、C3S的形成机理,形成条件;2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施;3、回转窑的构造、组成、及工作过程;4、回转窑内“带〞的划分方法,预分解窑内“带〞的划分。
【了解内容】1、水泥熟料的煅烧方法及设备类型;2、矿化剂、晶种:定义、类型、作用、使用;3、湿法窑的组成,工作过程合格生料在水泥窑内经过连续加热,高温煅烧至局部熔融,经过一系列的物理化学反响,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。
结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。
第一节生料在煅烧过程中的物理化学变化生料在加热过程中,依次进展如下物理化学变化:一、枯燥与脱水〔一〕枯燥入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。
而干法生产中生料的含水率一般不超过1.0%。
〔二〕脱水当入窑物料的温度升高到450℃,粘土中的主要组成高岭土〔Al2O3·2SiO2·2H2O〕发生脱水反响,脱去其中的化学结合水。
此过程是吸热过程。
Al2O3·2SiO2·2H2O Al2O3 + 2SiO2 + 2H2O〔无定形〕〔无定形〕脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。
熟料煅烧液相量与温度熟料的烧结在很大程度上取决于液相含量及其物理化学性质。
因此,控制液相出现的温度、液相量、液相粘度、液相表面张力和氧化钙、硅酸二钙溶于液相的速率,并努力改善它们的性质至关重要。
1.最低共熔温度系 统最低共熔温度(℃) 系 统最低共熔温度(℃) C 3S-C 2S-C 3A 1455 C 3S-C 2S-C 3A –C 4AF 1338 C 3S-C 2S-C 3A -Na 2O 1430 C 3S-C 2S-C 3A -Na 2O -Fe 2O 3 1315 C 3S-C 2S-C 3A -MgO 1375 C 3S-C 2S-C 3A -Fe 2O 3 -MgO 1300 C 3S-C 2S-C 3A-Na 2O-MgO1365C 3S-C 2S-C 3A-Na 2O-MgO -Fe 2O 31280表1 一些系统的量低共熔温度液相出现的温度决定于物料在加热过程中的最低共熔温度。
而最低共熔温度决定于系统组分的性质与数目。
表1列出了一些系统的最低共熔温度。
由表1可知,系统组分数目越多,其最低共熔温度越低,即液相初始出现的温度越低。
硅酸盐水泥熟料由于含有氧化镁、氧化钠、氧化钾、硫矸、氧化钛、氧化磷等次要氧化物,因此,其最低共熔温度约为1280℃左右,适量的矿化剂与其他微量元素等降低最低共熔温度,使熟料烧结时的液相提前出现。
如参加矿化剂后最低共熔温度约1250℃,即1250℃开始出现液相。
2.液相量如前所述,熟料的烧结必须要有一定数量的液相。
液相是硅酸三钙形成的必要条件,适宜的液相量有利于C 3S 形成,并保证熟料的质量。
液相量太少,不利于C 3S 形成,反之,过多的液相易使熟料结大块,给煅烧操作带来困难。
液相量与组分的性质、含量及熟料烧结温度等有关。
因此,不同的生料成分与煅烧温度等对液相量有很大影响。
一般水泥熟料烧成阶段的液相量大约为20%~30%。
(1)液相量与煅烧温度、组分含量有关,根据硅酸盐物理化学原理,不同温度下形成的液相量可按下式计算:①煅烧温度为1338℃时:IM(P)>1.38 L=6.1F(6.1)IM(P)<1.38 L=8.2A-5.22F(6.2)②煅烧温度为1400℃和1450℃时:1400℃L=2.95A+2.5F+M+R(6.3)1500℃L=3.0A+2.2F+M+R(6.4)式中L——液相量(%);F——熟料中Fe2O3的含量(%);A——熟料中Al2O3的含量(%);M、R——MgO及(Na2O+K2O)的含量(%)。
硅酸盐水泥熟料的煅烧工艺硅酸盐水泥熟料是一种重要的建筑材料,其主要成分是硅酸盐矿物质。
熟料的生产是通过对原料进行煅烧工艺来实现的。
以下是硅酸盐水泥熟料的煅烧工艺的详细步骤:1. 原料准备:硅酸盐水泥熟料的主要原料包括石灰石、黏土和其他辅助原料。
这些原料需要粉碎和混合以获得均匀的化学成分。
2. 煤粉燃烧:在水泥炉中,需要使用煤粉作为主要燃料。
煤粉经过燃烧反应产生高温和热量,为后续反应提供能量。
3. 干法预热:将经过预处理的原料送入水泥炉,通过高温烟气进行干法预热。
在预热过程中,原料中的水分逐渐蒸发,从而实现干燥和预热的目的。
4. 煅烧反应:在水泥炉中,原料经过预热后被加热至高温,从而引发一系列的化学反应。
其中,主要的反应是石灰石的分解反应,将石灰石中的钙碳酸钙分解为氧化钙和二氧化碳。
此外,还有一系列的矿物转化反应和固相反应发生。
5. 冷却:煅烧后的硅酸盐水泥熟料需要进行冷却。
这一过程通过烟气和新鲜空气流通来降低熟料的温度,避免过度煅烧。
6. 粉磨:冷却后的熟料被送入水泥磨进行粉磨处理。
通过磨破磨、分级破磨和分级等步骤,熟料被加工成细度符合要求的水泥产品。
硅酸盐水泥熟料的煅烧工艺是一个复杂的化学和物理变换的过程。
煅烧过程中,需要控制适当的温度、时间和燃烧条件,以确保熟料的质量。
同时,通过优化煅烧工艺,可以降低能耗和环境排放,实现节能减排的目的。
硅酸盐水泥熟料煅烧工艺的详细步骤:7. 烟气处理:在炉内煅烧过程中,产生大量的烟气、灰尘和废气。
这些废气含有有害物质,需要进行处理以减少对环境的影响。
常见的烟气处理方法包括电除尘、袋式除尘等,以去除烟气中的粉尘和固体颗粒,并通过喷淋洗涤等方式去除废气中的二氧化硫等有害物质。
8. 能源回收:在煅烧过程中,通过使用高温烟气作为热源,可以回收能量并用于干法预热等步骤。
这种能源回收措施不仅可以降低能源消耗,减少生产成本,还可以减少对自然资源的开采和环境的影响。
9. 质量控制:在整个煅烧工艺中,对煅烧过程的温度、时间和燃烧条件等进行严格控制,以确保熟料的质量。
第五章硅酸盐水泥熟料的煅烧§5-1 生料在煅烧过程中的物理化学变化§5-2 熟料形成的热化学§5-3 矿化剂、晶种对熟料煅烧和质量的影响§5-4 挥发性组分及其他微量元素的作用§5-5 水泥熟料的煅烧方法及设备【掌握内容】1、硅酸盐水泥熟料的形成过程:名称、反应特点、影响反应速度的因素;2、熟料的形成热、热耗的定义、一般数值、影响因素3、挥发性组分对新型干法水泥生产的影响4、悬浮预热器窑及预分解窑的组成、工作过程5、影响窑产、质量及消耗的因素【理解内容】1、C3S的形成机理,形成条件;2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施;3、回转窑的结构、组成、及工作过程;4、回转窑内“带”的划分方法,预分解窑内“带”的划分。
【了解内容】1、水泥熟料的煅烧方法及设备类型;2、矿化剂、晶种:定义、类型、作用、使用;3、湿法窑的组成,工作过程合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥熟料的煅烧,简称煅烧。
结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。
第一节生料在煅烧过程中的物理化学变化生料在加热过程中,依次进行如下物理化学变化:一、干燥与脱水(一)干燥入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。
而干法生产中生料的含水率一般不超过1.0%。
(二)脱水当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O)发生脱水反应,脱去其中的化学结合水。
此过程是吸热过程。
Al2O3·2SiO2·2H2O Al2O3 + 2SiO2 + 2H2O(无定形)(无定形)脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。
二、碳酸盐分解当物料温度升高到600℃时,石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解(见下式),在CO2分压为一个大气压下,碳酸镁和碳酸钙的剧烈分解温度分别是750℃和900℃。
MgCO3 MgO+CO2CaCO3CaO+CO2(一)碳酸钙分解反应的特点碳酸钙的分解过程是一个可逆反应,所以受系统温度、周围介质中CO2的分压影响较大;该过程是一个强吸热过程,每1kg纯碳酸钙在890℃时分解吸收热量为1645kJ/kg,是熟料形成过程中消耗热量最多的一个工艺过程,而碳酸钙在水泥生料中所占比例约为80%左右,因此,它是水泥熟料煅烧过程中重要的一个环节;该过程的烧失量大,在分解过程中放出大量的CO2气体,使CaO疏松多孔,强化固相反应。
(二)碳酸钙的分解过程碳酸钙颗粒的分解过程有以下五个过程:1、通过颗粒边界层由周围介质传进行分解所需的热量Q i;2、热量Q i继续以传导方式,由表面传至反应面,并积聚达到一定的分解温度;3、反应面在一定温度下,继续分解、吸收热量并放出CO2;4、放出的CO2从分解面通过CaO层,向四周进行内部扩散;5、扩散到颗粒边缘的CO2,通过边界层向介质扩散。
以上五个过程四个是物理过程,一个是化学反应过程,每个过程各有阻力,情况较为复杂,各个过程都会影响碳酸钙的分解,哪个过程最慢,哪个过程便是主控过程。
在悬浮态的反应器里,碳酸钙分解所需的时间主要取决于化学反应速率,即主要取决于化学分解分步过程:1、在碳酸钙粒径较大时,以传热传质过程为主;在碳酸钙的粒径d=0.2cm时,物理、化学过程占同样重要的地位。
如立窑、立波尔窑、回转窑内均属于传热、传质控制过程。
2、粒径较小时,如d≤0.003cm,在悬浮状态分解时,决定于化学过程。
值得提出的是:在窑内分解带,颗粒虽细,但处于堆积状态,仍为传热传质控制过程。
(三)影响碳酸钙分解速度的因素1、石灰质原料的特性:结构致密、结晶粗大的石灰石分解较慢;2、生料细度及颗粒级配:生料较细,且颗粒均匀、粗粒少,生料比表面积增加,有利于反应进行;3、生料的悬浮分散程度:分散度愈高,接触面积愈大,愈有利于反应进行;4、分解温度:温度愈高,分解速度愈快:5、窑系统的CO2分压:当温度一定时,分压愈低,愈易分解;6、生料中粘土质组分的性质:活性高,则能直接与碳酸钙发生反应,可以促进碳酸钙的分解过程。
三、固相反应(一)反应过程水泥熟料的主要矿物是硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF),它们是由固态物质相互反应生成的。
从原料分解开始,物料中便出现了性质活泼的游离氧化钙,它与生料中的SiO2、Al2O3、Fe2O3进行固相反应,形成熟料矿物:800~900℃时CaO+ Al2O3 CaO·Al2O3 (CA)CaO+ Fe2O3 CaO·Fe2O3 (CF)900~1100℃时2 CaO+ SiO2 2 CaO·SiO2 (C2S)7 CaO·Al2O3+5 CaO 12 CaO·7Al2O3(C12A7)CaO·Fe2O3+ CaO 2CaO·Fe2O3(C2F)1100~1300℃时12 CaO·7Al2O3+9 CaO 7(3CaO·Al2O3)(C3A)7(2CaO·Fe2O3)+2 CaO+12 CaO·7Al2O37(4CaO·Al2O3·Fe2O3)(C4AF)以上反应在进行时放出一定的热量,故称为“放热反应”阶段。
(二)影响固相反应的主要因素1、生料细度及其均匀程度;2、原料物理性质对固相反应的影响;3、温度对固相反应的影响;4、其他因素。
四、熟料烧结(一)熟料烧结过程水泥熟料中的主要的矿物是硅酸三钙,而它的形成需在液相中进行,当温度达到1300℃时,C3A、C4AF及R2O熔剂矿物变成液相,C2S及CaO很快被高温熔融的液相所溶解并进C3S:2 CaO·SiO2 + CaO3 CaO·SiO2 (C3S)该反应称为烧结反应,它是在1300~1450~1300℃范围进行,故称该温度范围为烧成温度范围;在1450℃时反应迅速,故称该温度为烧成温度。
为使反应完全,还需有一定的时间,一般为10~20分钟。
由于反应不完全,没有参与反应的CaO就随着温度降低,凝固于凝固体中,这些CaO 称为游离氧化钙(fCaO)(为了便于下面的区别,称其为一次游离氧化钙,其对水泥安定性有重要影响)。
(二)影响熟料烧结过程的因素1、最低共熔温度;2、液相量:一般为20~30%;3、液相粘度:粘度愈小,愈有利于C3S的形成;4、液相的表面张力:表面张力愈小,愈易润湿固相物质或熟料颗粒,有利于固液反应,促进C3S的形成;5、CaO和C2S溶于液相的速率:其速率愈大,C3S的成核与发育愈快。
五、熟料冷却熟料冷却时需急速冷却,其目的和作用是:1、为了防止C3S在1250℃时分解,出现二次游离氧化钙(对水泥安定性没有大的影响),降低熟料的强度;2、为了防止C2S在500℃时发生晶型转变,使其密度由3.28g/cm3变为2.97 g/cm3,从面使熟料体积膨胀,变成粉末,产生“粉化”现象;3、防止C3S晶体长大而强度降低且难以粉磨;4、减少MgO晶体析出,使其凝结于玻璃体中,避免造成水泥安定性不良;5、减少C3A晶体析出,不使水泥出现快凝现象,并提高水泥的抗硫酸盐性能;6、使熟料产生应力,增大熟料的易磨性。
此外,急冷还可以收回热量,提高热的利用率。
第二节熟料形成的热化学一、熟料的形成热1、定义:在一定生产条件下,用某一基准温度(一般是0℃或20℃)的干燥物料,在没有任何物料损失和热量损失的条件下,制成1kg同温度的熟料所需要的热量称为熟料的形成热(熟料形成热效应)。
2、影响因素:熟料的形成热是熟料形成在理论上消耗的热,它仅与原、燃料的品种、性质及熟料的化学成分与矿物组成、生产条件有关。
3、计算原理:理论热耗=吸收的总热量—放出的总热量,一般为1630~1800kJ/kg-ck。
二、熟料形成热的计算方法以普通原料配料、以煤为燃料为例说明:计算基准:1kg熟料,温度为0℃已知数据:⑴熟料的化学成分;⑵煤的工业分析及煤灰的化学成分;⑶熟料的单位煤耗。
㈠生成1kg熟料干物料消耗量的计算;㈡生成1kg熟料吸收热量的计算;㈢生成1kg熟料放出热量的计算;㈣熟料的形成热。
三、熟料热耗(一)、定义:每煅烧1kg熟料窑内实际消耗的热量称为熟料实际热耗,简称熟料热耗,也叫熟料单位热耗。
热耗>熟料形成热,因为有各种热损失,要降低热耗,实际上就是要降低各种热损失。
(二)、影响熟料热耗的因素1、生产方法与窑型;2、废气余热和利用;3、生料组成、细度及生料易烧性;4、燃料的燃烧情况;5、窑体的散热损失;6、矿体剂及微量元素的作用。
第三节矿化剂、晶种对熟料煅烧和质量的影响一、矿化剂1、定义:在熟料煅烧过程中,为降低液相出现温度,加速熟料矿物的形成,提高熟料质量,降低能耗,加入的物质,统称为矿化剂。
单独用一种,称矿化剂;两种或两种以上的矿化剂同时使用时,称为复合矿化剂。
2、可以作矿化剂的物质:(1)含氟化合物:常用萤石(CaF2)(2)硫化物:常用石膏(包括天然石膏、工业副产石膏)(3)氯化物:CaCl2(4)其他:铜矿渣、磷矿渣等常用的复合矿化剂:石膏—萤石、重晶石—萤石、磷石膏-萤石等,最常用的是石膏—萤石复合矿化剂。
3、矿化剂的作用:(1)加速碳酸盐的分解;(2)促进固相反应(3)降低液相出现的温度和粘度,促进C3S的形成。
4、使用矿化剂易引起的问题:凝结时间不正常,快凝或慢凝。
二、晶种技术1、晶种:是晶体结晶过程的晶核,,或称为晶核剂、核化剂。
水泥工业中的晶种指通过水泥窑煅烧而成的硅酸盐水泥熟料。
2、晶种技术:在入磨原材料中掺入少量的硅酸盐水泥熟料共同磨制出生料,业已存在的硅酸盐水泥熟料矿物在煅烧过程中作为晶核剂诱导水泥窑中物料迅速烧结,从而达到提高熟料产量,降低煤耗目的的技术。
三、使用矿化剂、晶种时的注意事项:使用矿化剂、晶种有积极的一面,也有消极的一面,如增加成本,有副作用等,使用时应注意:1、根据实际情况考虑是否采用;2、选择合适的品种;3、掺量要合适,计量要精确;4、掺入要均匀;5、相应调整配料方案及操作措施;6、矿化剂、晶种可以同时使用。
第四节挥发性组分及其他微量元素的作用挥发性组分及其他微量元素是由原、燃料带入的伴生组分。
数量虽然不多,但往往对熟料煅烧和质量有不同程度的影响。
有正作用也有副作用,如能合理利用,可以化害为利。