高速切削加工技术
- 格式:pptx
- 大小:1.41 MB
- 文档页数:68
高速切削加工实验报告1. 引言高速切削加工是一种先进的制造技术,通过提高切削速度和优化刀具材料与结构,可以加快加工速度、提高加工效率和加工精度。
本实验旨在通过对铝合金进行高速切削加工,探究加工参数对加工效果的影响,为实际加工提供依据。
2. 实验方法2.1 材料准备选取工业常用的6061铝合金作为实验材料,该材料具有良好的机械性能和加工性能。
2.2 实验设备* 高速切削机床:使用一台高速切削机床进行实验,该设备能够实现高速切削并准确控制加工参数。
* 刀具:选用合适的高速切削刀具,具备良好的切削性能和刚性。
* 冷却液:使用专用的冷却液,避免材料在高速切削过程中引起过热。
* 测量仪器:使用数控测量仪器对实验结果进行测量和记录,保证数据的准确性。
2.3 实验步骤1. 将铝合金工件固定在高速切削机床上,并确认其位置和稳定性。
2. 选择合适的切削刀具,并调整好刀具安装参数。
3. 设置高速切削加工参数,如切削速度、进给速度、切削深度等。
4. 启动高速切削机床,进行加工。
5. 实时记录切削过程中的数据,如工件表面温度、切削力、切削动力等。
6. 完成加工后,对工件进行后续处理,如去毛刺、抛光等。
7. 使用数控测量仪器对工件进行尺寸测量,并记录测量结果。
3. 实验结果3.1 加工参数对加工效果的影响在实验中,我们选取了不同的切削速度、进给速度和切削深度进行加工,并记录了加工过程中的数据和加工效果。
图1 展示了不同切削速度下的加工效果。
可以观察到,随着切削速度的增加,加工效率明显提高,同时工件表面质量也有所改善。
然而,当切削速度达到一定范围时,过高的切削速度会导致材料过热和刀具磨损的加剧,从而降低切削质量。
图2 展示了不同进给速度下的加工效果。
可以发现,在一定范围内,增加进给速度可以提高加工效率,但过高的进给速度会导致切屑堆积、刀具磨损和精度下降。
图3 展示了不同切削深度下的加工效果。
可以看到,增加切削深度可以在一定程度上提高加工效率,但同时也会增加材料的变形和切削力,从而降低加工质量。
刀具高速切削加工技术特点
高速切削加工技术中的“高速”是一个相对概念,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度并不相同。
通常把切削速度比常规高出5~10倍甚至以上的切削加工叫作高速切削或超高速切削。
以德国达姆施塔特工业大学H.Schulz教授提出的铣削速度范围比较具有代表性:铝合金1000~7000m/min,铸铁800~3000m/min,钢500~2000m/min,钛合金100~1000m/min,镍基合金50~500m/min。
传统硬质合金类刀具加工铝合金壳体切削速度一般在150~300m/min之间,而聚晶石(PCD)类刀具的切削速度能达到2000m/min以上,实现高速切削。
高速切削加工时,高切削速度在材料剪切区短时释放大量热能。
因此,随着切削速度的增加,切削的剪切区、切屑压缩区和变形区内材料的单位切削力反而下降。
总切削力和必需的切削功率同样下降。
高速切削工艺典型的小切削深度结合高进给速度和高主轴转速,将降低切削刃切入工件的时间,或称接触时间。
刀具监控系统在高速切削加工过程中还应该考虑的一个问题是刀柄与机床主轴锥孔的连接方式,常用的锥柄有BT、HSK、CAT及CAPITO等多种形式,但是在高速切削时HSK因其的双面接触过定位结构可以保证刀尖很高的跳动要求,,特别适合高转速工况。
第 1 页共 1 页。
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
高速加工技术及应用高速加工技术是一种在短时间内迅速、高效地完成工件加工的技术。
它是现代制造业发展的重要一环,广泛应用于航空航天、汽车、船舶、电子、模具等领域。
高速加工技术的特点有以下几点:1.高速切削:高速加工技术采用高速旋转的切削工具,使得切削速度大大提高,一般可以达到切削速度的数倍甚至十数倍,从而大大缩短了加工时间。
2.小切削量:高速加工技术多采用微小切削量的方式进行切削,这样可以降低加工对机床、刀具和工件的热影响,提高加工精度。
3.高精度和高表面质量:高速加工技术能够实现很高的加工精度和表面质量,通常可以达到几个微米的加工精度和很低的表面粗糙度。
4.刀具寿命长:高速加工技术采用高硬度和高耐磨性的刀具材料,使得刀具使用寿命大大延长,降低了换刀频率和加工成本。
高速加工技术在以下方面有广泛的应用:1.航空航天领域:在航空航天领域,高速加工技术能够加工各种复杂曲面和薄壁结构件,如发动机叶片、航空航天零件等,提高了零件的精度和表面质量。
2.汽车领域:高速加工技术在汽车制造中主要用于零部件的加工,如发动机缸体、座椅滑块等,能够提高加工效率和产品质量。
3.船舶领域:高速加工技术在船舶制造中主要用于船体结构和轴承加工,如船体钢板切割、轴承的外圈和内圈加工等,提高了加工速度和质量。
4.电子领域:高速加工技术在电子领域主要用于半导体器件的切割和加工,如芯片切割、光纤连接器加工等,提高了加工精度和产品性能。
5.模具领域:高速加工技术在模具制造中主要用于模具的精细加工,如模具的深孔加工、细小结构的加工等,提高了模具的加工精度和寿命。
高速加工技术的发展对于提高制造业的竞争力和产品质量具有重要意义。
随着材料科学和机械加工技术的不断发展,高速加工技术将在更多领域得到应用,并不断推动制造业的发展。
高速切削加工高速切削加工(high-speed cutting, HSC)是先进制造技术的一个重要组成部分,其主要优点是可实现加工的高效率和高品质。
近年来高速切削加工技术在世界主要经济发达国家(如德、英、美、意、日等)发展迅猛,这些国家生产的高速切削加工机床及辅、配、软、硬件几乎每年都以一个新台阶的速度更新换代,目前所能达到的性能指标已是令人瞠目。
Micron、Jobs、Haas、Fpt、Dmg等世界著名机床公司近年来大力发展的快速更换主轴头技术使同一台机床能适应多种负载和速度要求(即所谓粗精加工同机“一次过”),在工件的定位、安装、传输等环节可节约大量的非加工时间。
机床主轴的高速旋转以及进给速度、加速度的相应提高,一方面可直接缩短加工时间,另一方面还因高速切削具有激振频率特别高、工作平稳、振动小的优势而有利于提高加工表面质量,即高速切削加工可作为模具和结构零件的最终加工,通过“以切代磨”或“以切代放电”来提高加工效率和加工质量(即勿需进行费时低效的后续磨削工序、模具电极电火花加工);工件还可先淬火后切削,直接将硬度高达65HRC的材料高速切削加工至最终尺寸。
高速切削加工的实现除需高速机床外还需配备适宜高速切削的刀具。
根据2002年广东省国际模具高速加工技术研讨会上Micron、Jobs、肯纳飞硕等公司的特邀报告,近年来德国SGS、日本三菱(神钢)及住友、瑞士山特维克、美国肯纳飞硕等国外著名刀具公司都先后推出了各自的高速切削刀具,不仅有高速切削普通结构钢的刀具,还有能直接高速切削淬硬钢的陶瓷刀具等超硬刀具,尤其是涂层刀具异军突起,在淬硬钢的半精加工和精加工中发挥着巨大作用。
近年来我国(尤其华南地区)制造业发展迅速,模具和汽车、摩托车制造业发达,拥有高速切削机床的企业不断增多。
然而,与高速切削机床和刀具技术的快速发展相比,这些企业在高速切削工艺、检测及应用软件等方面的技术还比较落后,与硬件不能配套,致使不少厂家进口的先进设备根本没有发挥其应有作用。
高速切削加工技术的概念高速切削加工技术是一种在机械加工中使用高速旋转刀具来去除材料的工艺。
它可以提高加工效率、减少加工成本,提高切削质量,并延长刀具寿命。
在高速切削加工技术中,切削速度通常比传统切削速度高出几倍,达到可达到切削极限的速度。
高速切削加工技术的基本原理是通过尽可能高的转速来提高切削速度,以减小切削过程中的切削时间。
高速切削加工技术的发展需要满足以下几个条件:高速切削的刀具材料需要具备良好的硬度、热稳定性和刚性;高速切削需要使用高速转子以提供所需的切削速度;高速切削需要使用高速切削液以冷却和润滑刀具和切削床面。
高速切削加工技术的优点主要体现在以下几个方面:1. 高加工效率:高速切削加工可以提高切削速度,减少切削时间,从而提高加工效率。
与传统切削相比,高速切削可以将加工时间减少50%以上。
2. 高表面质量:高速切削加工可以减小切削过程中的机床振动和切削力,从而获得更高的表面质量。
切削过程中,高速转子产生的离心力可以抑制刀具的振动,提高切削表面的光洁度。
3. 刀具寿命长:高速切削加工可以减小切削温度,减小切削热对刀具的影响,从而延长刀具的使用寿命。
高速切削可以在减小切削温度的同时提高切削速度,从而有效地降低刀具的受热面积,减小刀具的磨损。
4. 减少加工成本:高速切削加工可以提高加工效率,减少切削时间,从而减少加工成本。
高速切削还可以减小切削力和切削温度,减少切削液的消耗,降低切削液的成本。
高速切削加工技术的应用范围广泛,包括航空航天、汽车制造、模具制造、电子制造等领域。
例如,在航空航天制造中,高速切削可以快速精确地加工复杂的零部件;在汽车制造中,高速切削可以提高发动机零部件的加工效率和精度;在模具制造中,高速切削可以提高模具的加工效率和精度;在电子制造中,高速切削可以提高电路板的加工效率和精度。
总之,高速切削加工技术是现代制造业的一个重要发展方向。
通过提高切削速度,高速切削加工可以提高加工效率、减少加工成本,并提高切削表面的质量。
一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。
到目前为止,其原理仍未被现代科学研究所证实。
但这一原理的成功应该不只局限于此。
高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。
这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。
所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
高速加工技术一.起源1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
通过长期的研究,从上世纪90年代中期起,高速加工进入实用化阶段。
用户可以享受高速加工的高效率,高精度和成本优势。
德国OPS-INGERSOLL公司是目前世界上最好的高速加工中心制造商之一。
二.高速加工的定义高速加工是指转速在30,000RPM以上,实际加工切削进给保持8-12m/min的恒定进给。
我们从定义中看出,高速加工的一个关键要素是高速恒定进给。
由于高速加工时,转速上万转,特别在加工高硬度材料时,瞬间产生大量热量,所以必须保持高速进给,使产生的85%以上的热量被铁屑带走。
但在模具加工过程中,硬度通常在HRC50以上,且为复杂的曲面或拐角,所以高速机床必须做到在加工曲面或拐角时仍能高速进给。
另外实际加工中,刀具都有一个最佳切削参数,如能保持恒定进给,对刀具寿命,切削精度和加工表面质量都有提高。
由此看出,高速加工不仅是高速主轴,而且也是机床伺服系统的综合。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能C NC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。