当前位置:文档之家› 生化知识点总结(汇编)

生化知识点总结(汇编)

生化知识点总结(汇编)
生化知识点总结(汇编)

生物化学知识点综述

第一章糖类化学

本章在各类型考试中考察的是一些细节性的知识,具体有以下一些知识点:

1.糖的定义和分类:糖主要由C、H、O三种元素所组成,是一类多羟基醛或多羟基酮,或者是它们的缩聚物或衍生物。根据能否水解以及可水解成多少个单糖而分为单糖、寡糖(含2到10个单糖分子)和多糖(10个以上单糖分子)。以葡萄糖为代表的单糖的分子结构(特别是旋光异构现象)、分类、物理化学性质,还有一些重要的单糖要记。

图示:

2.比较三种主要双糖(蔗糖、糖乳和麦芽糖)的组成、连接键的种类及其环状结构。

图示:

3.淀粉、糖原、纤纤素的组成单位和特有的颜色反应及生物学功能,在考卷中出现相对频繁。

图示

4.糖胺聚糖、糖蛋白、蛋白聚糖的定义及键的连接方式。

说明:

5.常用的鉴别核糖、葡萄糖、果糖、蔗糖和淀粉的方法。最简便的方法是显色法。见下表:

核糖葡萄糖果糖蔗糖淀粉

碘液---发-蓝色

盐酸、间苯二酚试剂绿色淡红色红色--

费林或本尼迪特试剂红黄色红黄色红黄色--

加溴水褪色褪色-

6.了解糖的生理功能

(1)是构成生物体的重要成分之一,约占体重的2%左右。

(2)提供生理活动所需能量的70%。

(3)参与组成细胞结构的成分,如染色质、生物膜等

(4)参加抗体,部分酶和激素、血型物质的合成以及参与细胞的识别等

第二章脂类化学

本章知识一般严选择题、填题和判断题中出,考点主要是以下几个方面:

1.脂类的概论、分类及功能。按组成分类:三酰甘油脂(三脂酰甘油)、磷脂、类脂及结合脂。

2.脂肪酸的特征:链长、双键的位置、构型。

3.自然界常见的脂肪酸。必需脂肪酸的定义及种类。

4.三脂酰甘油的性质:皂化、酸败、氢化、卤化和乙酰化。

5.甘油磷脂和鞘磷脂的组成、种类和性质。

6.血浆脂蛋白的种类。

7.胆固醇的结构及其衍生物。

第三章蛋白质

本章内容应属于考试的重点,应熟悉概念、原理、机制、理化性质等。在名词解释、填空题、判断题、选择题、简答题、论述题以及计算题等各种题型中都有出现。主要涉及以下一些知识点:

1.蛋白质的组成,特别是蛋白质中氮的平均含量(16%)经常在填空题和计算题中出现。

2.组成蛋白质的20种氨基酸的三字符号和单字符号,20种氨基酸的化学结构(除甘氨酸外,均属L-α-氨基酸)

和分类。

(1)根据侧链基团(R-)的极性分类

非极性R基氨基酸:Ala Leu Ile Pro Phe Trp Met

不带电荷的极性R基氨基酸:Gly Ser Thr Cys Asn Gln Tyr

带正电荷的R基氨基酸:Lys Arg His

带负电荷的R基氨基酸:Asp Glu

(2)根据人体能否自身合成分为

必需氨基酸:Val Leu Ile Thr Met Lys Phe Trp

非必需氨基酸:其余

(3)两种特殊氨基酸

脯氨酸:没有自由的α-氨基,它是一种α-亚氨基

胱氨酸:是关半胱氨酸在蛋白质中的主要存在形式

3.氨基酸物理化学性质:旋光性可作一般性的了解,而酸碱性、氨基、羧基以及氨基和羧基共同参加的反应,特别是等电点及其计算和测定方法、氨基酸在不同pH条件下的泳动情况常在试题中出现。

4.分离方法:纸层析法和离子交换层析法的原理和实验方法常在考题中出现原理。氨基酸自动分析仪的使用要了解。5.氨基酸侧链基团参加的反应作为鉴定氨基酸的方法,常用的有:色氨酸的乙醛酸反应(Ehrlish);酪氨酸米伦氏(Millon);苯丙氨酸的黄色反应;组氨酸的波利(Pauly)(也可以检验酪氨酸)等。常常在选择题和氨基酸的序列分析中出现。

6.蛋白质的一级结构(蛋白质分子中氨基酸的排列顺序,以肽键为主键或有少量的二硫键为副键构成的)及高级结构包括二级结构(包括α-螺旋结构,β-折叠片层以及β转角和无规则卷曲,以氢键维持其稳定性)、三级结构(维系结构的非共价健有:氢键、离子键、疏水键、二硫键,主要靠次级键疏水作用、离子键、氢键和分子间作用力等)、四级结构(蛋白质亚基之间以非共价键缔合,主要靠次级键维系。具有蛋白四级结构的蛋白质有血红蛋白、乳酸脱氢酶等,肌红蛋白不具有四级结构)的定义及类型和维持力是常考题。

亚基与蛋白质三级结构这两个概念的辨析。血红蛋白和肌红蛋白氧合曲线的差异在考题中也时有出现。7.蛋白质的理化性质(两性电离、胶体性质、沉淀、变性、凝固、呈色反应、紫外吸收等):其中蛋白质的变性是重点,名词解释及辨析里经常考。蛋白质的变性是指以物理或化学方法瓦解蛋白质的空间构象,破坏了维持二、三、四级结构的力量,一般不影响其初级结构。变性蛋白质的性质必须掌握:a.生物活性消失;b.维系二、三、四级结构的化学键被破坏;c.易被蛋白质酶水解;d.-SH等基团之反应活性增加等。

8.蛋白质结构的测定:蛋白质的一级结构测定或称序列分析常用的方法是Edman降解和重组DNA法。前者是经典的化学方法,后者是基于分子克隆的分子生物学方法。重组DNA测序法首先需要得到编码某种蛋白质的基因(DNA 片段) ,然后测定DNA分子中核苷酸的排列顺序。再根据三个核苷酸编码一个氨基酸的原则扒演出氨基酸的排列顺序。不必首先纯化该种蛋白质。这一复杂的过程借助于计算机的帮助可变得比较简单并高效。而Edman化学降解法则比较复杂。这首先需要纯化一定量的待测蛋白质裂解成大小不同的肽段;将每一肽段作序列分析,再连接起来。两种方法各有其特点。可以相互印证和补充。在Edman化学降解中,常用肽羰与异硫氰酸苯酯反应,再用次序稀酸处理,成为异硫氰酸苯酯衍生物,用层析进行鉴定。可作为N末羰鉴定的化学试剂还有FDNB、DNS-CL 等,C-末端分析常用羧基肽酶。考题中多以Edman降解出现。蛋白质的空间结构的测定方法中常用的是X放射线晶体衍射法。

9.蛋白质的分离与合理化是我们强调的本章的一个重点。生化专业的硕士研究生无非就是做这些工作。这部分内容容易出问题,建议大家逐字背下。通常分离、纯化蛋白质的一般原理和方法:

(1)丙酮沉淀及盐析:盐析是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏蛋白质在水溶液中的稳定性因

素而沉淀。各种蛋白质在盐析时所需的盐浓度及pH不同。

(2)电泳:电泳是根据蛋白质在低于或高于等电点(pI)溶液中带电并在电场中向一极移动原理来分离蛋白质。带正

电荷向负极泳动,而带负电荷向正极泳动,分子小的蛋白质泳动快,分子量大的泳动慢,于是蛋白质被分离。

(3)层析:层析是分离纯化的重要手段之一。有离子交换层析、亲和层析等,其中离子交换层析应用最广。

(4)分子筛(凝胶过滤):是层析一种,在层析柱内填满带有小孔的颗粒一般是葡聚糖制成。蛋白质溶液加之于柱

之顶部,往下渗漏,这时小分子蛋白质分子进入凝胶微孔,大分子不能进入,故大分子蛋白质先洗脱下来,

小分子后洗脱出来。

10. 构与功能的关系也是本章考试的重点。可从多个例子去理解一级结构与功能的关系、空间结构与功能的关系,并

结合随后章节的学习反复加深理解。例如,酶原的激活、激素原、前激素原转变为有活性的激素等均可有力地说明一级结构决定空间结构,一定的空间结构执行一定的功能。变构酶、变构调节等有许多的例子,就是以蛋白质的结构与功能为基础。同时,变构效应是生物体内普遍存在的功能调节方式之一。将学习的各章节内容进行有机的联系、比较,正确理解专业名词的概念,使“概念”变成自己知识网上的纽节,就会不断积累蛋白质结构与功能的知识,?以不变应万变“,去应答研究生入学考试中各种可能的出题方式。

第四章酶

酶这一部分很重要,近几年来生物化学的热点由核酸转向蛋白质,而人体各功能的实现,最终还需依靠酶来完成,有关酶的概念和化学本质经常在各地的研究生入学考试题中出现,主要有以下一些考点:

1.酶的分子结构:主要是考查一些基本概念:单纯酶、结合酶、全酶、辅基和辅酶、必需基团、活性中心、结合基团、催化基团,结合结构与功能的关系,论述酶原激活的化学本质,以乳酸脱氢酶(LDH)为例,描述同工酶的概念。

2.酶促反应的特点:这一部分内容出现的频率也圈套,希望大家能记住。其特点主要表现在以下几个方面:

(1)高效充,少量的酶在极短的时间内即可催化大量的反应;

(2)度特异性:酶的专一性主要是由酶特定的结构决定的,一种酶作用于一种化合物,进行一种类型的反应;

(3)酶促反应没有副作用;

(4)酶的催化作用是受调控的。

3.酶的分类也在许多试卷上出现过,特别是在代谢中,有重要功能的一些酶归属于哪一类的问题,下表进行举例:

酶分类编号举例

分类编号举例

氧化还原酶 1 谷氨酸脱氢酶EC1.4.1.3

转移酶 2 天冬氨酸氨基转移酶EC2.6.1.1

水解酶 3 精氨酸酶EC3.5.3.1

裂解酶 4 果糖二磷酸醛缩酶EC4.1.2.13

异构酶 5 磷酸葡萄糖异构酶EC5.3.1.9

合成酶 5 谷氨酰胺合成酶EC6.3.1.2

4.酶活力(或酶活性表示法)用反应初速度表示酶活力。酶活力单位:U;酶的比活力:U/mg蛋白质。

5.酶反应动力学部分建议大家把公式跟四种抑制的图形记下来。填空中可以考察每种抑制的kmVm的变化情况----图形记住了,kmVm的变化也就轻松了,不然老混淆。其中也有几个概念:最适pH、最适温度、酶的比活性。

(1)底物浓度对酶促反应速度的影响:一般来说,在其因素不变的情况下,底物浓度对酶促反应速度影响的

作图呈双曲线,具体来说:

a.当作用物浓度([S])很低时,反应速度(V)随[S]增高而成直线比例上升。

b.当[S]继续增高时,V也增高,但不成比例。

c.当[S]达到一定高度时,V不再随[S]增高而增高,反应达到最大速度(Vmax)。

在这一部分,米氏议程及其应用,km的意义用及其求法是出现最频繁的考点。

米氏方程为:

其中km 为米氏常数。其意义为:

a. V=1/2Vmax 时,km=[S],即km 为反应速度最大速度一半时的[S]。km 为酶的特征常数,单位为mmol/L 。

不同酶有不同的km 值,同一酶催化不同底物则有不同的km 值 。各同工酶的km 值也不同,可借km 值 鉴别之。

b. [S]>>km 时,米氏方程分母中的km 可忽略不计,此时V=Vmax ,即反应速度达到最大速度Vmax 。

c. 当[S]<

d. 当k 3很小时,km ≈k -1/k 1≈[E][S]/[ES],因此km 值大小反映酶与作用物亲和力的大小。Km 小,反映酶对

作用物亲和力大;km 大则反映酶与作用物亲和力小。

双倒数作图法是求km 和Vmax 最常用的作图法。它将米氏方程作倒数处理,得下式: 以1/V 对1/[S]作图,可得一直线,从纵轴处的截距1/Vmax 及横轴上的截距-1/km ,可准确求得km 值和Vmax 。

(2) 酶浓度的影响:当作用物浓度足够大时,V 与[E]成正比。这一部分只是作为一个选择项在选择题中出现

过。

(3) pH 的影响:需明确最适pH 不是酶的特征常数,而且并不是所有的最适pH 都近中性,如胃蛋白酶的最

适pH 值为1.5,精氨酸酶的最适pH 为9.8

(4) 温度的影响,其特点在一般的起得早中经常出现。温度对酶促反应的影响有如下几个特点:

a. 从低温开始,随温度增加,反应速度加大。

b. 达到一定温度后,反应速度达到最大,此温度为酶的最适温度。温血动物酶的最适温度一般在

37~40℃,最适温度不是酶的特征性常数。

c. 当温度继续升高,酶蛋白变性增加,反应速度开始下降。

d. 酶活性随温度而,但低温一般不使酶破坏。

e. 若酶捉反应进行时间短暂,其最适温度可相应提高。

(5) 抑制剂的影响:分为不可逆抑制作用和可逆抑制作用,其中以可逆作用出现的偏多。可逆性抑制作用:

这类抑制剂与酶的结合是可逆的,清除抑制剂后酶活性可以恢复的抑制作用。有三类: a. 竞争性抑制剂; b. 非单键性抑制剂 c. 反竞争性抑制剂

当这三类可逆性抑制剂存在时,作用物与酶促反应速度的关系见下图和下表:

各种可逆性抑制作用的比较

Vmax[S] Km+[S]

V = 1/V= Km/Vmax(1/[S])+1/Vmax 竞争性抑制剂 无抑制剂 非竞争性抑制剂 反竞争性抑制剂

(6) 激活剂的影

响:常见的增长点是Cl -对唾液淀粉酶活性的影响。

6. 酶作用机制:有专

一性机理(锁与钥匙学说和诱导契和假说)和高效性的机理,以后者出现偏多,而且考查的题型上也是多样化(填写、选择、判断、问答等) (1)机理的两种学说

关于酶与作用物如何结合成中间复合物,又如何完成其催化作用有许多设,为多数人赞同的是诱导契合学说。 过去有人认为,酶与作用物结合时酶的活性中心结构与作用物的结构必须吻合,它们就如同锁和钥匙一样,非常配合地结合成中间复合物。当这种中间复合物形成时,会促进作用物的结构发生某些化学变化(如作用物分子的键因扭曲、变形而断裂等)而转变为产物,此即所谓酶作用的“锁角学说“。

锁角学说的缺点在于认为酶的结构是固定不变的,若如此,在一个酶促可逆反应中,酶不能同时与作用物和产物的结构都相配合。因此又有人提出,酶分子(包括辅酶在内)的构象与作用物的构象原来并非恰巧吻合,只是当作用物分子与酶分子相碰时,可诱导酶的构象变得能与作用物配合,然后才结合成中间复合物,进而引起作用物分子发生相应的化学变化。此即酶的“诱导契合学说“。 (2)酶作用高效性的机理:体现在以下5个方面:

a. 靠近与定向

b. 变形与扭曲

c. 共价催化

d. 酸碱催化

e. 酶活性部位的低介电区

在这一部分中,还要了解某些酶的作用原理:

a. 溶菌酶:活性部位有Glu35和Asp52,典型的酸碱催化

b. 胰凝乳蛋白酶:活性部位有Asp102、His57和Ser195组成的电荷拉力网

c. 羧肽酶A :含金属离子Zn2+的酶。

7. 酶的调节:酶调节的类型(共价调节化学修饰、酶原激活、酶含量在分子水平的调节、别构调节等)。几个概念也

很重要:别构酶、调节酶等。

8. 多酶体系,常常作用名词解释出现,有时与同工酶的特点一起构成选择项出现,要引起重视。 9. 关于抗体酶与核酶的定义及其与酶的比较近两年在有些高校的研究生入学考试中时有出现。

10.酶的分离降纯化在科研单位的研究生招生考试中出现得较频繁,方法同蛋白质的分离纯化,但常常要控制温度、pH 、时间等,并且每一步骤都需测定酶的总活力和比活力,了解酶的纯化倍数和回收率。

第五章 核 酸

本章的基本概念、理化性质等经常在试题中出现,具体来说,有以下一些内容:

1.核酸分子的组成:这一部分既有核苷(酸)的名称 ,也有核苷酸的命名规则,还包括一些稀有碱基等内容都曾在考题中出现过。

基本组成单位是核苷酸,有碱基、戊糖与碱基三种成分。组成DNA 的核苷酸称脱氧核糖核苷酸(dNTP),组成RNA 作用特征 无抑制剂 竞争性抑制 非竞争性抑制 反竞争性 与I 结合的组分

E E 、ES ES 动力学参数 表观km Km 增大 不变 减小 最大速度 Vmax 不变 降低 降低 林-贝氏作图

斜率 Km/Vmax 增大 增大 不变 纵轴截距 1/ Vmax 不变 增大 增大 横轴截距

-1/ Vmax

增大

不变

减小

的核苷酸称核糖核苷酸(NTP)。DNA与RNA的组成差异主要表现在戊糖及碱基成分上,如下表:戊糖碱基核苷酸

RNA 核糖 A U C G 腺苷酸(AMP) 鸟苷酸(GMP) 胞苷酸(AMP) 尿苷酸(UMP)

DNA 脱氧核糖 A T C G 脱氧腺苷酸(dAMP) 脱氧鸟苷酸(dGMP) 脱氧胞苷酸(dAMP) 胸苷酸(dTMP)

核苷酸的其他形式:核苷二磷酸(NDP),核苷三磷酸(NTP),环化核苷酸(cAMP、cGMP)

2. DNA的分子结构和功能

(1)DNA的一级结构:指DNA分子中核苷酸的排列顺序及连接方式。核苷酸的排列顺序代表了遗传信息。四种核苷酸是通过3‘,5‘磷酸二酯键连接在一起的。

(2)DNA的二级结构:双螺旋结构中的碱基组成规则:A=T,G=C,且A+G=T+C;双螺旋结构模型的具体内容,Z-DNA 的概念。

(3)DNA的三级结构:主要形式为超螺旋,生物体中最常见的超螺旋为负超螺旋。负超螺旋的存在可以使DNA双链碱基对打开所需要的能量降低4.1KJ/mol,因而,有利于DNA的双链分开。许多DNA旋转酶的抑制剂,如萘啶酮酸,香豆霉素和新生霉毒等均可以抑制大肠杆菌的DNA复制。

(4)功能:其基本功能是作为生物遗传信息复制的模板和基因转录的模板,是生命遗传繁殖的物质基础和个体生命活动的基础。

3.RNA的结构和功能:RNA的结构一般以单链形式存在,在局部可形成双螺旋结构,成茎环样或发夹结构。

(1)细胞内RNA的种类和功能:

名称英文缩写功能

核蛋白体RNA rRNA 核蛋白体组成成分

信使RNA mRNA 蛋白质合成模板

转运RNA tRNA 转运氨基酸

不均一核RNA hnRNA 成熟mRNA的前体

小核RNA snRNA 参与hnRNA的剪接、转运

小胞浆RNA ScRNA/7S-RNA 蛋白质内质网定位合成的信号识别体的组成成分

小核仁RNA SnoRNA 参与rRNA的加工和修饰

(2) rRNA结构一般了解,但mRNA的一级结构、tRNA的二级结构、三级结构常出现在考试题中。

真核生物mRNA的一级结构都是单顺反子,其结构中的5‘端帽子和3‘端Poly(A)尾巴是经曲考题

tRNA的二级结构为三叶草型,记住“三环,一柄”及其功能。含有“三环“(二氢尿嘧啶环、反密码子环、TψC 环),“一柄”是(氨基酸臂)。其中反密码子环中部的三个碱基可以与mRNA的三联体密码形成碱基互补配对,解读遗传密码,称为反密码子,次黄嘌呤(I)常出现于反密码子中。氨基酸臂3‘末端的CCA-OH单链用于连接该tRNA 转运的氨基酸。

TRNA的三级结构呈倒L型,其中反密码环和氨基酸臂分别位于倒L的两端。

4.核酸的性质:主要是DNA的变性及复性。涉及到一些基本的概念,如:变性、复性、杂交、紫外吸收等,其中Tm值、增色效应、减色效应是经常出现的考点;此外,还有变性及复性DNA理化性质的改变。

许多试剂或一些物理因素,例如酸、碱、热、低离子强度的影响,将使氢键断裂,使DNA由起初坚固的、螺旋形的、双股的天然构象分开成不规则的卷曲单链,叫DNA变性作用。

变性DNA有理化性质的改变,表现在:

(1)紫外吸收增加:DNA变性作用发生在一个很窄的温度范围内,通常把光吸收增值一半时的温度称为该DNA的

熔点或熔解温度,用Tm表示:

(2)比旋值下降:天然DNA有强烈的正向旋光,变性后比旋值下降

(3)粘度下降:天然DNA 溶液具有很高的粘度,这是由于DNA 相当坚固的双螺旋结构及其长棒状的性质所决定的。当DNA 变性双螺旋解型 粘度急剧下降,浮力密度升高。

DNA 溶液加热变性时,双螺旋的两条链分开。如果将溶液迅速冷却,两条单链继续 保持分开。但若缓慢冷却,则两条链又可发生特异的重组合而恢复成双螺旋。因此,DNA 变性在一定条件下是可逆的。变性 DNA 恢复其原有结构和性质称为“复性”。复性后DNA 的一系列物理化学性质得到恢复,如紫外吸收值 下降,粘度增加,比旋值 增加,生物活性也得到部分恢复。

杂交:在DNA 复性过程中,将不同的DNA 单链分子放在同一溶液中,或者将DNA 和RNA 分子放在一起,双链分子的再形成既可以发生在序列完全互补的核酸分子间,也可发生在碱基序列部分互补的不同的DNA 之间或DNA 与RNA 之间。

紫外吸收:核酸溶液在260nm 波长处具有最大光吸收。DNA 变性后,在260nm 处的紫外吸收增高,称为增色效应(高色效应)。变性DNA ,在退炎复性时,其在260nm 处的紫外吸收会减少的现象称为减色效应。DNA 热变性过程中,紫外吸收达到最大值的一半时

第七章 膜类、生物氧化和生物能学

生物能考点很少,生物氧化考点分布的要略微多一些。所以我们将这三部分合并为一章经。 二、膜

这一部分的考点,主要分布在生物膜的组成成分、影响生物膜流动性的因素、生物膜分子结构模型以及生物膜与物质运输等几个方面。

1.生物膜的组成成分:主要由蛋白质、脂质和糖类组成,还有水、金属离子等。蛋白质分为外周蛋白和内在蛋白。脂质有磷脂、胆固醇、糖脂等,其中以磷脂为主要成分。

2.生物膜的流动性:膜的流动性主要决定于磷脂。影响因素很多,如链的不饱和程度和链长,胆固醇、鞘磷脂的会计师,膜蛋白以及温度、pH 、离子强度、金属离子等,其中最主要的是链的不饱和程度和链长。

3.生物膜分子结构模型:这类模型很多,其中,考题中出现最多的是“流动镶嵌”模型,并且以填空、简答、选择以及论述等多种题型出现。

H +的协同运输(填空、判断、名词以及选择题中都有出现)和线粒体蛋白的跨膜运送(多为简答或论述

题),此外,分泌蛋白通过内质网膜的运送在试卷吕偶尔也可见到。 二、生物氧化

这一部分首先要提请大家注意的是一些基本概念,比如:呼吸链、氧化磷酸化、P/O 比值,底物水平磷酸化等,常作为名词解释出现,并且希望能够计算像话过程中的P/O 比值,除此之外,这一部分的考点主要分布在以下几个方面:

7. 标准自由能变化与氧化还原电位势的关系

G O

,=-n E O ,

F (n :电子数;F :法拉第常数,F =96485Cmol -1) 这一部分内容多在选择题和填空题中出现,偶尔也会出现在计算题中。

2.呼吸链及排列顺序:主要在选择题、填空题和判断题中出现。体内有两条呼吸链,分别为NADH 氧化呼吸链和FADH 2 氧化呼吸链。它们的P/O 比值分别为3和2。组成呼吸链的主要成分有尼克酰胺核苷酸、黄素蛋白、铁硫蛋白、辅酶Q 及细胞色素等五类。前四类酶通过加氢和脱氢反应,传递作用物脱下的氢,故是递氢体;而细胞色素可传递电子,故是递电子体。其排列顺序如下:

8. 呼吸链抑制剂的作用位点:

复合体I :鱼藤酮、粉蝶霉素A 、异戊巴比妥可与I 中的铁硫蛋白结合,阻断电子传递。 复合体III :抗霉素A 、二巯基丙醇抑制复合体III 。 FADH 2(Fe-S )复合体II 复合体I ~A TP 复合体III ~A TP 复合体IV

~A TP 磷酸

化偶联部位

NADH ++H + FMN (Fe-S ) CoQ Cytb Cytc 1 Cytc Cytaa 3 1/2O 2

复合体I V:H2S、CO及CN-抑制复合体IV。

这一部分内容也主要是以选择题、填空题和判断题出现,但是,也曾以扒断野孩子传递顺序的题型出现过。

4.氧化磷酸化的作用机理:主要有化学偶联假立、构象偶联假说和化学渗透假说等几种假说。

目前较为普遍公认的学说是“化学渗透学说”(chemiosnotic theory)”。也是考试中出现得较多的一个考点。该学说认为,电子经呼吸链传递释放的能量,可将质子H从线粒体基质侧泵到内膜外侧,产生质子电化学梯度而积蓄能量。当质子顺此梯度经ATP合酶F O部分回流时,其F1部分催化ADP和Pi生成A TP。

5.氧化磷酸化的遇联剂和抑制剂:常以选择题、判断题和填空题出现。

解偶联剂:2,4-二硝基苯酚和质子载体等。

抑制剂:寡霉素和各种离子载体。

6.氧化磷酸化的调节:

(1)ADP和A TP的调节:[ATP]/[ADP][Pi]比值降低,可调节氧化磷酸化加速,反之减慢。

(2)甲状腺素的作用:甲状腺素可活化许多组织细胞膜上的Na+-K+-ATP酶,使ATP加速分解为ADP和Pi,促进氧化磷酸化反应。

7.两种穿梭机制:可以各种题型出现

由于线粒体内膜对物质的通透性具有严格的选择性,在线粒体外生成的NADH不能直接进入线粒体经呼吸链氧化,需要借助穿梭系统才能使2H进入线粒体内。体内有两种穿梭机制:α-磷酸甘油穿梭(NADH->FAD2H,形成2A TP);苹果酸-天冬氨酸穿梭(NADH->NADH,形成3A TP)。

8.A TP的利用与贮存

ATP是多种生理活动能量的直接提供者,体内能量的生成、转化贮存和利用,都以ATP为中心。磷酸肌酸是肌肉组织中能量的贮存形式。

三、生物能学

1.生物体是一个开放体系,它与周围环境不断地进行物质和能量交换,在生物体内的生物化学反应都是在接近等温等压的条件下进行的。

2.自由能和标准自由能。

3.标准自由能变化与平衡常数的关系。

4.生物体内化学反应的自由能变化。

5.能量学在生物化学应用中的某些规定

6.生物体内的高能磷酸化合物。

第八章糖类代谢

三大物质代谢以糖的代谢最为重要。

1.糖酵解过程:是在胞浆中进行的。

(1)反应过程分为两个阶段:

※葡萄糖――>丙酮酸(酵解途径)

两次底物水平磷酸化

1,3-二磷酸甘油酸(磷酸甘油酸激酶)――>3-磷酸甘油酸+1ATP

磷酸烯醇式丙酮酸(丙酮酸激酶)――>生成丙酮酸+1A TP

图示及参与的酶:

※丙酮酸(乳酸脱氢酶)――>乳酸

(2)酵解过程中的关键酶:糖原磷酸化酶或已糖激酶、磷酸果糖激酶、丙酮酸激酶。产物为乳酸。

(3)酵解过程中的能量变化:净得两分子A TP,两分子NADH(无氧时作为H供体,有氧下通过呼吸链可生成ATP (4个或6个)。

(4)生理意义:迅速提供能量,给某些器官提供正常代谢所需的能量。

2.糖的有氧氧化过程:

(1)整个反应分为三个阶段

※葡萄糖――>丙酮酸(酵解途径,在胞液中进行)

※丙酮酸(进入线粒体,在丙酮酸脱氢酶复合体)――>乙酰CoA,NADH+H+,CO2

丙酮酸脱氢酶复合体:丙酮酸脱氢酶、硫辛酸乙酰基转移酶、二氢硫辛酸脱氢酶等三种酶和TPP、硫辛酸、CoA、

FAD、NAD+、Mg2+6个辅酶组成。

此反应不可逆。

※三羧酸循环及氧化磷酸化:部位在线粒体。

图示及参与循环的酶:

(2)柠檬酸循环的关键酶和A TP的生成:

※关键酶是柠檬酸合成酶;异柠檬酸脱氢酶;α-酮戊二酸脱氢酶系。

※一分子乙酰CoA经柠檬酸循环生成15分子ATP,一分子葡萄糖生成38分子的A TP。

(3)柠檬酸循环的关键产物:乙酰CoA

乙酰CoA是三个物质代谢进入三羧酸循环的共同途径。辅酶A是酰化酶的辅酶,起着转移乙酰基的作用,可调节:

※控制淀粉或糖原分解为葡萄糖的速度;

※控制酵解的反应速度;

※控制三羧酸循环的反应速度。

(4)三羧酸循环生理意义:

※氧化供能;

※是三大营养素分解的最终代谢通路;

※是三大营养素相互转变的联系枢纽。

糖酵解和有氧氧化的比较

糖的分解方式有氧氧化无氧酵解

氧气参与有无

最终产物水和二氧化碳丙酮酸

能量产生(一摩尔葡萄糖)肝38A TP,肌肉和大脑36 A TP 2 A TP

进行部位第一阶段在胞液,

第二、三阶段在线粒体

细胞液

3.糖原合成和分解过程及其调节机制

(1)糖原合成的过程:

糖原合成酶是糖原合成的限速酶。葡萄糖合成糖原过程中共消耗2个ATP。

(2)糖原分解的过程

磷酸化酶是糖原分解的限速酶。

糖原合成酶和磷酸化酶均具有活性和非活性两种形式。机体的调节方式是双重控制,即同一个信号可使一个酶处于活性状态而另一个酶处于无活性状态。磷酸化酶有a,b两种形式,去磷酸化的a型是有活性的,而磷酸化的b型是无活性的。

(3)肝糖原的合成和分解的调节

肝脏糖原代谢主要受胰高血糖素的调节,而肌肉主要受肾上腺素的调节。场所在胞液。

糖原分解不是糖原合成的逆过程

糖原合成糖原分解

G<――>G-6-P的酶G――>G-6-P

葡萄糖激酶

G-6-P――>G

G-6-P酶

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

医学生物化学各章节知识点及习题详解

医学生物化学各章节知识点习题详解 单项选择题 第一章蛋白质化学 1. .盐析沉淀蛋白质的原理是( ) A. 中和电荷,破坏水化膜 B. 与蛋白质结合成不溶性蛋白盐 C. 降低蛋白质溶液的介电常数 D. 调节蛋白质溶液的等电点 E. 使蛋白质溶液的pH值等于蛋白质等电点 提示:天然蛋白质常以稳定的亲水胶体溶液形式存在,这是由于蛋白质颗粒表面存在水化膜和表面电荷……。具体参见教材17页三、蛋白质的沉淀。 2. 关于肽键与肽,正确的是( ) A. 肽键具有部分双键性质 B. 是核酸分子中的基本结构键 C. 含三个肽键的肽称为三肽 D. 多肽经水解下来的氨基酸称氨基酸残基 E. 蛋白质的肽键也称为寡肽链 提示:一分子氨基酸的α-羧基和一分子氨基酸的α-氨基脱水缩合形成的酰胺键,即-CO-NH-。氨基酸借肽键联结成多肽链。……。

具体参见教材10页蛋白质的二级结构。 3. 蛋白质的一级结构和空间结构决定于( ) A. 分子中氢键 B. 分子中次级键 C. 氨基酸组成和顺序 D. 分子内部疏水键 E. 分子中二硫键的数量 提示:多肽链是蛋白质分子的最基本结构形式。蛋白质多肽链中氨基酸按一定排列顺序以肽键相连形成蛋白质的一级结构。……。具体参见教材20页小结。 4. 分子病主要是哪种结构异常() A. 一级结构 B. 二级结构 C. 三级结构 D. 四级结构 E. 空间结构 提示:分子病由于遗传上的原因而造成的蛋白质分子结构或合成量的异常所引起的疾病。蛋白质分子是由基因编码的,即由脱氧核糖核酸(DNA)分子上的碱基顺序决定的……。具体参见教材15页。 5. 维持蛋白质三级结构的主要键是( ) A. 肽键 B. 共轭双键

生物化学糖代谢知识点总结材料

第六章糖代 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖 双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal) 多糖:淀粉,糖原(Gn),纤维素 结合糖: 糖脂,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代概况——分解、储存、合成

各种组织细胞 门静脉 肠粘膜上皮细胞 体循环 小肠肠腔 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径: SGLT 肝脏

过程 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构 调节。 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H +

第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 生理意义: 五、糖的有氧氧化 1、反应过程 ○1糖酵解途径(同糖酵解,略) ②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。 总反应式: 关键酶 调节方式 ? 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 ? 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn ) 丙酮酸 乙酰CoA ATP ADP 胞液 线粒体 丙酮酸 乙酰CoA NAD + , HSCoA CO 2 , NADH + H + 丙酮酸脱氢酶复合体

生物化学糖代谢知识点总结

各种组织细胞 体循环小肠肠腔 第六章糖代谢 糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。 根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白 其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式 糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架 一、糖的生理功能 1. 氧化供能 2. 机体重要的碳源 3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。 二、糖代谢概况——分解、储存、合成 三、糖的消化吸收 食物中糖的存在形式以淀粉为主。 1.消化 消化部位:主要在小肠,少量在口腔。 消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘 吸收部位:小肠上段 吸收形式:单糖 吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。 2.吸收 吸收途径:

过程 2 H 2 四、糖的无氧分解 第一阶段:糖酵解 第二阶段:乳酸生成 反应部位:胞液 产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATP E1 E2 E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变 构调节。 生理意义: 五、糖的有氧氧化 E1:己糖激酶 E2: 6-磷酸果糖激酶-1 E3: 丙酮酸激酶 NAD + 乳 酸 NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶 调节方式 ① 别构调节 ② 共价修饰调节 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。 是某些细胞在氧供应正常情况下的重要供能途径。 ① 无线粒体的细胞,如:红细胞 ② 第一阶段:糖酵解途径 G (Gn ) 丙酮酸胞液

医学生物化学重点总结

第二章蛋白质的结构和功能 第一节蛋白质分子组成 一、组成元素: N为特征性元素,蛋白质的含氮量平均为16%.-----测生物样品蛋白质含量:样品含氮量×6.25 二、氨基酸 1.是蛋白质的基本组成单位,除脯氨酸外属L-α-氨基酸,除了甘氨酸其他氨基酸的α-碳原子都是手性碳原子。 2.分类:(1)非极性疏水性氨基酸:甘、丙、缬、亮、异亮、苯、脯,甲硫。(2)极性中性氨基酸:色、丝、酪、半胱、苏、天冬酰胺、谷氨酰胺。(3)酸性氨基酸:天冬氨酸Asp、谷氨酸Glu。(4)(重)碱性氨基酸:赖氨酸Lys、精氨酸Arg、组氨酸His。 三、理化性质 1.两性解离:两性电解质,兼性离子静电荷+1 0 -1 PH〈PI PH=PI PH〉PI 阳离子兼性离子阴离子等电点:PI=1/2(pK1+pK2) 2.紫外吸收性质:多数蛋白质含色氨酸、酪氨酸(芳香族),最大吸收峰都在280nm。 3.茚三酮反应:茚三酮水合物与氨基酸发生氧化缩合反应,成紫蓝色的化合物,此化合物最大吸收峰为570nm波长。此反应可作为氨基酸定量分析方法。 四、蛋白质分类:单纯蛋白、缀合蛋白(脂、糖、核、金属pr) 五、蛋白质分子结构 1.肽:氨基酸通过肽键连接构成的分子肽肽键:两个氨基酸α氨基羧基之间缩合的化学键(—CO—NH—) 2.二肽:两分子氨基酸借一分子的氨基与另一分子的羧基脱去一分子的水缩合成 3.残基:肽链中的氨基酸分子因脱水缩合而残缺,故被称为氨基酸残基。 4.天然存在的活性肽: (1)谷胱甘肽GSH:谷,半胱,甘氨酸组成的三肽 ①具有还原性,保护机体内蛋白质或酶分子免遭氧化,使蛋白质或酶处于活性状态。②在谷胱甘肽过氧化物酶催化下,GSH可还原细胞内产生的过氧化氢成为水,同时,GSH被氧化成氧化性GSSG,在谷胱甘肽还原酶作用下,被还原为GSH③GSH的硫基具有噬核特性,能与外源性的噬电子毒物(如致癌物,药物等)结合,从而阻断,这些化合物与DNA,RNA或蛋白质结合,以保护机体(解毒) (2)多肽类激素及神经肽 ①促甲状腺激素释放激素TRH②神经肽:P物质(10肽)脑啡肽(5肽)强啡肽(17肽)

生物化学考试重点总结

生化总结 1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。 (4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。 6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。 (4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。 13。何为酶的Km值?简述Km和Vm意义。

生化知识点整理(特别全)

第一章 蛋白质的元素组成(克氏定氮法的基础) 碳、氢、氧、氮、硫(C、H、O、N、S ) 以及磷、铁、铜、锌、碘、硒 蛋白质平均含氮量(N%):16% ∴蛋白质含量=含氮克数×6.25(凯氏定氮法) 基本组成单位 氨基酸 熟悉氨基酸的通式与结构特点 ● 1. 20种AA中除Pro外,与羧基相连的α-碳原子上都有一个氨基,因而称α-氨 基酸。 ● 2. 不同的α-AA,其R侧链不同。氨基酸R侧链对蛋白质空间结构和理化性质有 重要影响。 ● 3. 除Gly的R侧链为H原子外,其他AA的α-碳原子都是不对称碳原子,可形成 不同的构型,因而具有旋光性。 ● 氨基酸分类P9 按侧链的结构和理化性质可分为: 非极性、疏水性氨基酸 极性、中性氨基酸 酸性氨基酸 碱性氨基酸 等电点概念 在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点(isoelectric point,pI )。 紫外吸收性质 含有共轭双键的芳香族氨基酸Trp(色氨酸), Tyr(酪氨酸)的最大吸收峰在280nm波长附近。 氨基酸成肽的连接方式 两分子脱水缩合为二肽,肽键

由10个以氨基酸相连而成的肽称为寡肽。 而更多的氨基酸相连而成的肽叫做多肽;多肽链有两端,其游离a-氨基的一端称氨基末端或N-端,游离a-羧基的一端称为羧基末端或C-端。 肽链中的氨基酸分子因脱水缩合而基团不全,被称为氨基酸残基。 蛋白质就是由许多氨基酸残基组成的多肽链。 谷胱甘肽GSH GSH是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。 (1) 体重要的还原剂保护蛋白质和酶分子中的巯基免遭氧化,使蛋白质处与活性状态。 (2) 谷胱甘肽的巯基作用可以与致癌剂或药物等结合,从而阻断这些化合物与DNA、RNA 或蛋白质结合,保护机体免遭毒性损害。 蛋白质1~4级结构的定义及维系这些结构稳定的作用键 蛋白质是氨基酸通过肽键相连形成的具有三维结构的生物大分子 蛋白质的一级结构就是蛋白质多肽链中氨基酸残基的排列顺序。主要化学键是肽键,有的还包含二硫键。 蛋白质二级结构是指多肽链的主链骨架中若干肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象,如α-螺旋、β-折叠、β-转角和无规卷曲等。蛋白质二级结构一般不涉及氨基酸残基侧链的构象。 二级结构的主要结构单位——肽单元(peptide unit)[肽键与相邻的两个α-C原子所组成的残基,称为肽单元、肽单位、肽平面或酰胺平面(amide plane)。它们均位于同一个平面上,且两个α-C原子呈反式排列。] 二级结构的主要化学键——氢键(hydrogen bond) 蛋白质的三级结构是指多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。也就是整条多肽链中所有原子或基团在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键,包括氢键、盐键、疏水键以及德华力等。此外,某些蛋白质中二硫键也起着重要的作用。 由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象,称为蛋白质的四级结构。[亚基(subunit):由一条或几条多肽链缠绕形成的具有独立三级结构的蛋白质。] 蛋白质二级结构的基本形式?重点掌握α-螺旋、β-折叠的概念 α-螺旋(α-helix) β-折叠(β-pleated sheet) β-转角(β–turn or β-bend) 无规卷曲(random coil) α-helix ①多个肽平面通过Cα的旋转,相互之间紧密盘曲成稳固的右手螺旋。 ②主链螺旋上升,每3.6个氨基酸残基上升一圈,螺距0.54nm。肽平面和螺旋长轴平行。 ③相邻两圈螺旋之间借肽键中羰基氧(C=O)和亚氨基氢(NH)形成许多链氢键,即每一

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

最新医学生物化学复习大纲

医学生物化学复习大纲 第一章蛋白质化学 【考核内容】 第一节蛋白质的分子组成 第二节蛋白质的分子结构 第三节蛋白质分子结构与功能的关系 第四节蛋白质的理化性质 【考核要求】 1.掌握蛋白质的重要生理功能。 2.掌握蛋白质的含氮量及其与蛋白质定量关系;基本结构单位——是20种L、α-氨 基酸,熟悉酸性、碱性、含硫、含羟基及含芳香族氨基酸的名称。 3.掌握蛋白质一、二、三、四、级结构的概念;一级结构及空间结构与功能的关系。 4.熟悉蛋白质的重要理化性质――两性解离及等电点;高分子性质(蛋白质的稳定因 素――表面电荷和水化膜);沉淀的概念及其方式;变性的概念及其方式;这些理化性质在医学中的应用。 第二章核酸化学 【考核内容】 第一节核酸的一般概述 第二节核酸的化学组成 第三节 DNA的分子结构 第四节RNA的分子结构 第五节核酸的理化性质 【考核要求】 1.熟悉核酸的分类、细胞分布及其生物学功能。 2.核酸的分子组成:熟悉核酸的、平均磷含量及其与核酸定量之间的关系。核苷酸、核 苷和碱基的基本概念。熟记常见核苷酸的缩写符号。掌握两类核酸(DNA与RNA)分子组成的异同。熟悉体内重要的环核苷酸——cAMP和cGMP。 3.核酸的分子结构:掌握多核苷酸链中单核苷酸之间的连接方式——磷酸二酯键及多核 苷酸链的方向性。掌握DNA二级结构的双螺旋结构模型要点、碱基配对规律;了解DNA的三级结构——核小体。熟悉rRNA、mRNA和tRNA的结构特点及功能。熟悉tRNA二级结构特点——三叶草形结构及其与功能的关系。 4.核酸的理化性质:掌握核酸的紫外吸收特性,DNA变性、Tm、高色效应、复性及杂 交等概念。 第三章酶 【考核内容】 第一节、酶的一般概念 第二节、酶的结构与功能

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

生化考研重点知识总结

生化考研重点知识总结 第一章单糖 ①多糖与碘显色,至少需要的葡萄糖残基数:6 ②唾液淀粉酶激活剂:Cl- ③几个典型非还原糖:蔗糖、糖原、淀粉 ④形成N-糖肽键的单糖或衍生物是: 第二章油脂 ①几个非饱和脂肪酸双键数: ?油酸:1 ?亚油酸:2 ?亚麻酸:3 ②人不能自身合成的必须脂肪酸:亚油酸、亚麻酸 ③四种脂类转运脂蛋白: ?CM:乳糜微粒,转运外源性三酰甘油酯 ?VLDL:极低密度脂蛋白,转运内源性三酰甘 油酯 ?LDL:低密度脂蛋白,转运内源性胆固醇 ?HDL:高密度脂蛋白,转运外源性胆固醇 第三章氨基酸与蛋白质 ①几种主要氨基酸及三字母缩写 ?两特殊:Pro、Gly ?芳香:酪(Tyr)色(Trp/Try,吸光最强)苯(Phe) ?八种必需氨基酸:甲携来一本亮色书,Met/Val/Lys/Ile/Phe/Leu/Trp/Thr ?侧链为羟基氨基酸:苏(Thr)丝(Ser)酪(Tyr) ?酸性氨基酸:天(Asp)谷(Glu)※对应两酰胺:Asn、Gln ?碱性氨基酸:赖(Lys)精(Arg)组(His) ?其它:丙氨酸(Ala)

②PI ?PI的计算:PI=(PK1+PK2)/2=(PK1+PKR COOH )/2=(PK2+PKR NH2 )/2 ?PH的计算:PH=PK1+Lg(R/R+)=PK2+Lg(R-/R) ?PH =7的水中溶蛋白,PH=6,则该蛋白PI<6:蛋白溶后PH下降为6,表明蛋白的COOH 电离出H+,则产生了R-,PH=6>PI 时有R-③蛋白二级结构 ?α螺旋:Sn=3.6 13 ,存在Pro时不形成α螺旋,右手螺旋 ?β折叠:同/反向,肽键中H与O成氢键,轴距0.35nm ?β转角:转角处为Gly ④超二级结构:无规卷曲、结构域 ⑤三级结构:作用力(二硫键、疏水作用力、氢键、静电离子键、范德华力) ⑥蛋白结构分析 ?N端分析法:FDNB(Sanger)、PITC(Edman)、DNS-Cl(丹磺酰氯)、氨肽酶法 ?C端分析法:羧肽酶法、无水肼解法※羧肽酶A:不能水解C端为Lys、Arg、Pro的 肽键;羧肽酶B:能水解C端为Lys、Arg的肽 键;C端倒数第二位是Pro时,A、B都不能水 解 ?打开二硫键:还原法(巯基化合物,碘乙酸保护)、氧化法(过甲酸) ?专一切断:胰蛋白酶(Lys、Arg-COOH肽键);CNBr(Met-COOH肽键);胰凝乳蛋白酶(); ⑦显色反应 ?Follin酚:蓝色,酚基(Tyr)、吲哚基(Trp),组分(CuSO 4 +磷钼酸) ?Millon:红色,酚基(Tyr),组分(HgNO 3+Hg(NO 3 ) 2 ) ?坂口反应:红色,胍基(Arg),组分(α萘酚,NaClO) ?黄色反应:黄色,芳香氨基酸,组分(浓HNO 3 ) ?双缩脲反应:紫红色,肽键,多肽,组分(NaOH+CuSO 4 ) ?乙醛酸反应:紫色,吲哚基(Trp) ⑧几种重要氨基酸 ?提供活性甲基的:S-腺苷Met ?形成N-糖肽键的:Asp ?胶原蛋白中含量高的氨基酸:Gly、Ala、Pro、HO-Pro、HO-Lys

生物化学重点知识归纳

生物化学重点知识归纳 酶的知识点总结 一、酶的催化作用 1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白属于单纯蛋白质的酶 2、体内结合蛋白质的酶占多数,结合蛋白质酶由酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,所以酶蛋白决定酶反应特异性。结合蛋白质酶;酶蛋白:决定酶反应特异性;辅酶:结合不牢固辅助因子辅基:结合牢固,由多种金属离子;结合后不能分离 3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构 4、酶的有效催化是降低反应的活化能实现的。 二、辅酶的种类口诀:1脚踢,2皇飞,辅酶1,NAD, 辅酶2,多个p; 三、酶促反应动力学:1 Km为反应速度一半时的[S](底物浓度),亦称米氏常数,Km增大,Vmax不变。

2、酶促反应的条件:PH值:一般为最适为7.4,但胃蛋白酶的最适PH为1.5,胰蛋白酶的为7.8;温度:37—40℃; 四、抑制剂对酶促反应的抑制作用 1、竞争性抑制:Km增大,Vmax不变;非抑制竞争性抑制:Km不变,Vmax减低 2、酶原激活:无活性的酶原变成有活性酶的过程。 (1)盐酸可激活的酶原:胃蛋白酶原 (2)肠激酶可激活的消化酶或酶原:胰蛋白酶原 (3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原 (4)其余的酶原都是胰蛋白酶结合的 3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。 LDH分5种。LDH有一手(5种),心肌损伤老4(LDH1)有问题,其他都是HM型。 脂类代谢的知识点总结 1、必需脂肪酸:亚麻酸、亚油酸、花生四烯酸(麻油花生油) 2、脂肪的能量是最多的,脂肪是禁食、饥饿是体内能量的主要来源

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

生化总结

生化复习资料 重点主要是框架内容和基本概念,不会考得太细和过偏。为了减轻各位复习压力,以下主要是各章最重要、需要记的内容,其它内容请大家根据自己实际情况进行复习,主要考的是知识点,大题方面要靠自己理解去答,切忌不要空着,请大家调整好心态,合理复习,祝各位考试顺利通过!如有相关问题,请与总结成员(张韬、辛雷、巩顺、赵贵成、刘仁东)联系! 生命大分子的结构与功能 一、蛋白质 (一)结构 (1)一级结构:指多肽链中氨基酸的排列顺序。化学键:肽键、二硫键 (2)二级结构:指多肽链骨架上原子的局部空间排布,并不涉及侧链位置。化学键:氢键 组成二级结构的基本单位——肽单元 形式α-螺旋β-折叠β-转角和无规卷曲 (3)三级结构:是一条多肽链的完整的构象,包括全部的主链和侧链的专一性的空间排布。 化学键:次级键——氢键、离子键(盐键)、疏水作用和Van Der Wassls 力 (4)四级结构:指含有两条或多条肽链的蛋白质,其每一条肽链都具有其固定的三级结构(亚基),并靠次级键相连接 (二)理化性质 (1)变性:在某些理化因素的作用下,蛋白质分子中非共价键(有时也包括二硫键)被破坏,而引起其空间结构改变,并导致蛋白质理化性质的改变和生物学活性的丧失,这种现象称为变性。 复性:在去除变性因素后,部分蛋白质又可恢复其原有的空间结构、理化性质及生物学活性,这样的过程称为复性。 (2)蛋白质从溶液中析出的现象称为“沉淀”。 盐析:在蛋白质溶液中加入大量中性盐以破坏其胶体稳定性而使蛋白质析出 二、核酸 (一)结构 (1)一级结构:指 DNA或RNA中核苷酸的排列顺序(简称核苷酸序列),也称碱基序列。 (2)二级结构 1、DNA的二级结构——双螺旋结构模型:反向平行、互补双链结构: 脱氧核糖和磷酸骨架位于双链外侧,走向相反;碱基配对,A-T,G-C右手螺旋,并有大沟和小沟;螺旋直径 2nm 螺距 3.4nm 螺旋一周10个碱基对,碱基平面距离 0.34 nm 双螺旋结构稳定的维系;横向是碱基对氢键,纵向是碱基平面间的疏水堆积力。 DNA功能:遗传信息的载体,基因复制和转录的模板,生命遗传的物质基础。 2、RNA的二级结构 <1> mRNA 特点:-帽子结构(m7GpppNm)-多聚A尾、遗传密码 功能:指导蛋白质合成中氨基酸排列顺序 <2>tRNA 局部形成茎-环样结构(或发夹结构) 包括:氨基酸接纳茎(氨基酸臂) TΨ环反密码环 DHU环 (二)理化性质 1变性:理化因素作用下,DNA分子互补双链之间氢键断裂,使双螺旋结构松散,变成单链的过程。 2复性(退火):适当条件下,两条互补链重新恢复天然的双螺旋构象的现象。 3分子杂交:不同来源的核酸经变性和复性的过程,其中一些不同的核苷酸单链由于存在局部碱基互补片段,而在复性时形成杂化双链(heteroduplex),此过程称分子杂交。(杂化双链:不同DNA间,DNA与RNA或 RNA 与 RNA) 三、酶 (一)结构 <1>酶活性中心:能结合并催化一定底物使之发生化学变化的位于酶分子上特定空间结构区域,该区域包含结

检验师生化检验(初级)知识点集锦

1、糖酵解:指从葡萄糖至乳糖的无氧分解过程,可生成2分子ATP。是体内糖代谢最主要途径。最终产物:乳酸。依赖糖酵解获得能量:红细胞。 2、糖氧化——乙酰CoA。有氧氧化是糖氧化供能的主要方式。1分子葡萄糖彻底氧化为CO2和H2O,可生成36或38个分子的ATP。 3、糖异生:非糖物质转为葡萄糖。是体内单糖生物合成的唯一途径。肝脏是糖异生的主要器官。防止乳酸中毒。 4、血糖受神经,激素,器官调节。 5、升高血糖激素:胰高血糖素(A细胞分泌),糖皮质激素和生长激素(糖异生),肾上腺素(促进糖原分解)。 降低血糖激素:胰岛素(B细胞分泌)(唯一) 6、糖尿病分型: Ⅰ型:内生胰岛素或C肽缺,易出酮症酸中毒,高钾血症,多发于青年人。 Ⅱ型:多肥胖,具有较大遗传性,病因有胰岛素生物活性低,胰岛素抵抗,胰岛素分泌功能异常。 特殊型及妊娠期糖尿病。 7、糖尿病的诊断标准:有糖尿病症状加随意血糖≥11.1 mmol/L;空腹血糖(FVPG)≥7.0 mmol/L;(OGTT)2h血糖≥11.1 mmol/L。初诊需复查后确证。 8、慢性糖尿病人可有:白内障(晶体混浊变形),并发血管病变以心脑肾最重。 9、糖尿病急性代谢并发症有:酮症酸中毒(DKA,高血糖,尿糖强阳性,尿酮体阳性,高酮血症,代谢性酸中毒,多<40岁,年轻人),高渗性糖尿病昏迷(NHHDC,血糖极高,>33.6mmol/L,肾功能损害,脑血组织供血不足,多>40岁,老年人),乳酸酸中毒(LA)。

10、血糖测定:葡萄糖氧化酶-过氧化物酶偶联法(GOD-POD法)。己糖激酶法(HK):参考方法 (>7.0mmol/L称为高血糖症。<2.8mmol/L称为低血糖症。) 11、空腹低血糖反复出现,最常见的原因是胰岛β细胞瘤(胰岛素瘤)。胰岛B细胞瘤临床特点:空腹或餐后4—5h发作,脑缺糖比交感神经兴奋明显,有嗜睡或昏迷,30%自身进食可缓解故多肥胖。 12、血浆渗透压=2(Na+K)+血糖浓度。 13、静脉血糖〈毛细血管血糖〈动脉血糖。 14、血糖检测应立即分离出血浆(血清),尽量早检测,不能立即检查应加含氟化钠的抗凝剂。 15、肾糖阈:8.9—10.0mmol/L。 16、糖耐量试验:禁食10—16h,5分钟内饮完250毫升含有75g无水葡萄糖的糖水,每30分钟取血一次,监测到2h,共测量血糖5次(包括空腹一次)。 17、糖化血红蛋白:可分为HbAIa,HbAIb,HbAIc(能与葡萄糖结合,占绝大部分),测定时主要测HbAI组份或HbAIc(4%--6%),反映前6~8周血糖水平,主要用于评定血糖控制程度和判断预后。 18、糖化血清蛋白:类似果糖胺,反映前2—3周血糖水平。 19、C肽的测定可以更好地反映B细胞生成和分泌胰岛素的能力。 20、乳酸测定:NADH被氧化为NAD+,可在340nm处连续监测吸光度下降速度。(NADH和NADPH在340nm有特征性光吸收) 21、血脂蛋白电泳图(自阴极起):乳糜微粒,B-脂蛋白,前B脂蛋白,A-脂蛋白。

考研备考生物化学知识点总结

考研备考:生物化学知识点总结 21世纪被称为生物世纪,可见生物学技术对人类的影响是巨大的。生物学技术渗透于社会生活的众多领域,食品生产中的转基因大豆、啤酒用于制衣的优质棉料和动物皮革,医学上疫苗、药品的生产和开发以及试管婴儿技术的应用,逐渐流行推广起来的生物能源如沼气、乙醇等,都包含生物学技术的应用。生物学的最新研究成果都会引起世人的注意,如此新兴和前景广阔的专业自然吸引了广大同学的考研兴趣。为此,针对生物学专业课基础阶段的复习,专业课考研辅导专家们对生物化学各章节知识点做了如下总结: 第一章糖类化学 学习指导:糖的概念、分类以及单糖、二糖和多糖的化学结构和性质。重点掌握典型单糖(葡萄糖和果糖)的结构与构型:链状结构、环状结构、椅适合船式构象;D-型及L-型;α-及β-型;单糖的物理和化学性质。以及二糖和多糖的结构和性质,包括淀粉、糖原、细菌多糖、复合糖等,以及多糖的提取、纯化和鉴定。 第二章脂类化学 学习指导:一、重要概念水解和皂化、氢化和卤化、氧化和酸败、乙酰化、磷脂酰胆碱二、单脂和复脂的组分、结构和性质。磷脂,糖脂和固醇彼此间的异同。 第三章蛋白质化学 学习指导:蛋白质的化学组成,20种氨基酸的简写符号、氨基酸的理化性质及化学反应、蛋白质分子的结构(一级、二级、高级结构的概念及形式)、蛋白质的理化性质及分离纯化和纯度鉴定的方法、了解氨基酸、肽的分类、掌握氨基酸与蛋白质的物理性质和化学性质、掌握蛋白质一级结构的测定方法、理解氨基酸的通式与结构、理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基、掌握肽键的特点、掌握蛋白质的变性作用、掌握蛋白质结构与功能的关系 第四章核酸化学 学习指导:核酸的基本化学组成及分类、核苷酸的结构、DNA和RNA一级结构的概念和二级结构特点;DNA的三级结构、RNA的分类及各类RNA的生物学功能、核酸的主要理化特性、核酸的研究方法;全面了解核酸的组成、结构、结构单位以及掌握核酸的性质;全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质;掌握DNA的二级结构模型和核酸杂交技术。 第五章激素化学 学习指导:激素的分类;激素的化学本质;激素的合成与分泌;常见激素的结构和功能(甲状腺素、肾上腺素、胰岛素、胰高血糖素);激素作用机理。了解激素的类型、特点;理解激素的化学本质和作用机制;理解第二信使学说。 第六章维生素化学 学习指导:维生素的分类及性质;各种维生素的活性形式、生理功能。了解水溶性维生素的结构特点、生理功能和缺乏病;了解脂溶性维生素的结构特点和功能。 第七章酶化学 学习指导:酶的作用特点;酶的作用机理;影响酶促反应的因素(米氏方程的推导);酶的提纯与活力鉴定的基本方法;熟悉酶的国际分类和命名;了解抗体酶、核酶和固定化酶的基本概念和应用。了解酶的概念;掌握酶活性调节的因素、酶的作用机制;了解酶的分离提纯基本方法;了解特殊酶,如溶菌酶、丝氨酸蛋白酶催化反应机制;掌握酶活力概念、米氏方程以及酶

相关主题
文本预览
相关文档 最新文档