催化柴油加氢转化技术特点及开工过程注意事项
- 格式:pptx
- 大小:5.07 MB
- 文档页数:114
生物柴油加氢工艺流程全文共四篇示例,供读者参考第一篇示例:生物柴油是一种由植物油或动物油转化而来的燃料,被广泛应用于交通运输和工业生产中。
在生物柴油生产过程中,加氢工艺是一种重要的技术手段,可以提高生物柴油的品质和性能。
下面我们将介绍生物柴油加氢工艺流程及其原理。
一、生物柴油加氢工艺简介生物柴油加氢是一种通过催化剂作用将生物柴油中的不饱和化合物和杂质转化为饱和烃的过程。
这种工艺可以有效降低生物柴油的凝固点、改善燃烧性能和减少废气排放。
一般来说,生物柴油加氢包括催化裂化、沉淀脱硫、氢解等步骤。
1. 催化裂化催化裂化是生物柴油加氢的第一步,通过将原料与催化剂接触,在高温高压条件下,将大分子链的生物柴油分解为较小的碳氢化合物。
这个过程可以有效减少不饱和烃和杂质的含量,提高生物柴油的质量。
2. 沉淀脱硫沉淀脱硫是生物柴油加氢工艺的第二步,用于去除生物柴油中的硫化物。
硫化物是生物柴油中的一种有害物质,容易损坏催化剂和污染环境。
通过将生物柴油与脱硫剂反应,可以将硫化物转化为不溶于油中的硫酸盐或硫代硼酸盐,然后通过沉淀分离的方式将其去除。
3. 氢解1. 提高生物柴油的品质和性能,减少废气排放。
2. 可以降低生物柴油的凝固点,提高其在低温条件下的流动性。
3. 减少生物柴油的不饱和烃和杂质含量,减少燃料的积炭和系统堵塞。
4. 延长动力系统和催化转化器的使用寿命,降低维护成本。
生物柴油加氢工艺是一种有效的技术手段,可以提高生物柴油的品质和性能,减少废气排放,符合现代工业生产和环境保护的要求。
未来随着生物能源技术的不断发展,生物柴油加氢工艺将在全球范围内得到更广泛的应用。
第二篇示例:生物柴油是一种由植物油或动物油经过一系列化学反应加工而成的燃料,与传统石油燃料相比,生物柴油具有低碳排放、可再生资源等优点,因此备受关注。
而加氢工艺是生物柴油生产过程中的关键环节,通过加氢反应可以改善生物柴油的质量,提高其燃烧效率,减少有害物质排放。
催化柴油加氢转化技术特点及开工过程注意事项催化柴油加氢转化技术是一种将低质量柴油转化为高质量柴油的工艺。
该技术通过将柴油与氢气在催化剂的存在下进行反应,使其中的硫、氮、氧等杂质得到去除,得到质量更好的柴油产品。
下面我们将详细介绍催化柴油加氢转化技术的特点及开工过程的注意事项。
一、催化柴油加氢转化技术特点1. 增加柴油的Cetane数:催化柴油加氢转化技术中,催化剂具有一定的选择性,能够使低Cetane数的柴油中的芳烃分子经过加氢反应得到消除或减小,从而提高柴油的Cetane数,提高柴油的燃烧性能和起动性能。
2.去除硫化物:柴油中的硫化物是污染大气环境和腐蚀发动机的主要物质之一、催化柴油加氢转化技术中的催化剂能够催化低质杂硫化物的加氢反应,将其转化为硫化氢气体,从而实现柴油中硫的脱除。
3.去除氮化物:氮化物主要存在于柴油中的芳香族化合物中,对空气质量有一定影响。
催化柴油加氢转化技术通过氢化反应,将芳香族化合物中的氮化物转化为氨和氨基化合物,从而实现氮化物的脱除。
4.增加柴油的氧化稳定性:通过催化柴油加氢转化技术使柴油中的芳香族化合物被氢化为饱和链烷烃,从而减少了柴油中的不饱和度,使柴油的氧化稳定性得到了显著提高。
1.催化剂的选择:选择合适的催化剂是催化柴油加氢转化技术成功开工的关键。
催化剂应具有较高的活性和稳定性,能够催化低质杂质的加氢反应,同时能够抵抗催化剂毒剂的腐蚀。
2.反应温度控制:催化柴油加氢转化反应是一个放热反应,反应温度的控制是非常重要的。
过高的反应温度可能导致催化剂失活,同时也会增加单位时间内的柴油耗量。
因此,需要在催化剂的稳定工作温度范围内进行反应温度的控制。
3.氢油比的控制:氢在催化柴油加氢转化过程中起到氢化和脱硫的作用,氢油比的控制对反应效果有直接影响。
过低的氢油比会导致催化剂表面缺氢现象,从而降低了柴油质量的提高效果;而过高的氢油比会增加成本,影响经济性。
因此,需要合理控制氢油比。
试析几种催化柴油加氢改质技术关键词:催化柴油加氢清洁燃料近些年来,随着国内所加工原油越来越重视质量,催化裂化的原料也逐渐向重质化和劣质化发展,随着环保法规的日益完善,企业所面对的产品质量升级压力也在逐渐增加。
在我国,由于石油资源的严重紧缺,催化柴油还主要是加氧精制或加氢改质后用于调和柴油产品,催化裂化(fcc)技术是重油轻质化的主要工艺手段之一,在世界各国的炼油企业中都占有重要的地位。
一、催化柴油加工难点按照环保法规要求,2011年7月1日起全国将实施新的车用柴油国际标准,即要求柴油产品的硫含量≯350ug/g,十六烷值≮49,多环芳烃含量不高于11%。
因此,如何全面提高柴油产品质量以达到质量标准,成为各炼油企业所必须要解决的问题。
与其它类型柴油相比,催化柴油的密度大,硫、氮含量和芳烃含量高,十六烷值较低,柴油改质难度较大。
如何将催化柴油中富含的芳烃加氢转化,以大幅提高其燃烧性能则是催柴改质的最大难点所在,也是实现全面提升柴油质量的关键。
二、催化柴油加氢改质系列技术目前,一方面由于石油资源的紧缺,催化柴油在中国不得不作为成品柴油的一个重要组成部分;另一方面,由于催化柴油富含芳烃,大幅改善其质量尤其是燃烧性能的难度较大。
在如何经济有效的改善催化柴油质量,从而全面的推动柴油产品质量升级方面开展了大量的研究工作。
开发了系列催化柴油加工技术,以适应用户的不同需求。
一下就介绍几种加氢技术的主要生产技术与特点。
1.加氢精制技术对于某些直馏柴油、焦化柴油在整体柴油中所占比例较大,而催化柴油占比例较小的企业来说,采用加氢精制方法加工混合柴油是一条全面提升柴油质量的最简单、可行的方法。
采用加氢精制技术加工催化柴油,生产符合环保法规清洁柴油的技术,适用于直馏柴油、焦化柴油所占比例大,催化柴油所占比例小,柴油十六烷值矛盾不突出的企业选用,其技术特点总结如下:1.1所开发的深度脱硫系列催化剂有较强的加氢脱硫性能,基本可以满足用户生产低硫清洁柴油的需求。
加氢裂化开工准备工作一、开工要求1、积极、稳妥、细致、可靠,服从指挥,严守方案,有条不紊,高标准,严要求,坚持“五不开工”,达到“五个一次成功”,做到“十个不”:五不开工:动改项目未经严格验收不开工,安全措施不全不开工,现场有漏风、水、汽、油、瓦斯不开工,方案不落实、人员未考核合格不开工,现场卫生不好不开工。
五个一次成功:吹扫气密一次合格成功,引氢升压一次成功,引瓦斯点火一次成功,调整操作一次达到指标成功,产品质量一次达到指标合格成功。
十个不:不跑瓦斯,不跑油,不串油,不超温,不超压, 不着火爆炸,不损坏设备管线,不出人身事故,不污染环境, 不损坏催化剂。
2、组织好开工前技术训练和各种开工方案落实,认真训练,反复讲解,严格考核。
3、组织严密,指挥统一,任务明确,各岗位必须严格执行开工方案和工艺纪律,一丝不苟,加强纪律性,一切行动听指挥。
4、做好四项关键工作;贯通气密,置换引氢,引瓦斯点火,装置进油。
5、建立操作员一班长一工程技术人员“三查制”,确保各操作步骤可靠稳妥。
二、开工应具备的条件1、装置交工资料齐全,并经“四不开气”检查合格。
2、人员学习开工方案,明确自己在整个过程中的工作并具有对突发事故的处理能力,DCS、SIS、ITCC调试完毕,操作人员经DCS、SIS、ITCC系统操作培训后考试合格,操作人员已取得上岗证。
3、装置经水冲洗,试水压、水联运、吹扫,抽真空试验合格,遗留问题全部处理完毕。
4、加热炉烘炉合格。
5、工艺流程设计、安装合理,符合开工生产要求并方便操作和维修。
6、化工原材料来源,产品去向已作好安排。
7、电、水、蒸汽、风系统供应正常。
&装置内仪表、计量和机泵全部安装调试完毕。
9、消防器材齐全,都放在规定位置,消防道路畅通。
10、所有安全阀都重新定压,有铅封,并有定压记录。
11、所有阀门都涂了防锈油灵活好用。
12、将施工中所加的临时盲板全部拆除。
13、将所有“8”字盲板按开工流程要求调到合适位置。
汽柴油加氢技术总结汇报汽柴油加氢技术是指通过催化剂在一定条件下将汽油、柴油等石油产品与氢气进行化学反应,使其得到加氢处理,从而改善燃油质量和性能。
加氢技术在石油炼制行业被广泛应用,成为提高燃料质量和降低汽车尾气排放的关键技术之一。
以下是关于汽柴油加氢技术的总结汇报。
一、加氢技术的原理及优势:汽柴油加氢技术是通过加氢反应,将含硫、含氧、含氮和含杂质的汽柴油转化为低硫、低氮和低杂质的高质量燃料。
加氢技术通过催化剂催化作用,使石油产品中的硫、氮、杂质等有害物质与氢气发生化学反应,产生无害的化合物。
这种技术能够有效减少车辆尾气中的有害物质排放,改善空气质量,保护环境。
二、加氢技术的应用范围:加氢技术主要应用于炼油企业,用于石油产品的提质改良。
其中,汽柴油加氢技术是一项重要的应用。
通过加氢技术,可以将重油、残油等石油废料转化为高质量的汽柴油,提高资源利用率。
同时,汽柴油加氢技术也广泛应用于燃料油的精制过程中,可以降低燃料油的粘度,提高燃烧性能。
三、加氢技术的操作步骤:汽柴油加氢技术的操作步骤主要包括预加氢、主加氢、分离、除尘等环节。
首先将汽柴油与高纯度的氢气混合,通过加热加压进入反应器,催化剂在一定温度下催化汽柴油与氢气发生反应。
加氢反应后,通过分离器分离出汽柴油和氢气,并通过一系列的脱硫、脱氮、脱杂等工艺处理,最终得到高质量的汽柴油产品。
四、加氢技术的优势与不足:加氢技术具有以下优势:1. 改善燃料质量:通过加氢处理,汽柴油的硫含量、氮含量和杂质含量得到有效降低,提高了燃料的质量。
2. 降低尾气排放:加氢技术能够减少燃料中的有害物质含量,从而降低了汽车尾气中的污染物排放,改善环境质量。
3. 提高能源利用率:通过将废料油转化为汽柴油,提高了资源利用效率,减少了能源浪费。
不足之处:1. 技术要求高:加氢技术对催化剂稳定性、反应条件、操作参数等要求较高,需要专业技术人员掌握和操作。
2. 设备投资大:加氢技术需要投入大量设备和催化剂,投资成本较高。
柴油加氢技术总结2#柴油加氢装置开工总结宋火军1.开工前的准备1.1 学习装置理论知识生产低硫、低芳烃、低密度、高十六烷值得清洁柴油是今后世界范围内的柴油生产总趋势。
如何满足符合日趋苛刻的车用柴油标准,生产出符合环保要求的清洁柴油将成为炼油技术进步的一个重要课题。
柴油燃料质量升级的趋势与汽油类似,最主要的是对于硫含量的控制,同时对于柴油产品指标中的十六烷值、芳烃含量、冷流动性、密度等也提出了更为严格的要求。
二次加工的柴油含有相当多的硫、氮及烯烃类物质,油品质量差,安定性不好,储存过程容易变质,对直馏柴油而言,由于原油中硫含量升高,环保法规日趋严格,已经不能直接作为产品出厂,也需要经过加氢精制处理。
柴油加氢精制的生产原理就是在一定温度、压力、氢油比、空速条件下,借助加氢精制催化剂的作用,有效的使油品中的硫、氮、氧、非烃类化合物转化为响应的烃类和H2S、NH3和H2O。
另外,少量的重金属则截留在催化剂中,同时使烯烃和部分芳烃饱和,从而得到安定性、燃烧性、情节性都较好的优质柴油产品和粗汽油(裂解料)。
本装置中大量循环氢的存在能保证气相为连续相,液相为分散相,被气相打散的液相在固定床催化剂上从上至下以液滴的形态流过催化剂床层,从而发生一系列的加氢反应。
循环氢在其中的关键作用是:(1)维持反应所需的氢分压,用来维系气相中的氢气向油相溶解的推动力。
(2)控制催化剂床层的温升。
(3)稀释反应物流杂质的浓度,促进深度脱杂质的反应。
1.2 学习开工方案在开工前两个月,车间开始组织操作人员学习开工方案,让每个人对开工都心里有数,了解每一个步骤,提高了操作人员的操作水平,为这次成功的开工打下了基础。
1.3 联系调度,提供合格氮气,在系统催化剂干燥时能满足供应。
1.4 硫化剂与试车用直馏柴油准备充足。
2.催化剂干燥催化剂在包装、储运和装填中,都难免吸附一定水分,吸附水会降低催化剂的活性和强度。
因此催化剂要在预硫化前进行脱水。
柴油加氢工艺流程1. 概述柴油加氢工艺是一种常见的燃料加工方法,用于将原油中的高硫、高氮化合物转化为低硫、低氮化合物的过程。
本文将介绍柴油加氢工艺的流程以及其中的关键步骤。
2. 加氢反应器加氢反应器是柴油加氢工艺的核心设备之一。
其主要功能是在高温高压下催化氢气和柴油中的硫化物、氮化物反应,将其转化为低硫、低氮化合物。
加氢反应器通常由反应器本体、催化剂床层、进料加氢系统和出料系统等部分组成。
3. 催化剂催化剂是柴油加氢工艺的关键组成部分。
常用的催化剂材料包括镍钼、钼铁等,其主要功能是提供反应活性位点,促进加氢反应的进行。
催化剂床层通常由若干层不同粒径的催化剂颗粒组成,以增加反应的效果。
4. 加氢工艺流程柴油加氢工艺的流程通常包括以下几个步骤:4.1 原料净化原料净化是柴油加氢工艺的第一步,其目的是去除原油中的杂质和重金属等有害物质。
常用的原料净化方法包括重整、脱色、脱蜡等。
4.2 加热预热经过原料净化后的柴油通过加热预热,提高其温度至适宜的加氢反应温度。
加热预热通常采用热交换器,利用反应器出料的热量对进料进行加热。
4.3 加氢反应加热后的柴油进入加氢反应器,与催化剂床层中的氢气进行反应。
在高温高压的条件下,硫化物、氮化物等有害物质被催化剂转化为硫、氮等无害化合物。
加氢反应的温度和压力通常根据催化剂和原料的特性确定。
4.4 冷却分离加氢反应后的柴油通过冷却分离,将气相和液相分离。
常用的冷却分离设备包括冷凝器、分离器等。
通过冷却分离,可以将氢气收集回收,减少资源浪费。
4.5 气液分离冷却分离后,得到的液相为加氢后的柴油产品,而气相则包含未反应的氢气、碳氢化合物等。
气液分离的目的是将氢气进行回收,同时将其他气态组分进行处理。
4.6 产品处理加氢后得到的柴油产品需要进行进一步处理,以满足燃料标准要求。
产品处理通常包括脱硫、脱氮、脱氧等步骤,以降低产物中的硫、氮和氧含量。
4.7 产品贮存与装运经过处理后的柴油产品可以进行贮存和装运。
柴油加氢开工方案该阶段的工作包括:生产人员按设计图纸、资料,各种施工规范和生产操作的实际要求,分工艺、机械设备、土建、仪表、电气、安全、消防、给排水、环保等专业组,严格对该装置的工程进行检查和处理检查出的问题。
一、要求(1)全部工程项目的设计、施工、安装必须符合国家部委和中国石化总公司的有关设计、施工、安装及验收规范和规程。
(2)在工艺、土建、机械设备、仪表、电气、安全、消防、给排水、环保等专业组进行分组验收时,不仅要检查外观质量,还要深入设备内部检查,特别是隐蔽工程项目、施工困难的项目及与气候有关的项目,应采用现代化的手段加强检查验收,不能因检查验收有困难而降低标准。
(3)非现场制造的容器、运转设备、工艺管道、阀门、仪表电气设备等也应按照国家和中国石化总公司的有关规范规程验收备案。
(4)加强对装置内外Ⅲ类以上管道的检查验收。
检查验收内容:(1)机械设备、管线、仪表、电气设备、安全、消防、给排水、环保设施的安装、焊接是否符合规范要求,是否便于生产操作。
(2)在检查验收中发现的问题、整改项目是否处理完毕。
(3)与装置开工无关的临时设施、电源是否拆除,高温设备表面油污是否打扫干净。
(4)按工艺流程检查设备、管线、阀门是否符合开工要求,流程是否正确,事故、开停工操作手段是否完善,操作是否安全方便。
(5)管线和设备存在哪些缺陷和不安全因素,安全设施设置情况。
(6)检查各排凝是否畅通,进一步活动各阀门,确保开关灵活不内漏,关闭所有阀门。
(7)所有法兰、螺栓、垫片是否按要求安装好。
(8)吹扫试压前各阀门丝堵,全部焊死。
(9)所有阀门盘根、大盖、垫片是否符合生产要求。
(10)检查转动设备及润滑系统是否达到运转要求。
(11)检查电气设备,电机运转方向,接地装置是否正确。
(12)检查是否存在不利于防冻防凝的因素和应具备的防冻防凝措施。
(13)检查是否存在不利于节能的因素。
(14)检查系统工程水、电、汽、风设备及流程是否完善。
加氢装置开工方案一、准备工作1、装置检修工作全部结束,工艺管线、设备均经试压验收合格。
2、机泵试运结束。
3、全装置的动火项目结束,现场卫生清理干净。
4、公用系统水、电、汽、风、瓦斯供应正常。
5、安全消防器材配备齐全,安全措施已落实。
6、提前联系合格的氢气。
7、气密用具、刷子、肥皂水、洗耳球等已准备好。
8、联系有关车间如成品、化验、仪表、电工、维修、配合开工。
二、装置吹扫气密与置换(一)、管线设备吹扫1、蒸汽吹扫试密:分馏系统、瓦斯系统、放空系统;2、氮气吹扫试密:原料系统、临氢系统(反应系统及新氢系统)(三)、试密检查方法1、用氮气试压:充压至试验压力后,全面检查设备、管线的法兰、焊缝、接口等,以肥皂水检查不冒泡、目测不变形,保压压降不超过标准为合格;2、用蒸汽试压:充压至试验压力后,全面检查设备、管线的法兰、焊缝、接口等,以肥皂水检查不冒泡、目测不变形为合格;试密压力标准备注:1、正常生产时开工试密,实施第二段时,需点炉升温至反应器床层温度100℃左右;2、反应系统(1)试密步骤A、隔离工作①上述流程内所有放空、排凝阀关闭;②P201出口阀关闭;③反冲洗污油泵出口阀关闭;④LICA2002、LICA2003下游阀及付线阀关闭;⑤HIC2001下游阀及付线阀关闭;⑥机201出口阀关闭;B、首先用试密介质升压到2.2MPa,检查设备的严密性,合格后,保压4小时,允许压降每小时压力下降不大于0.02MPa;C、第一阶段合格后继续用试密介质试密,开新氢机升压,并点炉201升温,只有反应器床层温度大于93℃以后,才能使系统压力超过2.2MPa(升压速度不大于0.05MPa/小时),否则,继续保压;D、当V202压力达到4.0MPa时,检查设备的严密性,合格后,保压2小时,允许压降每小时压力下降不大于0.05MPa;备注:在第二阶段升压及保压过程中,要始终保持反应器床层温度大于93℃,但系统各点温度也不能大于100℃。
柴油加氢流程
柴油加氢是一种常见的炼油工艺,通过加氢反应可以提高柴油
的品质,减少硫、氮等有害物质的含量,提高燃烧效率,降低环境
污染。
下面我们将介绍柴油加氢的流程。
首先,原料柴油通过预处理单元进行预处理,去除其中的杂质
和硫、氮等有害物质。
在预处理单元中,柴油会被加热至一定温度,然后进入加氢反应器。
在加氢反应器中,柴油与氢气在催化剂的作用下发生加氢反应,硫、氮等有害物质被还原成相对无害的化合物,同时分子结构也发
生改变,提高了柴油的品质。
加氢反应的温度、压力和催化剂的选
择都对反应的效果有着重要影响。
经过加氢反应后的柴油进入分离装置,通过升温、蒸馏等操作,将加氢后的柴油与副产物进行分离,得到提质后的柴油产品。
同时,副产物中的氢气也会被回收利用,提高了资源利用效率。
最后,提质后的柴油产品需要经过一系列的检测和处理,确保
其符合相关的质量标准,然后可以被用于各种柴油发动机的燃烧,
提供动力。
总的来说,柴油加氢流程是一种重要的炼油工艺,通过加氢反
应可以提高柴油的品质,减少环境污染,对于能源的可持续发展具
有重要意义。
加氢流程的优化和改进也是炼油企业不断努力的方向,希望能够在未来为社会提供更加清洁、高效的柴油产品。
柴油加氢技术2.柴油加氢精制工艺原理质量低劣的柴油原料,在一定的温度、(一般在290℃--350℃)压力、(3.0MPa--16 MPa)和氢气,在加氢精制催化剂作用下,将油品中的含S、含N、含O等非烃化合物转化为易除去的H2S、NH3、H2O,将安定性很差的烯烃和某些芳烃饱和,金属有机物氢解,金属杂质截留,从而改善油品的安定性质、腐蚀性能和燃烧性能,得到品质优良的柴油产品,此工艺过程称为柴油加氢精制。
在工艺过程中主要有以下化学反应:脱硫反应:在加氢条件下,石油馏分中的含硫化合物转化为相应的烃和硫化氢,从而脱除了硫。
脱氮反应:在加氢过程中,各种氮化物与氢气反应转化为NH3和相应的烃,从而被除掉。
脱氧反应:含氧化合物通常很容易进行加氢反应生成水和相应的烃。
脱金属:金属有机化合物不论是否分解均吸附在催化剂表面上而被除去。
一般柴油加氢精制装置采用固定床单段一次通过式加氢工艺。
设计操作压力3.0--8.0MPa,空速1.0--2.5h-1,氢油体积比为300--600,以焦柴、催柴、直柴等混合柴油为原料,生产优质柴油,同时切割出少量的石脑油和副产部分瓦斯、酸性气。
3.柴油加氢装置原则工艺流典型流程图见图二流程说明:进装置原料(混合柴油)先至原料缓冲罐,被升压泵抽送经过原料过滤器把会导致反应器上部催化剂床层堵塞的固体杂质过滤掉,进入滤后原料缓冲罐。
滤后柴油原料经反应进料泵抽出与氢气(循环氢+新氢)混合后经与反应产物换热器换热,加热炉加热后进入反应器。
在反应器中混合原料在加氢精制催化剂作用下进行加氢脱硫、脱氮、烯烃及芳烃饱和等反应。
在催化剂床层之间设有控制反应温度的冷氢。
反应产物出反应器后与混合原料换热至约140℃进入高压空冷器,在高压空冷器入口注入脱氧水以溶解掉反应过程中产生的铵盐,防止堵塞高压空冷器。
反应产物经高压空冷、水冷冷却至40℃进入高压分离器进行汽液水分离,其顶部出来的气体作为循环氢去循环氢压缩机循环进反应系统,底部的酸性水去双塔汽提单元,中部出来的生成油去低压分离器进行闪蒸汽、液分离。
炼油厂采用的主流石油加工工艺——催化加氢工艺详解本文导语石油加工当中一个重要的过程是催化加氢,近年来随着环保要求不断提高及后续产品不断开发,高质量的加氢产品需求逐渐加大,催化加氢技术在化工生产中的地位也越来越受到重视,大量不饱和化合物、含氧化合物、含氮化合物等利用催化加氢技术制备的后续产品质量好、收率高。
目前炼油厂采用的加氢过程主要分为两类:一类是加氢处理,一类是加氢裂化。
用这种技术的目的在于脱除油品中的硫、氮、氧及金属等杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原料的品质和产品的使用性能。
此外,加氢裂化的目的在于将大分子裂化为小分子以提高轻质油收率,同时还除去一些杂志。
其特点是轻质油收率高,产品饱和度高,杂质含量少。
作用机理吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了键的烯、炔加成。
烯烃在铂、钯或镍等金属催化剂的存在下,可以与氢加成而生成烷烃。
加氢过程可分为两大类:①氢与一氧化碳或有机化合物直接加氢,例如一氧化碳加氢合成甲醇:CO+2H2─→CH3OH;;己二腈加氢制己二胺:NC(CH2)4CN +4H2─→H2N(CH2)6NH2。
②氢与有机化合物反应的同时,伴随着化学键的断裂,这类加氢反应又称氢解反应,包括加氢脱烷基、加氢裂化、加氢脱硫等。
例如烷烃加氢裂化,甲苯加氢脱烷基制苯,硝基苯加氢还原制苯胺,油品加氢精制中非烃类的氢解:RSH+H2─→RH+H2S非烃类含氮化合物最难氢解;在同类非烃中分子结构越复杂越难氢解。
催化加氢反应一、加氢处理反应1、加氢脱硫反应石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S。
RSH H2→RH H2SR—S—R 2H2→2RH H2S(RS)2 3H2→2RH 2H2S2、加氢脱氮反应石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺。
在加氢条件下,反应生成烃,主要反应如下R—CH2—NH2 H2→R—CH3 NH33、加氢脱氧反应石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮。
柴油加氢工艺流程柴油加氢工艺流程柴油加氢是一种常用的炼油工艺,通过将柴油与氢气在催化剂的存在下进行反应,可以降低柴油中的硫、氮等杂质含量,提高柴油的质量和清洁度。
下面将介绍柴油加氢的工艺流程。
首先,在柴油加氢工艺中,需要收集原料柴油。
原料柴油一般是从炼油厂的蒸馏塔中分离出来的,含有一定的硫、氮等杂质。
为了确保柴油加氢的效果,原料柴油需要进行预处理。
预处理主要是通过加热和混合来去除柴油中的杂质和水分。
经过预处理后的柴油进入加氢反应器。
加氢反应器是柴油加氢工艺的核心部分。
在加氢反应器中,原料柴油与氢气通过催化剂进行反应。
催化剂的选择非常重要,通常使用的是铜、铁或锌等金属的氧化物。
氢气在催化剂的作用下与柴油中的硫、氮等杂质发生反应,生成硫化氢和氨等无害物质。
同时,催化剂还可以去除柴油中的饱和度较低的分子,使柴油的分子结构更加稳定。
反应过程需要控制温度和压力,一般温度在300℃至400℃之间,压力在20MPa至40MPa之间。
反应后的柴油气体混合物进入分离器。
在分离器中,将气体和液体分离。
气体中主要是未被反应的氢气和反应生成的硫化氢和氨等物质。
气体经过脱除硫器进行二次处理,以去除硫化氢和氨等有害物质。
液体中则主要是经过加氢反应后的柴油。
分离器将气体和液体分别收集。
最后,收集到的柴油经过一系列的处理步骤,如蒸馏和过滤等,以达到对柴油的进一步提纯。
经过处理后的柴油可以用于各种柴油动力设备和柴油发动机,提高动力设备的效率和清洁度。
总之,柴油加氢工艺是一种常用的炼油工艺,可以降低柴油中的硫、氮等杂质含量,提高柴油的质量和清洁度。
工艺流程包括预处理、加氢反应、分离和提纯等步骤。
通过精确的操作和控制,柴油加氢工艺可以生产出高质量的柴油,为各种柴油动力设备提供可靠的燃料。
加氢精制催化剂安全生产要点简介加氢精制催化剂是用于石油加工中的一种重要催化剂。
其作用是加速反应速率,促进物质的转化,从而实现油品加工的目的。
不过,由于催化剂在使用过程中会产生一定的危险性,因此加氢精制催化剂的生产、运输、使用等环节需要特别注意安全问题。
本文将从几个方面介绍加氢精制催化剂的安全生产要点,以保障生产过程的稳定和工作人员的安全。
生产环节在加氢精制催化剂的生产过程中,需要特别注意如下几个要点:原料选用生产催化剂的原料需要经过严格筛选,以确保原料质量符合制造标准,并且未添加不良物质。
工艺控制催化剂制造需要使用高温高压等条件,制造工艺非常复杂,需要进行密切的工艺控制。
工艺参数需要在合理范围内,并最大限度减少潜在的安全隐患。
催化剂制造需要使用大型仪器设备,这些设备需要定期维护和检修,以确保其正常运行。
同时,在使用设备时需要严格遵循操作规程,确保不发生运行故障。
运输与贮存运输与贮存是加氢精制催化剂生产过程中的重要环节。
如果在运输和贮存过程中出现问题,将给催化剂的使用带来极大的安全隐患。
运输在运输过程中,需要注意催化剂的包装和标识。
催化剂要采用安全严密的包装,并在包装上标注催化剂的型号、生产日期、保质期等信息。
同时,运输中需要注意催化剂的稳定性,防止在运输过程中发生破损等意外情况。
贮存在催化剂贮存过程中,需要注意催化剂的环境条件。
一般来说,催化剂应贮存于干燥、通风、清洁的环境下,防止受潮和受污染。
储存过程中,需要注意周期性的检查和维护,以确保催化剂的性能不受影响。
使用过程中的安全注意事项在使用催化剂的过程中,需要注意如下几个方面,确保使用过程中的安全:为避免发生意外情况,使用催化剂需要遵守严格的操作规程。
在操作前,需要进行操作培训,并阅读相关操作说明。
防静电措施催化剂粉末可以生成静电,因此在使用过程中需要采取有效的防静电措施,防止发生静电火花引发爆炸。
防护措施在使用催化剂的过程中,操作人员需要穿戴符合标准的防护装备,以及使用符合标准的个人防护装备,防止发生意外。
催化重整──加氢工艺应注意什么?催化重整──加氢工序包含预加氢、重整、加氢精制等流程。
1.1 催化重整由常减压蒸馏初馏塔、常压塔顶来的直馏汽油,经分馏塔切出600C 从前馏分与氢气混淆后,加热至2803400C进入预加氢反响器,在 481(钼镍磷)催化剂作用下进行加氢反响。
将所含硫、氮、氧化合物转变为硫化氢、氨、水等,在预加氢脱水塔被汽提出去。
对铂催化剂有迫害作用的金属杂质则由催化剂吸附。
预加氢精制油与氢气混淆后,加热至4905100C,进入重整反响器,在CB5(铂铼)催化剂的作用下,进行芳构化反响和其余反响,使本来含少许芳烃的原料发生其分子构造上从头摆列,而成为含富芳烃和异构烷烃的生成物,经重整高压分别器进行油气分别后,重整生成油进入脱戊烷塔脱除碳五(戊烷)从前的轻组分。
脱戊烷油经溶剂办理,原料油中的芳烃即被溶剂所溶解,使芳烃与非芳烃组分分别开来。
溶解了芳烃的富溶剂经汽提塔汽提,使溶剂和芳烃完整分开。
芳烃送入精馏部分进行分馏,便获得苯、甲苯、二甲苯产品。
1.2 加氢精制粗柴油或煤油经加热至 2503500C后与重整副产氢气混淆进入反响器,在 2503200C、4.55.5MPa 和加氢精制催化剂的作用下,除烯烃饱和为烷烃外,原猜中的硫化物、氮化物、氧化物分别与氢起反响,生成硫化氢、氨、水等易于除掉杂质。
反响流出物经高压分别、低压分别后,液体油进入汽提塔,经汽提后便获得精制柴油或精制航空煤油产品。
2.危险部位2.1 反响器反响器是装置的重点设备,预加氢、重整、加氢精制等反响都在反响器中进行,其内装有催化剂,特别是重整催化剂,价钱昂贵,反响器操作温度、压力都比较高,并且充满易燃、易爆的烃类、氢气等。
若反响器床层超温,办理不妥或不实时,将会破坏催化剂或设备。
2.2 高压分别器是装置的重要设备,反响流出物在此进行油、气、水三相分别,同时又是反响系统压力控制点。
如液面过高,会造成循环氢气带液破坏压缩机,液面过低,简单出现高压窜低压事故。