高速切削与高速机床分解
- 格式:ppt
- 大小:1.85 MB
- 文档页数:39
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
数控加工技术在机械加工制造中的应用摘要:随着科技的飞速发展,数控加工技术已经成为现代机械加工制造中的核心技术之一。
数控加工技术的广泛应用,不仅提高了机械加工制造的精度和效率,还推动了机械加工制造行业的快速发展。
本文将探讨数控加工技术在机械加工制造中的应用。
关键词:数控加工;机械加工;制造;应用引言:数控加工技术是一种先进的制造技术,它通过数字化的方式对机床进行控制,实现零件的加工,这种技术以其高精度、高效率、高柔性和低成本的优势,广泛应用于机械制造、航空航天、汽车、模具等领域。
一、数控加工技术的特点(一)高精度数控机床在工业生产中具有诸多优势,其中加工精度高是其显著特点之一。
这种高精度算法和先进的伺服系统使得数控机床能够达到微米甚至纳米级别,与传统的加工方法相比,其精度要高出一个数量级。
微米级别的加工精度意味着产品品质的严格把控,对于延长设备使用寿命、提高生产效率、保证产品质量有着不可估量的价值。
(二)高效率数控机床是一种高效、高精度、高效率的机床,通过将多道工序集成在一次装夹中,数控机床可以显著减少工件的装夹和调整时间,提高加工效率。
同时,数控加工技术可以通过自动化操作,实现加工过程的自动化,进一步缩短加工周期,提高生产效率。
(三)高柔性数控机床是一种高度精密的自动化机床,其加工范围非常广泛,能够适应各种形状和尺寸的零件加工。
同时,数控加工技术可以通过修改程序来适应不同的加工需求,具有很高的柔性。
(四)低成本数控加工技术是一种先进的加工技术,相比传统加工技术,它的操作更加简单,对工人的技能要求更低,可以降低劳动力成本,因为数控加工技术自动化程度高,可以减少人力成本,提高生产效率。
同时,数控机床的加工精度和效率高,可以大幅度减少材料和时间的浪费,从而降低制造成本。
(五)高度智能化现代数控机床,通过引入人工智能技术,不仅具备了先进的加工功能,还实现了自我诊断、自我调整和学习功能。
这些功能可以帮助企业实现智能制造,提高生产效率和产品质量,这些功能不仅有助于生产过程的自动化和智能化,还能根据生产需求和产品变化,实时调整生产流程和参数,从而提高生产效率和产品质量[1]。
一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。
到目前为止,其原理仍未被现代科学研究所证实。
但这一原理的成功应该不只局限于此。
高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。
这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。
所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
!机械加工与自动化#高速机床与高速切削在现代机械加工中的应用T he A pp licati on of H igh2sp eed M ach ine Too l and H igh2sp eed Cu tting in M odern M ach in ing江苏大学机械工程学院(212013) 宋昌才【摘要】高速切削(H SC)、硬切削和干切削被认为是当今切削加工中3项最具发展前景的技术,受到人们普遍重视。
世界机床行业功能部件发展迅速、单元技术水平不断提高,技术开发朝着高速、高效、环保、智能化、机床功能的复合化方向发展。
探讨了高速机床的相关系统、高速刀具系统、高速切削可以实现的目标、高速切削的应用和高速切削需要解决的问题等。
关键词 高速机床 高速切削 机械加工Keywords h igh2sp eed m ach ine too l,h igh2sp eed cu tting,m ach in ing 上世纪末,高速加工(H S M)或高速切削(H SC)成为国际机械制造业最热门话题。
所谓“高速切削”,一般不能简单地用某一具体切削速度值来定义。
在不同技术发展年代,对不同的切削工序和切削条件,用不同切削刀具和加工不同材料,其经济合理的切削速度范围是不一样的,而且这个范围总是随着超硬、耐磨、长寿命刀具材料的发展而不断提高,通常是把采用比常规切削速度高得多(一般为5~10倍)的切削加工称为高速切削,例如当切削速度对钢材达到380m m in以上、铸铁700m m in以上、铜材1000m m in以上、铝材1100m m in以上、塑料1150m m in以上时,称为高速切削,满足高速切削要求的加工中心,才可称为高速加工中心[1]。
表1为现阶段高速切削技术水平[2]。
表1 现阶段高速切削技术水平铣削CBN 铣削灰铸铁PCD铣削铝合金1000~2000m m in 3000~4000m m in车削CBN车削淬火钢(HRC60)CBN车削灰铸铁刹车盘氮化硅陶瓷车削灰铸铁100~200m m in700~1000m m in500~700m m in钻削整体硬质合金钻头钻灰铸铁100m m in攻丝钴高速钢丝锥加工可锻铸铁(M14×1.5)61m m in滚齿硬质合金滚刀加工16M nC r5金属陶瓷滚刀加工16M nC r5350m m in600m m in采用高速切削,不仅能有效提高生产率、缩短切削时间和产品制造周期,还有许多其他优点:如工件 刀具和机床上的切削力减小,工件温升和热变形小,从而可以进行薄壁件加工;尺寸精度提高;表面粗糙度降低;毛刺减少;需用刀具种类较少;装夹简便;排屑较好;免掉许多既费工又费时的后序人工修理等,这对提高产品质量、提高企业市场竞争力具有十分重要的意义,特别是对那些经常需以整块材料镂铣成具有复杂型面零件的加工行业,如模具和航空、航天等行业,更是如此。