3.3.1二元一次不等式(组)与平面区域
- 格式:doc
- 大小:558.00 KB
- 文档页数:15
3.3.1二元一次不等式(组)与平面区域(2)
高二数学教·学案
【学习目标】
1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;
2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
3.情感态度与价值观:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。
【学习重点】从实际问题中抽象出二元一次不等式(组),并能用图形表示.
【学习难点】从实际问题中抽象出二元一次不等式(组).
【授课类型】新授课
高二数学教·学案
课后反思:。
3.3.2 简单的线性规划问题双基达标 限时20分钟1.(2010·福建高考)若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x ,且z =x +2y 的最小值等于( ). A .2B .3C .5D .9解析 可行域如图阴影部分所示,则当直线x +2y -z =0经过点M (1,1)时,z =x +2y 取得最小值,为1+2=3. 答案 B2.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4x -y ≥-1,x -2y ≤2则z =x +y( ).A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值解析 作出不等式组表示的平面区域,即可行域, 如图中阴影部分所示.由z =x +y ,得y =-x +z , 令z =0,作直线l :y =-x .当平移直线l 至经过A (2,0)时,z 取得最小值,z min =2,由图可知无最大值.故 选B. 答案 B3.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( ).A.10 B .8 C .16 D .10解析 画出不等式组对应的可行域如图所示:易得A (1,1),|OA |=2,B (2,2),|OB |=22,C (1,3),|OC |=10. ∴(x 2+y 2)max =|OC |2=(10)2=10. 答案 D 4.已知⎩⎪⎨⎪⎧2x +3y ≤6x -y ≥0y ≥0,则z =3x -y 的最大值为________.解析 画出可行域如图所示,当直线z =3x -y 过点(3,0)时,z max =9.答案 95.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx的最大值为________.解析 画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P (x ,y )与原点的连线的斜 率.A (1,2),B (3,0),∴0≤y x≤2. 答案 26.已知f (x )=3x -y ,且-1≤x +y ≤1,1≤x -y ≤3,求f (x )的取值范围.解 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤1,1≤x -y ≤3表示的平面区域,即可行域,如图中阴影部分所示.在可行域内平移直线l :3x -y =0,当直线l 向下平移过B (0,-1),即直线x -y -1=0与x +y +1=0的交点时,f (x )min =3×0+1=1;当直线l 向下平移过A (2,-1)即直线x -y -3=0与x +y -1=0的交点时,f (x )max =2×3+1=7, ∴1≤f (x )≤7.综合提高 限时25分钟7.如图所示的坐标平面的可行域内(包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ). A.14B.35C .4D.53解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35.答案 B8.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0.且z =2x +4y 的最小值为-6,则常数k =( ). A .2B .9C .310D .0解析 由题意知,当直线z =2x +4y 经过直线x =3与x +y +k =0的交点(3,-3-k )时,z 最小,所以-6=2×3+4×(-3-k ),解得k =0.故选D. 答案 D9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0.则z =3x +2y的最小值是________.解析 由不等式组得可行域是以A (0,0),B (0,1),C (-0.5,0.5)为顶点的三角形,易知当x =0,y =0时,z ′=x +2y 取最小值0.所以z =3x +2y的最小值是1.答案 110.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元. 解析 设需租赁甲种设备x 台,乙种设备y 台, 则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元. 答案 2 30011.某企业生产A ,B 两种产品,生产每吨产品所需的劳动力和煤、电耗如下表:已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360 t ,并且供电局只能供电200 kW ,试问该企业生产A ,B 两种产品各多少吨,才能获得最大利润?解 设生产⎩⎪⎨⎪⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.z =7x +12y .作出可行域(如图),作出在一组平行直线7x + 12y =t (t 为参数),此直线经过M (20,24),故z的最优解为(20,24),z 的最大值为7×20+ 12×24=428(万元).12.(创新拓展)(2011·三明高二检测)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解 设投资人分别用x 万元、y 万元投资甲、乙两个项目, 由题意知⎩⎪⎨⎪⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y , 作出平面区域如图所示:作直线l 0:x +0.5y =0,即2x +y =0.并作平行于直线l 0的一组直线l :z =x +0.5y ,当l 过点M 时,z 最大. 由⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8.得M (4,6).此时z max =1×4+0.5×6=7(万元).所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.。
§3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域学习目标 1.了解二元一次不等式(组)表示的平面区域;2.会画出二元一次不等式(组)表示的平面区域(重、难点).预习教材P82-85完成下列问题:知识点一二元一次不等式(组)表示平面区域1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.2.二元一次不等式与平面区域在平面直角坐标系中,二元一次不等式Ax+By+C>0(<0)表示直线Ax+By+C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0(≤0)表示的平面区域包括边界,把边界画成实线.【预习评价】1.二元一次不等式的一般形式是什么?提示二元一次不等式的一般形式是Ax+By+C>0,Ax+By+C<0,Ax+By +C≥0,Ax+By+C≤0,其中A,B不同时为0.2.每一个二元一次不等式(组)都能表示平面上的一个区域吗?提示不一定.当不等式组的解集为空集时,不等式组不表示任何图形.知识点二二元一次不等式表示的平面区域的确定平面区域的确定依据直线Ax+By+C=0同一侧的所有点,把它们的坐标(x,y)代入Ax+By+C所得符号都相同方法在直线Ax+By+C=0的一侧取某个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域【预习评价】1.原点与点(-1,10)在直线x+y-1=0的________(填“同侧”或“两侧”).解析将点(0,0)和(-1,10)代入到x+y-1中符号相反.答案两侧2.已知点A(2,1),B(1,0),C(-1,0),则不等式x-2y<0表示的平面区域内的点是________.解析由于-1-2×0=-1<0,故符合.而2-2×1=0,1-2×0>0.所以符合的为点C.答案C题型一二元一次不等式与平面区域【例1】(1)如图所示的平面区域(阴影部分)用不等式表示为________.(2)画出不等式2x+y-4>0表示的平面区域.解(1)由截距式得直线方程为x2+y1=1,即x+2y-2=0.因为0+2×0-2<0,且原点在阴影部分中,故阴影部分可用不等式x+2y-2<0表示.(2)先画直线2x+y-4=0(画成虚线).取原点(0,0)代入,得2x+y-4=2×0+0-4=-4<0,所以不等式2x+y-4>0表示的区域是直线2x+y-4=0右上方的平面区域,如图中的阴影部分所示.规律方法 1.已知平面区域求不等式的步骤(1)利用已知平面区域边界上点的坐标求出直线方程.(2)将平面区域内的特殊点代入直线方程两侧,判断不等号的方向.(3)结合平面区域的边界虚实写出相应的不等式.2.二元一次不等式表示平面区域的判断方法(1)对于Ax+By+C>0(或<0)表示的平面区域,直线Ax+By+C=0,其中A>0可以这样来确定:所表示区域位置不等式B>0B<0Ax+By+C>0在直线右上方在直线右下方Ax+By+C<0在直线左下方在直线左上方①当A<0时,可通过不等式两边乘以-1的方法转化成上述情况.②当A或B为0时,可通过不等式直接确定.(2)对于区域的确定要灵活,如果给定点P(x0,y0)和直线Ax+By+C=0(B≠0),判断点P在直线哪一侧时,设d=B·(Ax0+By0+C),则①d>0⇔P在直线上方;②d=0⇔P在直线上;③d<0⇔P在直线下方.【训练1】 不等式组⎩⎨⎧x -y ≤0,x +y ≤0表示的平面区域是( )解析 取特殊点坐标(如:(0,-1),(-1,0)等)代入不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≤0,检验可得C 符合. 答案 C题型二 不等式组表示平面区域的应用【例2】(1)画出不等式组⎩⎨⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积;(2)求不等式组⎩⎨⎧y ≤2,|x |≤y ≤|x |+1所表示的平面区域的面积大小.解 如图所示,其中的阴影部分便是不等式组所表示的平面区域.由⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,得A (1,3). 同理得B (-1,1),C (3,-1). ∴|AC |=22+(-4)2=25,而点B 到直线2x +y -5=0的距离为 d =|-2+1-5|5=65,∴S △ABC =12|AC |·d =12×25×65=6.(2)可将原不等式组分解成如下两个不等式组: ①⎩⎪⎨⎪⎧x ≥0,y ≥x ,y ≤x +1,y ≤2,或②⎩⎪⎨⎪⎧x ≤0,y ≥-x ,y ≤-x +1,y ≤2.上述两个不等式组所表示的平面区域如图所示,所围成的面积S =12×4×2-12×2×1=3.规律方法 求平面区域面积的方法求平面区域的面积,先画出不等式组表示的平面区域,然后根据区域的形状求面积.(1)若画出的平面区域是规则的,则直接利用面积公式求解.(2)若平面区域是不规则的,可采用分割的方法,将平面区域分成几个规则图形求解.【训练2】 在平面直角坐标系中,不等式组⎩⎨⎧y ≥0,x +3y ≤4,3x +y ≥4表示的平面区域的面积是( ) A.32 B.23 C.43D.34解析 不等式组表示的平面区域如图阴影部分所示.平面区域为一个三角形及其内部,三个顶点的坐标分别为(4,0),⎝ ⎛⎭⎪⎫43,0,(1,1),所以平面区域的面积为S =12×⎝ ⎛⎭⎪⎫4-43×1=43.答案 C题型三 用二元一次不等式组表示实际问题【例3】 投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,用数学关系式和图形表示上述要求.解 设生产A 产品x 百吨,生产B 产品y 百吨,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0.用图形表示以上限制条件,得其表示的平面区域如图所示(阴影部分). 规律方法 用平面区域来表示实际问题的基本方法(1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这两个字母表示.(3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来.【训练3】 某人准备投资1 200万元兴办一所中学,他对教育市场进行调查后,得到了下面的数据表格(以班级为单位): 学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人因生源和环境等条件限制,办学规模以20至30个班为宜.分别用数学关系式和图形表示上述的限制条件.解 设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数限制在20~30之间,所以有20≤x +y ≤30,考虑到所投资金的限制,得到26x +54y +2×2x +2×3y ≤1 200,即x +2y ≤40, 另外,开设的班数不能为负且为整数,则x ≥0,y ≥0,x ,y ∈Z . 把上面的四个不等式合在一起,得到⎩⎪⎨⎪⎧20≤x +y ≤30,x +2y ≤40,x ≥0,y ≥0,x ,y ∈Z .用图形表示这个限制条件,得到如图的平面区域(阴影部分中x ,y 为整数点).课堂达标1.不在不等式3x +2y <6表示的平面区域内的一个点是( ) A.(0,0) B.(1,1) C.(0,2)D.(2,0)解析 将四个点的坐标分别代入不等式中,其中点(2,0)代入后不等式不成立,故此点不在不等式3x +2y <6表示的平面区域内,故选D. 答案 D2.如图所示,表示阴影部分的二元一次不等式组是()A.⎩⎨⎧y ≥-2,3x -2y +6>0,x <0B.⎩⎨⎧y ≥-2,3x -2y +6≥0,x ≤0C.⎩⎨⎧y >-2,3x -2y +6>0,x ≤0D.⎩⎨⎧y >-2,3x -2y +6<0,x <0解析 观察图象可知,阴影部分在直线y =-2上方,且不包含直线y =-2,故可得不等式y >-2.又阴影部分在直线x =0左边,且包含直线x =0,故可得不等式x ≤0.由图象可知,第三条边界线过点(-2,0)、(0,3), 故可得直线3x -2y +6=0,因为此直线为虚线且原点O (0,0)在阴影部分, 故可得不等式3x -2y +6>0.观察选项可知选C. 答案 C3.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,满足工人工资预算条件的数学关系式为________.答案⎩⎨⎧50x +40y ≤2 000,x ∈N *,y ∈N *4.画出二元一次不等式组⎩⎨⎧x +y ≤1,x ≥0,y ≥0表示的平面区域,则这个平面区域的面积为________.解析 平面区域如图阴影部分(含边界)所示. S 阴=12×1×1=12. 答案 12课堂小结1.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时, (1)Ax +By +C >0表示直线Ax +By +C =0上方的区域; (2)Ax +By +C <0表示直线Ax +By +C =0下方的区域.2.画平面区域时,注意边界线的虚实问题.基础过关1.已知点P 1(0,1),P 2(2,1),P 3(-1,2),P 4(3,3),则在4x -5y +1≤0表示的平面区域内的点的个数是( ) A.1 B.2 C.3D.4解析 经验证,P 1,P 3,P 4均在区域内. 答案 C2.若点(m ,1)和(-3,m )不在直线x +2y -1=0的同侧,则实数m 的取值范围是( ) A.(-1,2) B.(-2,1)C.[-1,2]D.(-∞,-1]∪[2,+∞)解析 记f (x ,y )=x +2y -1,则f (m ,1)·f (-3,m )≤0,即(m +1)(2m -4)≤0,解得-1≤m ≤2. 答案 C3.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域A 的概率为( ) A.13 B.23 C.19D.29解析 Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0}表示的平面区域面积为12×62=18, A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0}表示的平面区域面积为12×4×2=4,由几何概型计算公式,P =418=29.选D. 答案 D4.在坐标平面上,不等式组⎩⎨⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为________.解析 画出约束条件表示的可行域,如图中阴影部分,由题意M (2,3),N ⎝ ⎛⎭⎪⎫-23,13,P (0,-1),Q (0,1),不等式组⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为:12×2×2+12×2×23=83.答案835.若点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,则a 的取值范围为________. 解析 ∵点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,∴(1+1-a )(2-1-a )<0,即(2-a )(1-a )<0,则(a -1)(a -2)<0,即1<a <2. 答案 (1,2)6.某夏令营有48人,出发前要从A ,B 两种型号的帐篷中选择一种,A 型号的帐篷比B 型号少5顶,若只选A 型号的,每顶帐篷住4人,则帐篷不够,每顶帐篷住5人,则有一顶帐篷没有住满,若只选B 型号的,每顶帐篷住3人,则帐篷不够,每顶帐篷住4人,则有帐篷多余,设A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.解 由题意得⎩⎪⎪⎨⎪⎪⎧x >0,x +5>0,4x <48,0<5x -48<5,3(x +5)<48,4(x +5)>48,x ∈N *.7.画出下列不等式(组)表示的平面区域: (1)3x +2y +6>0;(2)⎩⎨⎧x ≤1,y ≥-2,x -y +1≥0.解 (1)画出满足条件的平面区域,如图所示:(2)画出满足条件的平面区域,如图所示:能力提升8.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形及其内部,则a 的取值范围是( ) A.[43,+∞) B.(0,1]C.[1,43]D.(0,1]∪[43,+∞)解析 先画出不含参数的不等式表示的平面区域,如图所示,要使不等式组表示的平面区域是一个三角形及其内部,需使直线x +y =a 在点A (1,0)的下方或在点B (23,23)的上方.当直线x +y =a 过点A 时,a =1.当直线x +y =a 过点B 时,a =43.又因为直线x +y =a 必在原点O 的上方,所以0<a ≤1或a ≥43. 答案 D9.在平面直角坐标系中,若不等式组⎩⎨⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A.-5 B.1 C.2D.3解析 由题意知,不等式组所表示的平面区域为一个三角形区域,设为△ABC ,则A (1,0),B (0,1),C (1,1+a ),且a >-1.∵S △ABC =2,∴12(1+a )×1=2,∴a =3. 答案 D10.在平面直角坐标系内,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为________.解析 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1表示的平面区域如图,y =x -1与y =-3|x |+1的交点为(12,-12),(-1,-2). ∴S =12×2×12+12×2×1=34×2=32. 答案 3211.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2所表示的平面区域是一个三角形,则a 的取值范围是________.解析 不等式组⎩⎪⎨⎪⎧x -y +5≥0,0≤x ≤2表示的平面区域如图中的阴影部分所示,用平行于x 轴的直线截该平面区域,若得到一个三角形,则a 的取值范围是[5,7).答案 [5,7)12.画出下列不等式表示的平面区域. (1)(x -y )(x -y -1)≤0;(2)|3x +4y -1|<5; (3)x ≤|y |≤2x .解 (1)由(x -y )(x -y -1)≤0,得⎩⎪⎨⎪⎧x -y ≥0,x -y -1≤0,解得0≤x -y ≤1;或⎩⎪⎨⎪⎧x -y ≤0,x -y -1≥0,无解.故不等式表示的平面区域如图(1)所示. (2)由|3x +4y -1|<5,得-5<3x +4y -1<5, 得不等式组⎩⎪⎨⎪⎧3x +4y -6<0,3x +4y +4>0,故不等式表示的平面区域如图(2)所示.(3)当y ≥0时,原不等式可化为⎩⎪⎨⎪⎧x ≤y ,y ≤2x ,x ≥0,点(x ,y )在第一象限内两条过原点的射线y =x (x ≥0)与y =2x (x ≥0)所表示的区域内. 当y ≤0时,由对称性作出另一半区域, 故不等式表示的平面区域如图(3)所示.13.(选做题)若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P ,Q 两点,且P ,Q 关于直线x +y =0对称,则不等式组⎩⎨⎧kx -y +1≥0,kx -my ≤0,y ≥0表示的平面区域的面积是多少?解 P ,Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即为直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦, 故该圆的圆心在线段PQ 的垂直平分线上, 即为直线x +y =0,又圆心为⎝ ⎛⎭⎪⎫-k2,-m 2,∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤0,y ≥0.它表示的平面区域如图所示,是一个三角形,直线x -y +1=0与x +y =0的交点为⎝ ⎛⎭⎪⎫-12,12,∴S △=12×1×12=14. 故平面区域的面积为14.。